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Abstract

This note focuses on efficient estimation of parameters in generic target (sub) populations

defined by the missingness pattern of monotonically missing at random data. Attrition from multi-

period studies typically generates such data and, in such contexts, our target parameters describe,

e.g., the counterfactuals that were unrealized due to the choice of attrition in different periods. The

novel features of the results on efficiency are emphasized. A standard doubly-robust estimator for

the generic target parameter follows by equating to zero the sample analog of its efficient influence

function that plugs in parametric or nonparametric estimators of the unknown nuisance parameters.
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1 Introduction

Our note is about efficient estimation with monotone missing at random data. Attrition to an

absorbing state is the primary application of this estimation framework in econometrics; see,

e.g., Fitzgerald et al. (1996), Abowd et al. (2001), Wooldridge (2002), Nicoletti (2006) and

Wooldridge (2010), etc. Efficient estimation is important in this context because attrition,

by definition, involves loss in data that makes it imperative that the available information

be used optimally so that the precision of estimates is not needlessly compromised.

Our results on efficient estimation build on Robins and Rotnitzky (1992), Robins et al.

(1995) and Rotnitzky and Robins (1995), extending them to sub-populations defined by the

monotone pattern of missingness. To set the benchmark that the competing (regular) esti-

mators should strive to reach, we obtain the efficiency bound for estimating parameters under

the general framework of moment restrictions models. Our proposed estimator can reach

this bound, and turns out to be a standard two-step estimator satisfying double-robustness

with respect to the underlying nuisance parameters that can be estimated parametrically or

nonparametrically; see, e.g., Robins et al. (1994), Robins and Ritov (1997), Scharfstein et al.

(1999), Bang and Robins (2005), Tan (2007), Cao et al. (2009), Rothe and Firpo (2019), etc.

With respect to the vast literature on missing at random data, our contribution is the

efficiency results on a variety of sub-populations defined by the monotone pattern of miss-

ingness which, in our context, reflects the attrition behavior of agents. These results are also

broadly applicable beyond econometrics. For example, thanks to the equivalence theorem

of Molenberghs et al. (1998), our results apply directly to the well-known pattern mixture

models of Glynn et al. (1986), Little (1993, 1994), etc. Our results also provide new insights

on the usability of the sample units toward efficient estimation in sub-populations. This was

possible by going beyond, as in the companion paper Chaudhuri (2020), the framework of

Robins et al. (1995), Rotnitzky and Robins (1995), Hahn (1998), Chen et al. (2008), etc.

Our note proceeds as follows. Section 2 lays out the framework. Section 3 presents the

theory – efficiency bound, efficient influence function, estimation, etc. – by relating them
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with the literature. The framework in Section 2 is identical to that of Chaudhuri (2020)

except in one key aspect — out of necessity, we work with unplanned incompleteness instead

of planned incompleteness as in Chaudhuri (2020). We will see in Section 3 that this leads

to fundamental differences in the usability of the sample units toward efficient estimation.

The proof of our main result is tedious, and hence for brevity of the note we present the

proofs of all the results from Sections 2 and 3 in Supplemental Appendix A. Formal results

on the asymptotic properties of the proposed estimator are presented in Supplemental Ap-

pendix B since these results for standard two-step estimators (like ours) are very well known

and certainly not our contribution. They are presented only for completeness. Complement-

ing the core theory in our note: (i) Supplemental Appendix C is a Monte Carlo experiment

demonstrating excellent small-sample properties of our proposed estimator, and (ii) Supple-

mental Appendix D is an empirical illustration of the benefits of this estimator’s precision in

drawing substantive conclusions on the effect of small class size across dimensions induced by

the attrition behavior of students from the widely studied, attrition-infested Project STAR.

2 Framework

Let Z := (Z ′1, . . . , Z
′
R)′ where Zr is a dr × 1 random vector and

∑R
r=1 dr is finite. Let

C be a random variable with support {1, . . . , R} and TC(Z) a transformation defined as

Tr(Z) := (Z ′1, . . . , Z
′
r)
′ with dimension (

∑r
s=1 ds)× 1 for r = 1, . . . , R. Let O := (C, T ′C(Z))′

denote what is observed for a unit in the sample.

In the case of attrition from a, e.g., 4 period study: R = 4, Zr are the variables that are

observed in period r, and Tr(Z) is the cumulative history of the variables observed until and

including period r. If a unit leaves after period j (∈ {1, . . . , R}), then its C = j and we only

observe Tj(Z) for it. C = R is the same as never leaving (some denote this as C =∞).

We maintain the selection on observables, i.e., missing at random (MAR), assumption:

P (C = r|TR(Z), C ≥ r) = P (C = r|Tr(Z), C ≥ r) for r = 1, . . . , R− 1. (1)
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Since Tr(Z) is observable when C ≥ r, (1) imposes that the conditional hazard P (C =

r|TR(Z), C ≥ r) at period r does not depend on the unobservables Zr+1, . . . , ZR once condi-

tioned on the observables Tr(Z). (1) is the MAR assumption in the sense of Rubin (1976).

Plausibility of MAR depends on the context. However, MAR has been widely used in

studies on attrition especially if, as in our paper, the missingness is monotone, i.e., if indi-

viduals never return after leaving. By contrast, if the missingness is non-monotone, then

selection on observables is unrealistic since the choice to return could depend on unobserv-

ables, i.e., on what happened when the individual was out of the study; see, e.g., Gill and

Robins (1997), Gill et al. (1997), Robins and Gill (1997) and Vansteelandt et al. (2007).

There is a vast literature on point or interval identification under selection on unobservables.

Our note does not contribute to that literature. Instead, our note is only concerned with

efficiency under selection on observables and a thorough analysis of the efficiency results.

Nomenclature: We refer to the underlying population of O := (C, T ′C(Z))′ as the full

population. We refer to the partition of this full population by the values taken by C as

sub-populations; e.g., sub-population r is the underlying population from which units with

C = r can be viewed as randomly drawn. There are R unitary sub-populations indexed by

r = 1, . . . , R. Unions of unitary sub-populations form a composite sub-population, e.g., C ∈

{1, 2}, or the full population C ∈ {1, . . . , R}. Under the selection on observables condition

in (1), the unconditional distribution of Z may not be the same as the distribution of Z

conditional on C = r for r = 1, . . . , R, i.e., the sub-populations are possibly heterogeneous.

In the case of attrition from a, e.g., 4 period study, the difference in the conditional

and unconditional distributions of Z means that, e.g., E[Z4] is not necessarily equal to

E[Z4|C = r] for any r = 1, . . . , 4. (Note that Z4 is not observed if C = 1, 2, 3.) Naturally,

E[Z4|C = r] may not be equal to E[Z4|C = s] for r 6= s and r, s = 1, . . . , 4, and this

means that the timing of attrition or dropout from any study/program matters in general;

see Supplemental Appendix D for a concrete empirical example. Therefore, in this context,

the sub-populations are defined by the attrition categories based on the timing of attrition.
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We will work with a generic target sub-population [a, b] (≡ (a ≤ C ≤ b)) for a ≤ b and

a, b ∈ {1, . . . , R}. If a = b = r then this is the underlying unitary sub-population from which

the units who left at the end of period r can be viewed as randomly drawn. If a < b then

this is the composite sub-population for the units who left in the periods a, a + 1, . . . , b. If

a = 1 and b = R then this is the full-population. We will cover all these cases.

Denote the distribution of Z in the target population by FZ|(a≤C≤b)(z). This is the

weighted average of the distributions of Z in sub-populations a, . . . , b with weights P (C =

j)/P (a ≤ C ≤ b) for j = a, . . . , b. We will define the parameter of interest as a finite dimen-

sional feature of FZ|(a≤C≤b)(z). Accordingly, consider a function m(Z; β) : Support(Z)×B 7→

Rd, β ∈ B ⊂ Rd. Then, for a given a, b ∈ {1, . . . , R} with a ≤ b, define the parameter value

of interest β0
[a,b] as:

E[m(Z; β) | a ≤ C ≤ b] = 0 for β ∈ B if and only if β = β0
[a,b]. (2)

The observability ofm(Z; β) depends on the underlying elements of Z involved inm(Z; β).

However, as shown in Lemma 1, identification of β0
[a,b] still follows by the Narain-Horvitz-

Thompson-Hajek inverse probability weighting (IPW) principle by virtue of the selection on

observables condition in (1).

For notational brevity, we will henceforth denote the conditional hazards as:

p0
r(Tr(Z)) := P (C = r|Tr(Z), C ≥ r) for r = 1, . . . , R− 1.

Lemma 1 If P (C = R|TR(Z)) > 0 almost surely then the selection on observables condition

(1) implies that E[m(Z; β)|a ≤ C ≤ b] = E
[
ωIPW

[a,b] m(Z; β)
]

for each β ∈ B where:

ωIPW
[a,b] :=

I(C = R)∏R−1
j=1 (1− p0

j(Tj(Z)))

∑b
j=a p

0
j(Tj(Z))

∏j−1
k=1(1− p0

k(Tk(Z))

P (a ≤ C ≤ b)
.

(For notational brevity we used the convention that if a = 1 then
∏a−1

k=1(1− p0
k(Tk(Z)) = 1.)
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Remark: Lemma 1 is the basis of the well-known IPW estimation and provides a simple

way of constructing a feasible quantity ωIPW
[a,b] m(Z; β) whose expectation equals E[m(Z; β)|a ≤

C ≤ b] in (2), and hence can be used as unbiased estimating equations for estimating β0
[a,b].

Of course, ωIPW
[a,b] contains R−1 unknown nuisance parameters, i.e., the unknown conditional

hazards p0
r(Tr(Z)) for r = 1, . . . , R − 1.1 However, they can be estimated based on the

observed variables since the conditioning variables Tr(Z) are observed exactly when needed.

Unfortunately, such IPW estimating equations are generally not the “best” ones under

the selection on observables assumptions in (1).2 To define “best”, we will obtain the semi-

parametric efficiency bound and the efficient influence function for the estimation of β0
[a,b]

maintaining the following familiar assumptions as in Tsiatis (2006) and Chen et al. (2008).

Assumption A:

(A1) The observed sample units {Oi := (Ci, T
′
Ci

(Zi))
′}ni=1 are i.i.d. copies ofO := (C, T ′C(Z))′.

(A2) P (C = R|TR(Z)) ≥ p almost surely for some fixed p ∈ (0, 1).

(A3) M[a,b] := E
[

∂
∂β′
m(Z; β0

[a,b])
∣∣∣ a ≤ C ≤ b

]
is a d× d finite, nonsingular matrix.

Remark: (A1) rules out dependence and heterogeneity across sample units when viewed as

random draws from O. (A2) imposes the bounded away from zero condition instead of only

P (C = R|TR(Z)) > 0 to avoid the “limited overlap” problem; see, e.g., Khan and Tamer

(2010). Note that (1) and (A2) imply that
∏R−1

r=1 (1 − p0
r(Tr(Z))) = P (C = R|TR(Z)) ≥ p.

Without altering the results, the differentiability condition in (A3) can be relaxed if needed by

instead assuming (A3) for ∂
∂β′
E
[
m(Z; β0

[a,b])
∣∣∣ a ≤ C ≤ b

]
following, e.g., Chen et al. (2008).

1To see this, take the simplest case: a = 1, b = R. (1) implies that ωIPW
[a,b] = I(C = R)/P (C = R|TR−1)

since P (C = R|TR) = P (C = R|TR−1); see Lemma 8 in Supplemental Appendix A for the steps. Unless
R = 2 or R > 2 along with a dimension-reduction assumption in (1) such as P (C = R|TR) = P (C = R|T1)
as in Cattaneo (2010) or Chaudhuri and Guilkey (2016), the conditioning variables in P (C = R|TR−1)
are not always observable. Therefore, it is misleading to say that there is only one nuisance parameter
P (C = R|TR−1), because, without the R− 1 conditional hazards p01(T1), . . . , p0R−1(TR−1) there is no way to
contemplate about P (C = R|TR−1) under the selection on observables condition in (1). Hence, it is important
to remember that there are R−1 nuisance parameters p01(T1), . . . , p0R−1(TR−1) regardless of R = 2 or R > 2.

2See, e.g., Chaudhuri and Guilkey (2016) and Chaudhuri (2020) for more on this issue. These two papers
and the current note do not contradict the important efficiency result of IPW estimating equations in Hirano
et al. (2003), Chen et al. (2008), Graham (2011), etc. involving nonparametric estimator of p01(T1(Z)) in the
special cases with R = 2 and a = 1, b = 2 or a = b = 1; also see footnote 14 in Supplemental Appendix D.
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3 Theory

3.1 Main result: Efficient influence function and efficiency bound

The key quantity to describe the efficient influence function and the efficiency bound is:

ϕ[a,b](O; β) :=
R∑

r=b+1

I(C ≥ r)∏r−1
j=1(1− p0

j(Tj))

∑b
j=a p

0
j(Tj)

∏j−1
k=1(1− p0

k(Tk))

P (a ≤ C ≤ b)

[
q0
r(Tr; β)− q0

r−1(Tr−1; β)
]

+
b∑

r=a+1

I(C ≥ r)∏r−1
j=1(1− p0

j(Tj))

∑r−1
j=a p

0
j(Tj)

∏j−1
k=1(1− p0

k(Tk))

P (a ≤ C ≤ b)

[
q0
r(Tr; β)− q0

r−1(Tr−1; β)
]

+
b∑

r=a

I(C = r)

P (a ≤ C ≤ b)
q0
r(Tr; β) (3)

where, for brevity, we use the following notation in (3) and onward in the main text:

q0
r(Tr; β) := E[m(Z; β)|Tr(Z)] ≡ E[m(TR(Z); β)|Tr(Z)] for r = a, . . . , R.

In (3) and onward: (i) we use the convention (as in Lemma 1) that
∏a−1

k=1(1−p0
k(Tk(Z)) = 1

if a = 1; (ii) we interchangeably write I(C ≥ R) and I(C = R), and also Tr and Tr(Z) (where

TR ≡ Z); (iii) if b = R, then the indices (e.g., in the sums) running from b+ 1 to R are void;

and (iv) if a = b then similar indices running from a + 1 to b are void, and those running

from a to b contain only one term which corresponds to a (equivalently, b).

Proposition 2 Let (1), (2) and assumption A hold. Let the d×d matrix V[a,b] := V ar(ϕ[a,b](O; β0
[a,b]))

be finite and positive definite where β0
[a,b] and ϕ[a,b](O; β) are as defined in (2) and (3) re-

spectively. Then the asymptotic variance lower bound for
√
n(β̂[a,b] − β0

[a,b]) of any regular

estimator β̂[a,b] for β0
[a,b] is given by Ω[a,b] := M−1

[a,b]V[a,b]M
−1′

[a,b]. An estimator β̂[a,b] whose asymp-

totic variance equals Ω[a,b] has the asymptotically linear representation:

√
n(β̂[a,b] − β0

[a,b]) = −M−1
[a,b]

1√
n

n∑
i=1

ϕ[a,b](Oi; β
0
[a,b]) + op(1).
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3.2 Discussion of the main result: Proposition 2 and ϕ[a,b](O; β)

3.2.1 Relation with the well-known literature on missing data:

Corollary 3 Proposition 2 covers the well-known special cases found in the selection on

observables/MAR literature. In these cases ϕ[a,b](O; β) reduces to the following simpler forms.

(i) Taking R = 2, i.e., Z = (Z ′1, Z
′
2)′ with T1 = Z1, T2 = Z, and then a = b = 1 in (3) gives:

ϕ[a,b](O; β) =
I(C = 2)

P (C = 2|T1)

P (C = 1|T1)

P (C = 1)
(q0

2(T2; β)− q0
1(T1; β)) +

I(C = 1)

P (C = 1)
q0

1(T1; β).

(ii) Taking R = 2, i.e., Z = (Z ′1, Z
′
2)′ with T1 = Z1, T2 = Z, and then a = 1 and b = 2 in (3)

gives:

ϕ[a,b](O; β) =
I(C = 2)

P (C = 2|T1)
(q0

2(T2; β)− q0
1(T1; β)) + q0

1(T1; β).

(iii) Taking a general R and then a = 1, b = R in (3) gives:

ϕ[a,b](O; β) =
R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(
q0
r(Tr; β)− q0

r(Tr−1; β)]
)

+ q0
1(T1; β).

Remark: Corollary 3(i) gives Case (1) in Theorem 1 of Chen et al. (2008). Corollary 3(ii)

gives Case (2) in Theorem 1 of Chen et al. (2008); also see Robins et al. (1994). Corollary

3(iii) gives the result for the full-population under monotone MAR data with R > 2 like

Robins and Rotnitzky (1995), Rotnitzky and Robins (1995), Holcroft et al. (1997), etc.3

3.2.2 Application to individual sub-populations, i.e., a = b:

If we focus on any generic individual sub-population, i.e., a = b, then it is now easy to see

from (3) that for a general R, the corresponding ϕ[a,b](O; β) in (3) becomes:

R∑
r=a+1

I(C ≥ r)∏r−1
j=1(1− p0

j(Tj))

p0
a(Ta)

∏a−1
j=1(1− p0

k(Tj))

P (C = a)

(
q0
r(Tr; β)− q0

r−1(Tr−1; β)
)
+
I(C = a)

P (C = a)
q0
a(Ta; β).

3An early reference for the case a = 1, b = R is Robins and Rotnitzky (1992) who consider treatment effect
estimation under noncompliance (a third choice for therapy) similar to what attrition is in our empirical
illustration in Supplemental Appendix D. Unlike us, they do not consider the analysis in sub-populations.
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Thus, ϕ[a,b](O; β) = I(C = R)m(TR; β)/P (C = R) in the special case when a = b = R.

More generally, it is interesting to note that for any individual sub-population a(= b), only

those sample units who did not already leave before period a contribute to this efficient

estimation.4 This is in dramatic contrast to Chaudhuri (2020)’ s Proposition 1 where, under

the additional assumption that p0
r(Tr) is known for r = 1, . . . , R− 1, it is shown that all the

sample units are always usable irrespective of the sub-population under consideration.

Hence, the selection on observables condition in (1) alone is not sufficient to make all

the sample units usable. More information is required for that purpose. The known hazard

condition in Chaudhuri (2020) in the context of planned incompleteness in surveys provided

such information by supplementing (1). An alternative source of such information, while still

allowing for unknown hazards, is the imposition of dimension-reduction on (1) to strengthen

it, e.g., P (C = r|TR, C ≥ r) = P (C = r|T1, C ≥ r) as in Proposition 5 in Chaudhuri

(2020). See Hoonhout and Ridder (2019), Chaudhuri (2020), etc. for other insights on the

information content of the selection on observables condition in similar multi-period settings.

Lastly, note that while Case (1) in Theorem 1 of Chen et al. (2008) also focuses on an

individual sub-population, their choice a = b = 1 corresponds to the first period and this

means that there is no prior period of attrition. Hence, while Chen et al. (2008)’s choice is a

special case of our result, restricting the focus only to that case would not allow to infer on

the un-usability of sample units who left before the period of interest (see also footnote 4).

3.2.3 The weighted average representation:

The moment restrictions in (2) will always satisfy the standard weighted average representa-

tion (recall the definition of FZ|(a≤C≤b)(z) from Section 2) across sub-populations constituting

4More precisely, while the units that left before period a are essential in identifying the conditional hazards
p01(T1), . . . , p0a−1(Ta−1) in periods 1, . . . , a−1, they do not contribute with the variance-reducing-augmenting
terms (to the IPW) involving the conditional expectations q01(T1;β), . . . , q0a−1(Ta−1;β) of the moment vector.
Hence, it is not as if we can completely ignore (drop) the periods 1, . . . , a − 1 because then we will not be
able to identify these conditional hazards or terms like

∏a
j=1(1− p0j (Tj)) =

∏a
j=1(1−P (C = j|Tj , C ≥ j)) =∏a

j=1(1 − P (C = j|Ta, C ≥ j)) =
∏a

j=1 P (C > j|Ta, C ≥ j) = P (C > a|Ta) = 1 − P (C ≤ a|Ta) where the
second equality follows by MAR in (1) since Ta is contained in TR, while the fourth equality is due to the
telescoping product. This intuition is obviously moot if a = 1 as in Case 1 of Theorem 1, Chen et al. (2008).
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[a, b]:

E[m(Z; β)|a ≤ C ≤ b] =
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
E[m(Z; β)|C = j].

Interestingly, this weighted average representation also holds for ϕ[a,b](O; β) defined in (3).

Corollary 4 For a ≤ b ∈ {1, . . . , R}, ϕ[a,b](O; β) in (3) has the weighted average represen-

tation:

ϕ[a,b](O; β) =
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ[j,j](O; β).

Remark: This representation is intuitively appealing, and it presents a way of combining

the efficient estimators for the individual sub-populations to obtain the efficient estimator for

their contiguous unions. Recent examples of combining either (i) estimators or (ii) moment

restrictions for similarly defined sub-populations to obtain their full-population counterparts

include Dardanoni et al. (2011) and Muris (2018) for (i), and Chaudhuri and Guilkey (2016)

and Abrevaya and Donald (2017) for (ii), and Chaudhuri (2020) for both (i) and (ii).

3.2.4 Doubly robust estimating equations:

ϕ[a,b](O; β) depends on the R − 1 conditional hazards p0
r(Tr) for r = 1, . . . , R − 1 (also see

footnote 1), and also on the R−a conditional expectations q0
r(Tr; β) for r = a, . . . , R−1. (The

q0
r(Tr; β)’s do not appear if a = b = R; see Section 3.2.2.) These are nuisance parameters.

The structure of ϕ[a,b](O; β) provides “some” protection against misspecification of these two

sets of nuisance parameters. Let us note why. Imitating the structure of ϕ[a,b](O; β), define:

g(O; β, p(Z), q(Z; β))

:=
R∑

r=b+1

I(C ≥ r)∏r−1
j=1(1− pj(Tj))

∑b
j=a pj(Tj)

∏j−1
k=1(1− pk(Tk))

P (a ≤ C ≤ b)
[qr(Tr; β)− qr−1(Tr−1; β)]

+
b∑

r=a+1

I(C ≥ r)∏r−1
j=1(1− pj(Tj))

∑r−1
j=a pj(Tj)

∏j−1
k=1(1− pk(Tk))

P (a ≤ C ≤ b)
[qr(Tr; β)− qr−1(Tr−1; β)]

+
b∑

r=a

I(C = r)

P (a ≤ C ≤ b)
qr(Tr; β), (4)
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where qR(TR; β) ≡ m(Z; β), and for generic functions qr : (Tr; β) 7→ Rd for r = a, . . . , R− 1,

and pr : (Tr) 7→ (0, 1) for r = 1, . . . , R − 1, and their respective “true values” q0
r(Tr; β) for

r = a, . . . , R− 1 and p0
r(Tr) for r = 1, . . . , R− 1, we consolidated notation by writing:

q(Z; β) := (q′a(Ta; β), . . . , q′R−1(Tr−1; β))′, q0(Z; β) := (q0′

a (Ta; β), . . . , q0′

R−1(Tr−1; β))′,

p(Z) := (p1(T1), p2(T2), . . . , pR−1(Tr−1))′, p0(Z) := (p0
1(T1), p0

2(T2), . . . , p0
R−1(Tr−1))′.

(5)

Compare (3) and (4) to see that g(O; β, p(Z), q(Z; β)) simply replaces in ϕ[a,b](O; β) all the

p0
r(Tr)’s by the corresponding pr(Tr)’s and all the q0

r(Tr; β)’s by the corresponding qr(Tr; β)’s.

Lemma 5 It follows from (3) and (4) that ϕ[a,b](O; β) = g(O; β, p0(Z), q0(Z; β)) for all O

and β. The selection on observables condition in (1) implies that for all β ∈ B:

E[g(O; β, p(Z), q0(Z; β))] = E[g(O; β, p0(Z), q(Z; β))] = E[m(Z; β)|a ≤ C ≤ b].

Remark: g(O; β, p(Z), q(Z; β)) can be used as the moment vector for the estimation of β[a,b].

Lemma 5 shows that the structure of ϕ[a,b](O; β) bestows on g(O; β, p(Z), q(Z; β)) protection

against misspecification of the two sets of nuisance parameters p0(Z) and q0(Z; β). This is the

“double-robustness” property in the sense of Scharfstein et al. (1999). Also see Robins et al.

(1994), Robins and Ritov (1997), Bang and Robins (2005), Tan (2007), Cao et al. (2009),

Rothe and Firpo (2019), etc. Specifically, Lemma 5 shows that this moment vector will not

alter the global identification condition (2) for β0
[a,b] if at least one set of nuisance parameters

is correctly specified in g(O; β, p(Z), q(Z; β)), i.e., p(Z) = p0(Z) or/and q(Z; β) = q0(Z; β).

3.3 Estimator of β and a sketch of its asymptotic properties

For a given [a, b], we will use an estimator of β that solves the sample estimating equations:

1

n

n∑
i=1

g(Oi; β, p̂(Zi), q̂(Zi; β)) = 0. (6)
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(6) is the sample analog of the population estimating equations E[g(O; β, p(Z), q(Z; β))] = 0

with parametric or nonparametric estimators p̂(Z) and q̂(Z; β) in place of p(Z) and q(Z; β).

The theory behind such “two-step” estimation of β with nuisance parameters is well

known. Parametric or nonparametric estimation of the nuisance parameters is also standard.

Hence we only provide here a minimal sketch of the estimation and the theory while relegating

a formal presentation (including estimation of standard error) to Supplemental Appendix B.

First, consider the conditional hazards. Let the parametric model, e.g., logit/probit, for

p0
r(Tr) be pr(Tr; γr) where γr is a dγr × 1 unknown vector for r = 1, . . . , R − 1. We obtain

the quasi-maximum likelihood estimator γ̂r of γr by solving the score equations:

0 =
1

n

n∑
i=1

Sr(Oi; γ̂r) for r = 1, . . . , R− 1, where for i = 1, . . . , n,

Sr(Oi; γr) := I(Ci ≥ r)
I(Ci = r)− pr(Tr,i; γr)

pr(Tr,i; γr)(1− pr(Tr,i; γr))

{
∂

∂γr
pr(Tr,i; γr)

} (7)

We obtain the parametric estimator p̂(Z) as p̂(Z) = (p1(T1; γ̂1), . . . , pR−1(TR−1; γ̂R−1))′.

Now, consider the conditional expectations. Let the parametric model, e.g., linear model,

for q0
r(Tr; β) be qr(Tr; β, λr(β)) where λr(β) is a dλr ×1 unknown vector for r = a, . . . , R−1.

We obtain the least squares estimator λ̂r(β) of λr(β) as a function of β by solving:

0 =
1

n

n∑
i=1

Lr(Oi; β, λ̂r(β)) for r = a, . . . , R− 1, where for i = 1, . . . , n,

Lr(Oi; β, λr) := I(Ci = R)

{
∂

∂λr
q′r(Tr,i; β, λr)

}
(m(TR,i; β)− qr(Tr,i; β, λr)) .

(8)

These equations are simply the first order condition of least squares in a system of equations.

We obtain the parametric estimator q̂(Z; β) as q̂(Z; β) = (q′a(Ta; β, λ̂a(β)), . . . , q′R−1(TR−1; β, λ̂R−1(β)))′.

One could, in principle, also use any nonparametric estimator p̂(Z) and q̂(Z; β). Use of

series/sieve estimators appears to be common, e.g., Hahn (1998), Hirano et al. (2003), Chen

et al. (2005), Chen et al. (2008), Cattaneo (2010), Ackerberg et al. (2012), etc. For example,

one could take: (i) pr(Tr; γr) as logit (e.g., Hirano et al. (2003)) or probit (e.g., Ackerberg
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et al. (2012)) with index ξ′dγr (Tr)γr for r = 1, . . . , R − 1 and take (ii) qr(Tr; β, λr(β)) as

π′dλr (Tr)λr(β) for r = a, . . . , R−1 where ξdγr (Tr) and πdλr (Tr) are the first dγr and dλr terms

of some (possibly the same) basis function. The promise of nonparametrics materializes if

dγr →∞ for r = a, . . . , R− 1 and dλr →∞ r = 1, . . . , R− 1 as n→∞. On the other hand,

the implementation of such nonparametric estimators p̂(Z) and q̂(Z; β) is exactly the same

as that of their parametric counterpart (following (7) and (8)) for a given sample size n.

Assumption CH: The conditional hazard (CH) model is correct, i.e., there exists a γ0 =

(γ0′
1 , . . . , γ

0′
R−1)′ with γ0

r ∈ Γr such that pr(Tr; γ
0
r ) = p0

r(Tr) for r = 1, . . . , R− 1.

Assumption CE: The conditional expectation (CE) model is correct, i.e., there exists a λ0 =

(λ0′
a , . . . , λ

0′
R−1)′ with λ0

r ∈ Λr such that qr(Tr; β
0
[a,b], λ

0
r) = q0

r(Tr; β
0
[a,b]) for r = a, . . . , R− 1.

Assumptions CH and CE are relevant only for parametric estimators p̂(Z) and q̂(Z; β).

For nonparametric estimators, on the other hand, the approximation to the truth can be

made arbitrarily well (in L2 or sup norm) given sufficient smoothness of p0(Z) and q0(Z; β)

as dγr →∞ for r = a, . . . , R− 1 and dλr →∞ r = 1, . . . , R− 1 as n→∞.

Proposition 6 Consider any given target sub-population [a, b] and the estimator β̂ obtained

by solving the associated estimating equations in (6) for the target parameter β0
[a,b].

(i) Suppose that we use parametric estimators p̂(Z) and q̂(Z; β) in (6). Suppose that the

standard assumptions of two-step estimation stated in Supplemental Appendix B.1 following

Newey and McFadden (1994) and van der Vaart (1998) hold. Then
√
n(β̂−β∗) d−→ N(0,Υββ)

for some d × 1 vector β∗ ∈ B and d × d positive definite matrix Υββ, both defined in Sup-

plemental Appendix B.1, and satisfying β∗ = β0
[a,b] if assumption CH or/and assumption CE

holds, and Υββ = Ω[a,b] if both assumption CH and assumption CE hold.

(ii) Suppose that we use nonparametric estimators p̂(Z) and q̂(Z; β) in (6). Suppose that

the standard assumptions of two-step profiled semiparametric estimation stated in Supple-

mental Appendix B.2 following Chen et al. (2003) hold. Then
√
n(β̂ − β0

[a,b])
d−→ N(0,Ω[a,b]).

We already saw that the implementation of the efficient estimator is standard. Proposi-

tion 6 shows that its asymptotic properties are also standard. Hence we relegate its detailed
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discussion along with the estimation of the standard errors to Supplemental Appendix B.

To complement our theoretical discussion: (i) Supplemental Appendix C presents a Monte

Carlo experiment demonstrating excellent properties of the efficient estimator in small sam-

ples, and (ii) Supplemental Appendix D illustrates the benefits of that efficiency of the

proposed estimator in drawing substantive conclusions on the effect of small classes in the

widely studied Project STAR. It turns out in both (i) and (ii) that the commonly used but

not necessarily efficient estimators are vastly outperformed by our proposed estimator.

We now conclude with the following remark. Our note focused on efficiency when interest

lies on sub-populations. We provided a (hopefully) thorough analysis of efficiency, and

highlighted the novel aspects of the contribution of sample units toward efficiency and its

comparison with less general setups under selection on observables. We hope that this

analysis of the information content of the selection on observables condition is of interest to

the reader. On the applied side, it is imperative to use efficient estimators whenever possible

since attrition over multiple periods can cause severe loss in the data. Hence, we also hope

that the standardness of the proposed efficient estimator is encouraging to practitioners.
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The numbering of the equations, corollaries, lemmas and propositions in this supplemen-

tal appendix is consistent with the main text of our paper.

A Supplemental Appendix A: Proofs of main results

The following two lemmas are useful for most of the proofs below.

Lemma 7 The MAR condition in (1) implies and is implied by the following condition:

P (C = r|TR) = P (C = r|Tr) for r = 1, . . . , R− 1. (9)

Proof of Lemma 7: First we show that if (1) holds then (9) also holds. Take any r =

1, . . . , R− 1 and note that:

P (C = r|TR) = p0
r(TR)

r−1∏
k=1

(1−p0
k(TR)) = p0

r(Tr)
r−1∏
k=1

(1−p0
k(Tk)) = p0

r(Tr)
r−1∏
k=1

(1−p0
k(Tr)) = P (C = r|Tr)

where the second and the third equalities follow by (1). Now we show that if (9) holds then

(1) also holds. Take any r = 1, . . . , R− 1 and note that:

P (C = r|TR, C ≥ r) =
P (C = r|TR)

P (C ≥ r|TR)
=

P (C = r|TR)

1− P (C ≤ r − 1|TR)
=

P (C = r|TR)

1−
∑r−1

j=1 P (C = j|TR)

=
P (C = r|Tr)

1−
∑r−1

j=1 P (C = j|Tj)
=

P (C = r|Tr)
1−

∑r−1
j=1 P (C = j|Tr)

=
P (C = r|Tr)
P (C ≥ r|Tr)

= P (C = r|Tr, C ≥ r)

where the fourth and fifth equality follow by (9).

Lemma 8 The MAR condition in (1) implies that:

P (C ≥ r|Tj) = P (C ≥ r|Tr−1) for r = 1, . . . , R− 1 and j = r, . . . , R.

Proof of Lemma 8: Lemma 7 shows that (1) implies (9). Now, take r = 1, . . . , R− 1 and
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j = r, . . . , R and note that:

P (C ≥ r|Tj) = 1−
r−1∑
k=1

P (C = k|Tj) = 1−
r−1∑
k=1

P (C = k|Tk) = 1−
r−1∑
k=1

P (C = k|Tr−1) = P (C ≥ r|Tr−1)

where the second and the third equalities follow by (9).

Remarks:

1. Lemma 8 implies that if R = 2 then P (C = 2|T2) = P (C = 2|T1). This is the familiar

form in which the MAR assumption is generally found in the econometrics literature where

the focus has typically on the case of R = 2; also see footnote 1.

2. We introduced the notation in the above two lemmas for brevity of expressions in

the proofs in this appendix. The original notation with the conditional hazards is very

transparent in terms of accounting for the observability of the conditioning variables (and

hence for estimation), and precisely for that reason it leads to longer expressions.

Proof of Lemma 1: Note that:

ωIPW
[a,b] :=

I(C = R)∏R−1
j=1 (1− p0

j(Tj))

∑b
j=a p

0
j(Tj)

∏j−1
k=1(1− p0

k(Tk)

P (a ≤ C ≤ b)

=
I(C = R)∏R−1

j=1 (1− p0
j(TR))

∑b
j=a p

0
j(TR)

∏j−1
k=1(1− p0

k(TR)

P (a ≤ C ≤ b)

=
I(C = R)

P (C = R|TR)

P (a ≤ C ≤ b|TR)

P (a ≤ C ≤ b)

where the first equality follows by (1) and Lemma 7, and the second one by the standard

relation between hazards and distribution functions. Therefore, since Z ≡ TR, it follows by

using the law of iterated expectations in the second and third equalities below, that:

E
[
ωIPW

[a,b] m(Z; β)
]

= E

[
I(C = R)

P (C = R|TR)

P (a ≤ C ≤ b|TR)

P (a ≤ C ≤ b)
m(TR; β)

]
= E

[
P (a ≤ C ≤ b|TR)

P (a ≤ C ≤ b)
m(TR; β)

]
= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
m(TR; β)

]
= E[m(Z; β)|a ≤ C ≤ b].
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Proof of Proposition 2: Guided by the rationale of brevity of expressions as stated in

Remark 2 following Lemma 8, let us use (1) and Lemma 7 to rewrite ϕ[a,b](O; β) in (3)

ϕ[a,b](O; β) =
R∑

r=b+1

I(C ≥ r)

P (C ≥ r | Tr)
P (a ≤ C ≤ b | Tb)
P (a ≤ C ≤ b)

(E[m(TR; β) | Tr]− E[m(TR; β) | Tr−1])

+
b∑

r=a+1

I(C ≥ r)

P (C ≥ r | Tr)
P (a ≤ C ≤ r − 1 | Tr−1)

P (a ≤ C ≤ b)
(E[m(TR; β) | Tr]− E[m(TR; β) | Tr−1])

+
b∑

r=a

I(C = r)

P (a ≤ C ≤ b)
E[m(TR; β) | Tr]. (10)

We follow the two steps as in, e.g., Chen et al. (2008) in this proof. Step 1 characterizes the

tangent set for all regular parametric sub-models satisfying the semiparametric assumptions

on the observed data. Step 2 obtains the efficient influence function and, thereby, the

efficiency bound as the expectation of the outer product of the efficient influence function.

Let f and F denote the density and distribution functions, with the concerned random

variables specified inside parentheses. Their conditional counterparts are denoted similarly.

Let L2
0(F ) denote the space of mean-zero, square integrable functions with respect to F .

STEP - 1: Consider a regular parametric sub-model indexed by a parameter η for the

distribution of the observed data O = (C ′, T ′C(Z))′. The log of the distribution is:

log fη(O) = log fη(Z1)+
R∑
r=2

I(C ≥ r) log fη(Zr|Z1, . . . , Zr−1)+
R∑
r=1

I(C = r) logPη(C = r|Z1, . . . , Zr)

in terms of (C,Z ′)′. Let η0 be the value of η such that fη0(O) equals the true f(O) for which

(2) actually holds. (η0 is used to denote the truth in this proof but is omitted in Step 2

when it is obvious.) Then, the score function with respect to η is, in terms of (C,Z ′)′,:

Sη(O) = sη(Z1) +
R∑
r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1) +
R∑
r=1

I(C = r)
Ṗη(C = r|Z1, . . . , Zr)

Pη(C = r|Z1, . . . , Zr)

where sη(Z1) := ∂
∂η

log fη(Z1), sη(Zr|Z1, . . . , Zr−1) := ∂
∂η

log fη(Zr|Z1, . . . , Zr−1) for r =

22



2, . . . , R, and Ṗη(C = r|Z1, . . . , Zr) := ∂
∂η
Pη(C = r|Z1, . . . , Zr) for r = 1, . . . , R. For Step-2,

it is useful to note from Lemma 8 that for any r = 2, . . . , R:

Ṗη(C ≥ r|Z) = −Ṗη(C ≤ r − 1|Z1, . . . , Zr−1) = Ṗη(C ≥ r|Z1, . . . , Zr−1). (11)

The tangent set is the mean square closure of all d dimensional linear combinations of Sη(O)

for all such smooth parametric sub-models, and it can be generically defined as:

T := ν1(Z1) +
R∑
r=2

I(C ≥ r)νr(Z1, . . . , Zr) +
R∑
r=1

I(C = r)ωr(Z1, . . . , Zr), (12)

where ν1(Z1) ∈ L2
0(F (Z1)) and νr(Z1, . . . , Zr) ∈ L2

0(F (Zr|Z1, . . . , Zr−1)) for r = 2, . . . , R,

and ωr(Z1, . . . , Zr) is any square integrable function of Z1, . . . , Zr for r = 1, . . . , R.

STEP - 2: For brevity we write m(Z; β0
[a,b]) as m, and drop the subscript η from all

quantities (e.g., the expectations below) evaluated at η0. Under our assumptions, (the proof

of) Lemma 1 showed that the moment conditions in (2) for a given a, b can be expressed as:

E[m|a ≤ C ≤ b] = E

[
P (a ≤ C ≤ b|Z)

P (a ≤ C ≤ b)

I(C = R)

P (C = R|Z)
m

]
= 0.

Differentiating with respect to η under the integral gives:

0 = M[a,b]

∂β0
[a,b](η0)

∂η′
+ E

[
m

{
s(Z)′ +

Ṗ (a ≤ C ≤ b|Z)′

P (a ≤ C ≤ b|Z)
− Ṗ (a ≤ C ≤ b)′

P (a ≤ C ≤ b)

}∣∣∣∣∣ a ≤ C ≤ b

]

where s(Z) := s(Z1 +
∑R

r=2 s(Zr|Z1, . . . , Zr−1) and Ṗ (a ≤ C ≤ b) := ∂
∂η
Pη0(a ≤ C ≤ b).

Hence, (1) and Lemma 7, (2) and assumption (A3) give:

∂β0
[a,b](η0)

∂η′
= −M−1

[a,b]

{
E [ms(Z)′|a ≤ C ≤ b] +

b∑
r=a

E

[
m
Ṗ (C = r|Z1, . . . , Zr)

′

P (a ≤ C ≤ b)

]}
.

We will establish that −M−1
[a,b]ϕ[a,b](O; β0

[a,b]) is the efficient influence function by showing that
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E[−M−1
[a,b]ϕ[a,b](O; β0

[a,b])S(O)′] =
∂β0

[a,b]
(η0)

∂η′
and that M−1

[a,b]ϕ[a,b](O; β0
[a,b]) ∈ T defined in (12).

For this purpose, note by using (3) (and switching to the notation Tr for (Z1, . . . , Zr)

when it helps brevity) that we can write E[ϕ[a,b](O; β0
[a,b])S(O)′] =

∑3
i=1

∑2
j=1 Bij where:

B11 :=
R∑

r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])D′
]
,

B12 :=
R∑

r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
R∑
k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B21 :=
b∑

r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])D′

]
,

B22 :=
b∑

r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])

R∑
k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B31 :=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]D′

]
,

B32 :=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]

R∑
k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

D := s(Z1) +
R∑
k=2

I(C ≥ k)s(Zk|Tk−1).

As noted above Proposition 2, we proceed with the understanding that if b = R then

B11 = B12 = 0, and if a = b then B21 = B22 = 0. Also, for notational brevity define T0 as

any constant, so that s(Z1) ≡ s(Z1|T0). First, note that:

B11 =
R∑

r=b+1

r∑
k=1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)′
]

+
R∑

r=b+1

R∑
k=r+1

E

[
I(C ≥ k)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)′
]

=
R∑

r=b+1

r∑
k=1

E

[
P (C ≥ r|Tr−1)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)′
]

+
R∑

r=b+1

R∑
k=r+1

E

[
P (C ≥ k|Tk−1)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)′
]
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where the third and fourth lines follow by Lemma 8. Hence, we subsequently obtain that:

B11 =
R∑

r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

E[m|Tr]s(Zr|Tr−1)′
]

+ 0

= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
ms(ZR, . . . , Zb+1|Tb)′

]
= E [ms(ZR, . . . , Zb+1|Tb)′|a ≤ C ≤ b] .(13)

The first equality follows since for all k = 1, . . . , r−1: E [(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)′] =

E [E[(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)′|Tr−1]] = 0 while for k ≥ r+1: E [E[m|Tr]s(Zk|Tk−1)′] =

E [E[m|Tr]E[s(Zk|Tk−1)′|Tk−1]] = 0. The second equality follows by (1) and Lemma 7 and

the definition of score. The last equality is obvious.

Second, following the steps that led to the first line on the RHS of (13), we obtain that:

B21 =
b∑

r=a+1

E

[
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
E[m|Tr−1]s(Zr|Tr−1)′

]
.

Therefore,

B21 =
b∑

r=a+1

r−1∑
k=a

E

[
P (C = k|Tk)
P (a ≤ C ≤ b)

ms(Zr|Tr−1)′
]

=
b∑

r=a+1

r−1∑
k=a

E [ms(Zr|Tr−1)′|C = k]
P (C = k)

P (a ≤ C ≤ b)

=
b−1∑
k=a

E

[
m

b∑
r=k+1

s(Zr|Tr−1)′

∣∣∣∣∣C = k

]
P (C = k)

P (a ≤ C ≤ b)

=
b−1∑
k=a

E [ms(Zb, . . . , Zk+1|Tk)′|C = k]
P (C = k)

P (a ≤ C ≤ b)
. (14)

The first equality follows by (1) and Lemma 7. The second equality follows by the same steps

that gave the second line on the RHS of (13). The third equality follows by interchanging

the order of summations (allowed here). The last equality follows by the definition of score.

Third, we consider B31 and note that using the definition of score in the first line below

and the same argument as before in the second (last) line below give:
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B31 =
b∑

r=a

r∑
k=1

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Zk|Tk−1)′

]
=

b∑
r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Tr)′

]

=
b∑

r=a

E [ms(Tr)
′|C = r]

P (C = r)

P (a ≤ C ≤ b)
. (15)

Now, we consider the terms B12, B22 and B32 respectively. Accordingly, first note that:

B12 =
R∑

r=b+1

R∑
k=r

E

[
I(C = k)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
Ṗ (C = k|Tk)′

P (C = k|Tk)

]

=
R∑

r=b+1

E

[
1

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
R∑
k=r

Ṗ (C = k|Tk)′
]

=
R∑

r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
Ṗ (C ≥ r|Tr−1)′

P (C ≥ r|Tr−1)

]
= 0. (16)

The second equality follows by (1) and Lemma 7. The third equality follows line by Lemma

7, Lemma 8 and (11). The fourth (last) equality follows by taking expectation conditional

on Tr−1 for the r-th term inside the summation. Exactly following the same steps as in the

above (recall the analogy with B11 and B12 above) we obtain:

B22 = 0. (17)

Lastly, as before, note that:

B32 =
b∑

r=a

E

[
I(C = r)

P (C = r|Tr)
E[m|Tr]Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]
= E

[
m

b∑
r=a

Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]
. (18)

Therefore, (13)-(18) imply that E[−M−1
[a,b]ϕ[a,b](O; β0

[a,b])S(O)′] =
∂β0

[a,b]
(η0)

∂η′
. Finally, by match-

ing the first set of terms in −M−1
[a,b]ϕ[a,b](O; β0

[a,b]) (i.e., those that correspond to line one in

(10)) to the terms corresponding to νb+1(Z1, . . . , Zb+1), . . . , νR(Z1, . . . , ZR) in T ; the second

set of terms (i.e., those that correspond to line two in (10)) to the terms corresponding to

νa(Z1, . . . , Za), . . . , νb(Z1, . . . , Zb) in T ; and the third set of terms (i.e., those that correspond
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to line three in (10)) to the terms corresponding to ωa(Z1, . . . , Za), . . . , ωb(Z1, . . . , Zb) in T ;

while matching zeros with the remaining terms in T , it follows that −M−1
[a,b]ϕ[a,b](O; β0

[a,b]) is

the efficient influence function. The expectation of the outer-product of −M−1
[a,b]ϕ[a,b](O; β0

[a,b])

gives the efficiency bound: M−1
[a,b]E

[
ϕ[a,b](O; β0

[a,b])ϕ
′
[a,b](O; β0

[a,b])
]
M−1′

[a,b] = M−1
[a,b]V[a,b]M

−1′

[a,b].

Proof of Corollary 3: (i) Taking R = 2 and a = b = 1 in (10) (equivalently in (3)) gives:

ϕ[a,b](O; β) =
I(C = 2)

P (C = 2|T2)

P (C = 1|T1)

P (C = 1)
(q0

2(T2; β)− q0
1(T1; β)) +

I(C = 1)

P (C = 1)
q0

1(T1; β)

=
I(C = 2)

P (C = 2|T1)

P (C = 1|T1)

P (C = 1)
(q0

2(T2; β)− q0
1(T1; β)) +

I(C = 1)

P (C = 1)
q0

1(T1; β)

where, since R = 2, the second line used Lemma 8 to write P (C = 2|T2) as P (C = 2|T1).

(ii) Follows exactly similarly as (i).

(iii) Take a = 1, b = R in (3) (equivalently and more specifically in (10)), write q0
r for

q0
r(Tr; β) for brevity, and use Lemma 8 for the third equality below to get the result:

ϕ[a,b](O; β) =
R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
P (C ≤ r − 1|Tr−1)

(
q0
r − q0

r−1

)
+

R∑
r=1

I(C = r)q0
r

=
R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(
q0
r − q0

r−1

)
−

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
P (C ≥ r|Tr−1)

(
q0
r − q0

r−1

)
+

R∑
r=1

I(C = r)q0
r

=
R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(
q0
r − q0

r−1

)
−

R∑
r=2

I(C ≥ r)
(
q0
r − q0

r−1

)
+

R∑
r=1

I(C = r)q0
r

=
R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(
q0
r − q0

r−1

)
−

{
R∑
r=2

I(C = r)q0
r − I(C ≥ 2)q0

1

}
+

R∑
r=1

I(C = r)q0
r

=
R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(
q0
r − q0

r−1

)
+ q0

1.

Proof of Corollary 4: Let q0
r := q0

r(Tr; β) and ωj := P (C = j)/P (a ≤ C ≤ b). Then:

b∑
j=a

ωjϕ[j,j](O; β) =
b∑

j=a

{
R∑

r=j+1

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(
q0
r − q0

r−1

)
+

I(C = j)

P (a ≤ C ≤ b)
q0
j

}
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where we use for brevity the expression (10) that is equivalent to the expression (3). Hence:

b∑
j=a

ωjϕ[j,j](O; β) =
R∑

r=b+1

I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(
q0
r − q0

r−1

)
+

b∑
r=a

I(C = r)

P (a ≤ C ≤ b)
q0
r

+
b∑

j=a

b∑
r=j+1

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(
q0
r − q0

r−1

)

where the first term follows by (1) and Lemma 7. Match the first two terms with the terms on

lines one and three of (10). Hence the demonstration will be complete if the third term in the

above display is equal to the term on the second line of (10). This follows by interchanging

the order of the summations (allowed here) and noting that the third term in the above

display is:

b∑
j=a

b∑
r=j+1

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(
q0
r − q0

r−1

)
=

b∑
r=a+1

r−1∑
j=a

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(
q0
r − q0

r−1

)
=

b∑
r=a+1

I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)

(
q0
r − q0

r−1

)
.

The last equality follows by (1) and Lemma 7. This is the term on the second line of (10).

Proof of Lemma 5: The first part, i.e., ϕ[a,b](O; β) = g(O; β, p0(Z), q0(Z; β)) for all O and

β, follows from a comparison of (3) and (4). Now consider the second part. First, note that:

E
[
g(O; β, p(Z), q0(Z; β))

]
=

R∑
r=b+1

E

[
I(C ≥ r)∏r−1

j=1(1− pj(Tj))

∑b
j=a pj(Tj)

∏j−1
k=1(1− pk(Tk))

P (a ≤ C ≤ b)

[
q0
r(Tr; β)− q0

r−1(Tr−1; β)
]]

+
b∑

r=a+1

E

[
I(C ≥ r)∏r−1

j=1(1− pj(Tj))

∑r−1
j=a pj(Tj)

∏j−1
k=1(1− pk(Tk))

P (a ≤ C ≤ b)

[
q0
r(Tr; β)− q0

r−1(Tr−1; β)
]]

+
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
q0
r(Tr; β)

]
. (19)
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Consider the r−th term on the RHS of the first line in (19). Using (1) along with Lemma 7

and the law of iterated expectations we see that, since r = b+ 1, . . . R, we will have:

E

[
E

[
1− I(C ≤ r − 1)∏r−1

j=1(1− pj(Tj))

∑b
j=a pj(Tj)

∏j−1
k=1(1− pk(Tk))

P (a ≤ C ≤ b)

[
q0
r(Tr; β)− q0

r−1(Tr−1; β)
] ∣∣∣∣∣ Tr−1

]]
= E

[
(some function of Tr−1)× (some function of Tb)× E

[
q0
r(Tr; β)− q0

r−1(Tr−1; β) | Tr−1

]]
= E [(some function of Tr−1)× (some function of Tb)× 0] = 0.

Now consider the r−th term on the RHS of the second line in (19) to see that since r =

a+ 1, . . . b, we will have exactly similarly as in the above display:

E

[
I(C ≥ r)∏r−1

j=1(1− pj(Tj))

∑r−1
j=a pj(Tj)

∏j−1
k=1(1− pk(Tk))

P (a ≤ C ≤ b)

[
q0
r(Tr; β)− q0

r−1(Tr−1; β)
]]

= 0.

Using the above two displays, we obtain from (19) that:

E
[
g(O; β, p(Z), q0(Z; β))

]
=

b∑
r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
q0
r(Tr; β)

]
=

b∑
r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
m(Z; β)

]
= E[m(Z; β)|a ≤ C ≤ b] (20)

where the second equality follows by using (1) jointly with Lemma 7 that gives (9).

Finally we will show that E [g(O; β, p0(Z), q(Z; β))] = E[m(Z; β)|a ≤ C ≤ b]. The

notation will be less messy if, similar to the equivalent representation (10) of (3), we work

with the following analogous equivalent representation of g(O; β, p0(Z), q(Z; β)) in (4):

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

[
I(C ≥ R)

P (C ≥ R|TR)
m(Z; β)

+
R−1∑
r=b+1

(
I(C ≥ r)

P (C ≥ r|Tr)
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1)

)
q(Tr; β)

]

+
b∑

r=a

{(
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1)

P (a ≤ C ≤ r|Tr)
P (a ≤ C ≤ b)

)
+

I(C = r)

P (a ≤ C ≤ b)

}
q(Tr; β). (21)
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(Remarks: No generality is lost by this analogous expression of g(O; β, p0(Z), q(Z; β)) be-

cause we are working with p(Z) = p0(Z). Also, in terms of the notation in this equation,

{a ≤ C ≤ a− 1} should be considered a null event.)

First, note that the proof of Lemma 1 gives:

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

I(C ≥ R)

P (C ≥ R|TR)
m(Z; β)

]
= E[m(Z; β)|a ≤ C ≤ b].

Second, by using (1) and Lemma 7 note that for each r = b+ 1 . . . , R− 1:

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(
I(C ≥ r)

P (C ≥ r|Tr)
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1)

)
q(Tr; β)

]
= 0.

Lastly, following similar steps as above we note that for each r = a . . . , b:

E

[{(
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1)

P (a ≤ C ≤ r|Tr)
P (a ≤ C ≤ b)

)
+

I(C = r)

P (a ≤ C ≤ b)

}
q(Tr; β)

]
= E

[{(
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
− P (a ≤ C ≤ r|Tr)

P (a ≤ C ≤ b)

)
+

P (C = r|Tr)
P (a ≤ C ≤ b)

}
q(Tr; β)

]
= E

[{
− P (C = r|Tr)
P (a ≤ C ≤ b)

+
P (C = r|Tr)
P (a ≤ C ≤ b)

}
q(Tr; β)

]
= 0.

(21) and the above three displays give E [g(O; β, p0(Z), q(Z; β))]=E[m(Z; β)|a ≤ C ≤ b].

Proof of Proposition 6: We use Lemma 5 to systematically develop the proof of part

(i) along with auxiliary results in Supplemental Appendix B.1 such that it follows directly

from Theorem 5.9 in van der Vaart (1998) and Theorem 3.4 in Newey and McFadden (1994).

Similarly, we develop the proof of part (ii) in Supplemental Appendix B.2 Chen et al. (2003).
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B Supplemental Appendix B: β̂ based on equation (6)

B.1 β̂ in (6) using parametric estimators of p0(Z) and q0(z; β)

B.1.1 Asymptotic properties of β̂:

With all the components of estimation in place in Section 3.3 and the idea clear, it is

convenient to represent the concerned estimators as the solution of stacked estimating equa-

tions, i.e., as simple Z-estimators avoiding the notation related to profiled estimation as

in (6). Accordingly, let γ := (γ′1, . . . , γ
′
R−1)′, p(Z; γ) := (p1(T1; γ1), . . . , pR−1(TR−1; γR−1))′,

λ := (λ′a, . . . , λ
′
R−1)′ and q(Z; β, λ) := (q′a(Ta; β, λa), . . . , q

′
R−1(TR−1; β, λR−1))′ (i.e., without

profiled representation), and define:

ψ(Oi; β, γ, λ) :=


g(Oi; β, p(Zi; γ), q(Zi; β, λ))

S(Oi; γ)

L(Oi; β, λ)

 where

S(Oi; γ) :=
[
S ′1(Oi; γ1), . . . , S ′R−1(Oi; γR−1)

]′
and L(Oi; β, λ) :=

[
L′a(Oi; β, λa), . . . , L

′
R−1(Oi; β, λR−1)

]′
.

Then, note that the same β̂, γ̂ := (γ̂′1, . . . , γ̂
′
R−1)′ and λ̂ := (λ̂′a(β̂), . . . , λ̂′R−1(β̂))′ that

solve, respectively, (6), the equations in (7) (for r = 1, . . . , R − 1), and the equations in (8)

with β = β̂ (for r = a, . . . , R − 1), will also solve the much more familiar looking set of

equations:

0 =
1

n

n∑
i=1

ψ(Oi; β, γ, λ). (22)

Let θ := (β′, γ′, λ′)′ ∈ Θ ⊆ Rdθ where dθ = d+
∑R−1

r=1 dγr +
∑R−1

r=a dλr . dθ is also the number

of estimating equations in the stacked system in (22). θ̂ := (β̂′, γ̂′, λ̂′)′ is a solution of (22).

The representation in (22) allows us to obtain the following asymptotic results under the

standard framework of Newey and McFadden (1994) or Chapter 5 of van der Vaart (1998).

Consequently, we will state the general results from these references as propositions and then
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highlight the specialities specific to our framework as corollaries and associated remarks.

Proposition 9 Let θ∗ := (β∗
′
, γ∗

′
, λ∗

′
)′ ∈ Θ satisfy infθ:‖θ−θ∗‖≥ε ‖E[ψ(O; θ)]‖ > 0 = E[ψ(O; θ∗)]

for every ε > 0. Let supθ∈Θ ‖n−1
∑n

i=1 ψ(Oi; θ)− E[ψ(O; θ)]‖ = op(1). Then θ̂
p−→ θ∗.

Assumption CH: The conditional hazard (CH) model is correct, i.e., there exists a γ0 =

(γ0′
1 , . . . , γ

0′
R−1)′ with γ0

r ∈ Γr such that pr(Tr; γ
0
r ) = p0

r(Tr) for r = 1, . . . , R− 1.

Assumption CE: The conditional expectation (CE) model is correct, i.e., there exists a λ0 =

(λ0′
a , . . . , λ

0′
R−1)′ with λ0

r ∈ Λr such that qr(Tr; β
0
[a,b], λ

0
r) = q0

r(Tr; β
0
[a,b]) for r = a, . . . , R− 1.

Corollary 10 Let (1), (2) and the conditions of Proposition 9 hold. If assumption CH

holds, then γ∗ = γ0 and hence β∗ = β0
[a,b]. If assumption CE holds, then λ∗ = λ0 := λ0(β0

[a,b])

and hence β∗ = β0
[a,b]. If neither of assumptions CH or CE holds then, in general, β∗ 6= β0

[a,b].

Remarks: Proposition 9 is Theorem 5.9 in van der Vaart (1998). Corollary 10 uses the

result of Lemma 5 to show that the probability limit β∗ of β̂ is actually the parameter

value of interest β0
[a,b] if either the conditional hazard or the conditional expectation model

is correct.

Proposition 11 Let: (i) θ̂
p−→ θ∗ ∈ interior(Θ), (ii) ψ(O; θ) be continuously differentiable

in θ in an open neighborhood N of θ∗, (iii) E[supθ∈N ‖∂ψ(O; θ)/∂θ′‖] < ∞, (iv) Ψ(θ) :=

E[∂ψ(O; θ)/∂θ′] be nonsingular at θ = θ∗, and (v) n−1/2
∑n

i=1 ψ(Oi; θ
∗)

d−→ N(0,Σ(θ∗)) where

Σ(θ) := V ar(ψ(O; θ)). Define Υ(θ) := Ψ−1(θ)Σ(θ)Ψ−1′(θ) when it exists. Then:

√
n(θ̂ − θ∗) = −Ψ−1(θ∗)

1√
n

n∑
i=1

ψ(Oi; θ
∗) + op(1)

d−→ N (0,Υ(θ∗)) .

Corollary 12 Let (1), (2), assumptions CH and CE, and the conditions of Proposition 11

hold. Then, β̂ is the efficient estimator in the sense of Proposition 2, i.e.,

√
n(β̂ − β0

[a,b]) = −M−1
[a,b]

1√
n

n∑
i=1

ϕ[a,b](Oi; β
0
[a,b]) + op(1)

d−→ N
(
0,Ω[a,b]

)
.
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Remarks: Proposition 11 is Theorem 3.4 in Newey and McFadden (1994). The asymptotic

variance of β̂ is Υββ(θ∗) where Υββ(θ) is the d×d upper-left (northwest) block of the matrix

Υ(θ) when the latter exists. Corollary 12 demonstrates that when both nuisance parameter

models are correct, then Υββ(θ∗) = Ω[a,b], i.e., the asymptotic variance reaches the efficiency

bound in Proposition 2 and β̂ is indeed the asymptotically unbiased efficient estimator.

Note that, we avoided the dependence on θ∗ in the notation used in Proposition 6 in

Section 3.3. This was because θ∗ was not introduced in the main text for brevity. To avoid

confusion, it may be useful to write with a bit of abuse of notation Υββ(θ∗) as Υββ.

As evident from Corollary 10 and Proposition 11, β̂ remains asymptotically unbiased for

β0
[a,b] (but not efficient) even if only one of assumptions CH and CE holds. Proposition 11 can

be used for asymptotic inference on β0
[a,b] in all such cases. While the stacked representation

in (22) makes estimation of Υββ(θ∗) straightforward (see below), it is still instructive to study

the structure of Υββ(θ∗) when either assumption CH or assumption CE (but not both) holds.

These structures and more are obtained as byproducts in the proof of Corollary 12 and are

described for the interested reader in the remark below that proof in Appendix B.3.

B.1.2 Estimation of the asymptotic variance of β̂:

The standard estimator for Υββ(θ∗) is Υ̂ββ(θ̂), the d× d upper-left (northwest) block of:

Υ̂(θ̂) = Ψ̂−1(θ̂)Σ̂(θ̂)Ψ̂−1′(θ̂) where Ψ̂(θ̂) =
1

n

n∑
i=1

∂

∂θ′
ψ(Oi; θ̂) and Σ̂(θ̂) =

1

n

n∑
i=1

ψ(Oi; θ̂)ψ
′(Oi; θ̂).

Proposition 13 Let the conditions of Proposition 11 hold. Let E[supθ∈N ‖ψ(O; θ)‖2] < ∞

in an open neighborhood N of θ∗. Then Υ̂(θ̂)
p−→ Υ(θ∗) and hence Υ̂ββ(θ̂)

p−→ Υββ(θ∗) .

Remark: Proposition 13 is Theorem 4.5 of Newey and McFadden (1994). Taking numerical

derivatives instead of analytical derivatives of the first d rows of ψ(O; θ) with respect to γ can

sometimes be useful in practice, and this also applies in the case of IPW. Using bootstrap

to directly estimate Υ(θ∗) or Υββ(θ∗) also seems to be a convenient common practice.
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B.2 β̂ in (6) using nonparametric estimators of p0(Z) and q0(z; β)

If the sample size is not small then one can, in theory, (asymptotically) avoid the problems

related to misspecification by instead using nonparametric estimators p̂(Z) and q̂(Z; β). This

is not difficult in practice and we described it for series/sieve estimators in the main text.

One can also use other methods, e.g., kernel, local polynomial, etc. We will abstract from

such specific nonparametric estimators and instead consider generic estimators p̂(Z) and

q̂(Z; β) satisfying standard restrictions on convergence, and, for completeness, describe the

asymptotic properties of the resulting β̂ following Chen et al. (2003).

Preliminaries: Recalling the definitions of the g(.) function in (4), the nuisance parameters

in (5), and the estimating equations for β in (6), we will follow Chen et al. (2003) and write:

Gn(β, p, q) :=
1

n

n∑
i=1

g(Oi; β, p(Zi), q(Zi, β)) and G(β, p, q) := E[g(O; β, , p(Z), q(Z, β))].

We will follow this convention with notation also when the true values p0(Z) and q0(Z; β) or

the estimators p̂(Z) and q̂(Z; β) are plugged in for the generic functions p(Z) and q(Z; β). Re-

call that p(Z) = (p1(T1), p2(T2), . . . , pR−1(Tr−1)) and q(Z; β) := (q′a(Ta; β), . . . , q′R−1(Tr−1; β))′.

If not confusing, we will drop the arguments and instead write p for p(Z), q for q(X; β), etc.

Let pr(Tr) ∈ Pr ∈ (0, 1) and qr(Tr; β) ∈ Qr for all β ∈ B where Pr for r = 1, . . . , R−1 and Qr

for r = a, . . . , R− 1 are vector spaces of continuous functions of Z. Let P = P1× . . .×PR−1

and Q = Qa × . . . × QR−1 be endowed with the sup-norm metric denoted as follows:

‖p‖∞ = supz∈Sz ‖p(z)‖, ‖q(.; β)‖∞ = supz∈Sz ‖q(z; β)‖ and ‖q‖∞ = supβ,B,z∈Sz , ‖q(z; β)‖

where Sz denotes the support of Z and, as in Section 3.4.2, ‖.‖ denotes the Euclidean norm.

For any δ > 0, let Bδ := {β ∈ B : ‖β − β0
[a,b]‖ ≤ δ}, Pδ := {p ∈ P : ‖p− p0‖∞ ≤ δ}, and

Qδ := {q ∈ Q : ‖q− q0‖∞ ≤ δ}. Finally, following Chen et al. (2003), we slightly generalize

the definition of β̂ as an approximate solution of (6) by defining it as:

‖Gn(β̂, p̂, q̂)‖ ≤ inf
β∈B
‖Gn(β, p̂, q̂)‖+ op(n

−1/2). (23)
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Proposition 14 Let (1), (2) and assumptions A1 and A2 hold. Let:

(i) uniformly in β ∈ B, G(β, p, q) is continuous with respect to ‖.‖∞ in p, q at p = p0, q = q0,

(ii) ‖p̂− p0‖∞ = op(1) and ‖q̂ − q0‖∞ = op(1),

(iii) for all sequence of positive numbers {δn} with δn = o(1),

sup
β∈B,p∈Pδn ,q∈Qδn

‖Gn(β, p, q)−G(β, p, q)‖
1 + ‖Gn(β, p, q)‖+ ‖G(β, p, q)‖

= op(1).

Then β̂ defined in (23) satisfies: β̂ = β0
[a,b] + op(1).

Proposition 15 Let (1), (2) and assumption A hold. Let:

(i) β̂ defined in (23) satisfies: β̂ = β0
[a,b] + op(1),

(ii) ∂G(β, p0, q0)/∂β′ exists for β ∈ Bδ for some δ > 0 and is continuous at β = β0
[a,b],

(iii) ‖G(β, p, q)−G(β, p0, q0)‖ ≤ c× {‖p− p0‖2
∞ + ‖q − q0‖2

∞} for a constant c ≥ 0, for all

β ∈ Bδn, p ∈ Pδn and q ∈ Qδn with a positive sequence δn = o(1),

(iv) p̂ ∈ P and q̂ ∈ Q with probability tending to one; and ‖p̂ − p0‖∞ = op(n
−1/4) and

‖q̂ − q0‖∞ = op(n
−1/4),

(v) for all sequence of positive numbers {δn} with δn = o(1),

sup
β∈Bδn ,p∈Pδn ,q∈Qδn

√
n‖Gn(β, p, q)−G(β, p, q)−Gn(β0

[a,b], p
0, q0)‖

1 +
√
n‖Gn(β, p, q)‖+

√
n‖G(β, p, q)‖

= op(1).

(vi) V[a,b] = V ar
(
ϕ[a,b](O; β0

[a,b])
)

exists where ϕ[a,b](O; β0
[a,b]) is defined in (3).

Then β̂ defined in (23) is asymptotically efficient in the sense of Proposition 2 and satisfies:

√
n
(
β̂ − β0

[a,b]

)
= −M−1

[a,b]

1√
n

n∑
i=1

ϕ[a,b](Oi; β
0
[a,b]) + op(1)

d−→ N
(

0,Ω[a,b] = M−1
[a,b]V[a,b]M

−1′

[a,b]

)
.

Remarks: The high level conditions in Propositions 14 and 15 are from Theorems 1 and 2 of

Chen et al. (2003) who also discuss the primitive sufficient conditions for them. Our proof of
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these propositions below involves showing that the remaining conditions in Theorems 1 and 2

in Chen et al. (2003) are also satisfied under our setup thanks to (1) and (2). It is possible to

somewhat weaken the assumption on the rates of convergence in condition (iv) of Proposition

15; see, e.g., Remark 2(iii) in Chen et al. (2003) and condition (4.14)’(ii) in Chen (2007).

This has been implemented exploiting the structure of the estimating equations under our

setup in, e.g., Cattaneo (2010) and Rothe and Firpo (2019), and hence is not pursued here.

We also do not formally describe the estimation of asymptotic variance of β̂ for brevity,

but we note that this can be obtained exactly as in Theorems 6 and 7 in Cattaneo (2010).

However, based on our limited experience, we wish to remark that the promise of nonpara-

metrics in attaining the efficiency bound may not materialize in small samples. (By this we

mean that in simulations under various setups we found the Monte Carlo variance to be sys-

tematically larger than the estimated efficiency bound, although this problem is much worse

for IPW estimators than the estimator in (6).) Hence it is our opinion that, if possible (e.g.

when using series/sieve estimators), it is safer to estimate the asymptotic variance using the

parametric formula in Supplemental Appendix B.1.2; also see Ackerberg et al. (2012). That

way, the estimated variance well better reflect the true variability of the estimator; and if

the sample size is genuinely large then this estimated variance will anyway come close (in

probability) to the efficiency bound as the promise of nonparametrics materializes.

B.3 Proofs of the results in Supplemental Appendix B.1-B.2

Proof of Proposition 9: This is Theorem 5.9 in van der Vaart (1998).

Proof of Corollary 10: The proof follows from Proposition 9 by using Lemma 5.

First, take the case where assumption CH holds. Hence, the population version of the

estimating equations in (22) for β is E[g(O; β, p0(Z), q(Z; β, λ))] = 0 for some function

q(Z; β, λ) that may not be q0(Z; β) defined in (5). However, Lemma 5 and equation (2)

jointly imply that β0
[a,b] is still the unique solution for β that solves these equations. Hence,

in this case β∗ = β0
[a,b] and γ∗ = γ0 along with some λ∗ constitute the well-separated θ∗
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defined in Proposition 9. Hence β̂
p−→ β0

[a,b] under the conditions of Proposition 9.

Now, take the case where assumption CE holds. Hence, the population version of

the estimating equations in (22) for β is E[g(O; β, p(Z), q0(Z; β))] = 0 for some func-

tion p(Z) that may not be p0(Z) defined in (5). This follows because λ0(β) satisfying

q(Z; β0
[a,b], λ

0(β0
[a,b])) = q0(Z; β0

[a,b]) solves at each β the population version of the estimating

equations in (22) for λ under assumption CE. However, Lemma 5 and equation (2) jointly

imply that β0
[a,b] is the unique solution for β that solves these equations. Hence, in this case

β∗ = β0
[a,b] and λ∗ = λ0(β0

[a,b]) along with some γ∗ constitute the well-separated θ∗ defined in

Proposition 9. Hence β̂
p−→ β0

[a,b] under the conditions of Proposition 9.

Proof of Proposition 11: This is Theorem 3.4 in Newey and McFadden (1994).

Proof of Corollary 12: The key to this proof is to utilize Lemma 5 to impose structure on

the matrix Ψ(θ∗) defined in the statement of Proposition 11. Partitioning the rows of Ψ(θ)

(when it exists) according to the dimension of the vectors g(.), S(.) and L(.) in (22) and the

columns of Ψ(θ) according to the dimension of the vectors β, γ and λ, we write:

Ψ(θ) =


Ψg,β(θ) Ψg,γ(θ) Ψg,λ(θ)

ΨS,β(θ) ΨS,γ(θ) ΨS,λ(θ)

ΨL,β(θ) ΨL,γ(θ) ΨL,λ(θ)

 =


Ψg,β(θ) Ψg,γ(θ) Ψg,λ(θ)

0 ΨS,γ(θ) 0

ΨL,β(θ) 0 ΨL,λ(θ)


where the second equality follows by inspection. Therefore, using the formula for partitioned

inverse, the asymptotically linear representation of θ̂ in Proposition 11 implies that:

√
n(β̂ − β∗) = −[Ψg,β(θ∗)−Ψg,λ(θ

∗)Ψ−1
L,λ(θ

∗)ΨL,β(θ∗)]−1

×
[
Id, −Ψg,γ(θ

∗)Ψ−1
S,γ(θ

∗), −Ψg,λ(θ
∗)Ψ−1

L,λ(θ
∗)

]
1√
n

n∑
i=1

ψ(Oi; θ
∗) + op(1) (24)

This is the general result. We will now analyze the structure in (24) under the scenarios

where assumption CH or CE holds or both hold. It is useful to keep in mind that Ψ(θ∗) =

∂E[ψ(O; θ∗)]/∂θ′ under our condition (iii) by Lemma 3.6 of Newey and McFadden (1994).
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Therefore, when assumption CH holds we have by Corollary 10 and Lemma 5 that

Ψg,λ(θ
∗) = 0, and hence Corollary 10 and (24) imply that:

√
n
(
β̂ − β0

[a,b]

)
= −Ψ−1

g,β(θ∗)

[
Id, −Ψg,γ(θ

∗)Ψ−1
S,γ(θ

∗), 0

]
1√
n

n∑
i=1

ψ(Oi; θ
∗) + op(1)

= −Ψ−1
g,β(θ∗)

{
1√
n

n∑
i=1

g(Oi; β
0
[a,b], p

0(Zi), q(Zi; β
0
[a,b], λ

∗))

− Ψg,γ(θ
∗)Ψ−1

S,γ(θ
∗)

1√
n

n∑
i=1

S(Oi; γ
0)

}
+ op(1) (25)

where θ∗ on the RHS of (25) is now θ∗ = (β0′

[a,b], γ
0, λ∗

′
)′ for some λ∗.

Similarly, when assumption CE holds we have by Corollary 10 and Lemma 5 that

Ψg,γ(θ
∗) = 0, and hence Corollary 10 and (24) imply that:

√
n
(
β̂ − β0

[a,b]

)
= −Ψ−1

g,β(θ∗)

[
Id, 0, −Ψg,λ(θ

∗)Ψ−1
L,λ(θ

∗)

]
1√
n

n∑
i=1

ψ(Oi; θ
∗) + op(1)

= −Ψ−1
g,β(θ∗)

{
1√
n

n∑
i=1

g(Oi; β
0
[a,b], p(Zi; γ

∗), q0(Zi; β
0
[a,b]))

− Ψg,λ(θ
∗)Ψ−1

L,λ(θ
∗)

1√
n

n∑
i=1

L(Oi; β
0
[a,b], λ

0(β0
[a,b]))

}
+ op(1) (26)

where θ∗ on the RHS of (26) is now θ∗ = (β0′

[a,b], γ
∗, λ0′(β0

[a,b]))
′ for some γ∗. Note that, to

avoid any confusion, we follow the statement of Corollary 10 here and write the explicit form

λ0 := λ0(β0
[a,b]) instead of simply writing λ0 as in assumption CE that is focused at β0

[a,b].

Finally, when both assumptions CH and CE hold we have by Corollary 10 and Lemma

5 that Ψg,γ(θ
∗) = 0 and Ψg,λ(θ

∗) = 0, and hence Corollary 10 and (24) imply that:

√
n
(
β̂ − β0

[a,b]

)
= −Ψ−1

g,β(θ∗)

[
Id, 0, 0

]
1√
n

n∑
i=1

ψ(Oi; θ
∗) + op(1)

= −Ψ−1
g,β(θ0)

1√
n

n∑
i=1

g(Oi; β
0
[a,b], p

0(Zi), q
0(Zi; β

0
[a,b])) + op(1)

= −M−1
[a,b]

1√
n

n∑
i=1

ϕ[a,b](Oi; β
0
[a,b]) + op(1) (27)
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where the second line on the RHS recognizes that θ∗ = θ0 (= (β0′

[a,b], γ
0′ , λ0′(β0

[a,b]))
′) now

giving p(Z; γ0) = p0(Z) and q(Z; β0
[a,b], λ

0(β0
[a,b])) = q0(Z; β0

[a,b]). Using this, the third (last)

line recognizes that g(O; β0
[a,b], p

0(Z), q0(Z; β0
[a,b])) = ϕ[a,b](O; β0

[a,b]) and hence Ψg,β(θ0) =

M[a,b]. Hence, here we have the asymptotic variance of β̂ as Ω[a,b] defined in Proposition 2.

Remarks: As stated in the statement of the corollary, it is clear from (27) that estimation

of the nuisance parameters γ and λ for the conditional hazard and conditional expectation

models does not have any effect on the asymptotic variance of β̂ if both assumptions CH and

CE hold. Therefore, β̂ is efficient in this case where there is no parametric misspecification

of these nuisance parameters.

However, as evident from the general result in (24), the estimation of the nuisance pa-

rameters γ and λ generally affects the asymptotic variance of β̂ when neither assumption

CH nor assumption CE holds, and in that case the probability limit of β̂ is generally not

β0
[a,b]. Nevertheless, when assumption CH holds, (25) reveals that the estimation of λ for

the conditional expectations, i.e, the other set of nuisance parameters, does not affect the

asymptotic variance of β̂ because the sampling variability of the estimating equations for

λ does not enter the influence function for β̂. Similarly, when assumption CE holds, (26)

reveals that the estimation of γ for the conditional hazards, i.e, the other set of nuisance

parameters, does not affect the asymptotic variance of β̂ because the sampling variability

of the estimating equations for γ does not enter the influence function for β̂. These nice

features related to the nuisance parameters are an artifact of the double-robustness property

that ensured earlier in Corollary 10 that β̂
P−→ β0

[a,b] in both these cases.

Proof of Proposition 13: This is Theorem 4.5 of Newey and McFadden (1994).

Remark: While the stacked representation in (22) makes the estimation of asymptotic

variance a routine job, it is useful to remember the above remark on this asymptotic variance.

Proof of Proposition 14: The proof follows by verifying the conditions of Theorem 1 in

Chen et al. (2003). Our conditions (i), (ii), (iii) and (iv) are, respectively, conditions (1.1),
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(1.3), (1.4) and (1.5) of Chen et al. (2003). Under (1) and (2), our Lemma 5 implies that

G(β, p0, q0) = 0 if and only if β = β0
[a,b]. This implies that not only is G(β0, p0, q0) = 0 but

also condition (1.2) of Chen et al. (2003) holds. Hence the final result follows.

Proof of Proposition 15: The proof follows by verifying the conditions of Theorem 2 in

Chen et al. (2003). Our conditions (i), (ii), (iv) and (v) are, respectively, conditions (2.1),

(2.2)(i), (2.4) and (2.5) of Chen et al. (2003). Our Lemma 5 implies that ∂G(β, p0, q0)/∂β′ =

M[a,b] and hence assumption (A3) now implies condition (2.2) (ii) of Chen et al. (2003).

Again, our Lemma 5 implies that the pathwise derivative of G(β, p, q) with respect to p and

q at any β ∈ B and p = p0, q = q0 exists in all direction and is indeed 0. With this is mind,

our condition (iii) implies condition (2.3)(i) of Chen et al. (2003). On the other hand, the

zero pathwise derivative at any β ∈ B implies that condition (2.3)(ii) of Chen et al. (2003)

automatically holds since it makes the LHS of (2.3)(ii) 0. Finally, (2) and Lemma 5 imply

that E[g(O; β0
[a,b], p

0, q0)] = 0 where g(O; β0
[a,b], p

0, q0) = ϕ[a,b](O; β0). Therefore, we now have

by assumption (A1) and condition (vi) that condition (2.6) of Chen et al. (2003) holds with

the important additional point that the estimation of the nuisance parameters has no effect

on the asymptotic variance. These verifications imply that the final result follows.

C Supplemental Appendix C: Monte Carlo experiment

We will now study the small-sample properties of our proposed estimator and inference

based on it. For reference, we also present the same small-sample properties of the IPW

estimator: (i) the Narain (1951), Horvitz and Thompson (1952) version that is commonly

used in economics in similar contexts of attrition (e.g., Fitzgerald et al. (1996), Abowd et al.

(2001), Wooldridge (2002), Nicoletti (2006), Wooldridge (2010), etc.), and (ii) the Hajek

(1971) version that is often recommended (e.g., Hirano and Imbens (2001), Lunceford and

Davidian (2004), Busso et al. (2009, 2014), etc.). The estimands considered here are similar to

the motivating estimand in Section 2 and can be viewed as the components of the treatment
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effect estimands considered in our empirical illustration in Supplemental Appendix D.

C.1 Simulation design

We will consider a setup reflecting the individual’s decision to stay or leave dynamically

over periods from programs (e.g., smoking cessation, weight loss), school, job, marriage,

experiments, surveys, market, etc. We model this decision to leave after any period as a

simple comparison between the individual’s expectation of the outcome and their actual

outcome after that period. Accordingly, we will consider an R-period program where Yr is

the outcome from staying until the end of the r-th period for r = 1, . . . , R in the program.

We will assume that this outcome is generated as follows. For t = 1, . . . , T , let:

Yt =
1

2
Yt−1 +

1

4
Yt−2 +

1

4
Xt + et, where Xt = Xt−1 + vt. (28)

et and vt are the model errors.7 Take X0, Y−1, Y0 independently N(1, 1) as the initial state.

Our analysis below is not conditional on the initial state, but this could be done. We will take

R = T = 3, and let Xr be the other observed variables for the r-th period for r = 1, . . . , R.

Let the individual’s expectation for the outcome in the r-th period be Y ∗r . Suppose that

the individual decides to leave the program at the end of the r-th period, conditional on

staying until then, if and only if the actual outcome exceeds the expectation, i.e., Y ∗r < Yr.
8

In other words, let:

I(C = r) = I(Y ∗r < Yr)
r−1∏
j=1

I(Y ∗j ≥ Yj) for r = 1, . . . , R− 1, while

I(C = R) = 1−
R−1∑
r=1

I(C = r).

(29)

The researcher observes C but not Y ∗r . This means that Z1 = (Y−1, Y0, Y1, X−1, X0, X1)′,

7Estimation of regression coefficients in the case of attrition under some form of MAR in a dynamic panel
data models with fixed effects has been studied; see, e.g., Abrevaya (2019) and the references therein.

8Depending on the context, the decision to leave if Y ∗
r > Yr might be a more sensible modeling choice.
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Z2 = (Y2, X2)′ and Z3 = (Y3, X3)′ in our notation. So, the observables are T1 = Z1, T2 =

(Z ′1, Z
′
2)′ and T3 = (Z ′1, Z

′
2, Z

′
3)′ for those with C = 1, C = 2 and C = 3 respectively.

Our distributional assumptions on the data generating process (DGP) are as follows. et

and vt are i.i.d. N(0, 1) for all t. ur := Y ∗r − Yr is i.i.d. N(0, (2.5)2) for all r. MAR in (1) is

imposed by maintaining that et, vt, ur, X0, Y−1, Y0 are mutually independent for all t, r. This

results in roughly 50% of the individuals with C = 1, 26% with C = 2, and 24% with C = 3.

To define β0
[a,b], we take the moment function in (2) as m(Z; β) = Y3 − β, and consider

the six different targets [a, b] = [1, 3], [1, 1], [2, 2, ], [3, 3], [1, 2] and [2, 3], giving six different

parameters of interest. We compute the “true value” of these parameters numerically by

generating data from the above DGP with sample size 10 million, estimating the mean of

Y3 for each sub-population, and then averaging each mean over 10,000 Monte Carlo trials.

Accordingly, the six different “true values”, i.e., β0
[a,b]’s are: 1, 1.1709, .9617, .6858, 1.0994

and .8291 respectively. As evident from Table 1, the error in this approximation is of a

rather small order to seriously affect our subsequent analysis below that is conducted with

far smaller (than 10 million) sample size.

Target Population Descriptive Statistics
[a, b] for β Mean (10−3×) Std Median IQR Min Max

[1, 3] 1 .4860 1 .0007 .9982 1.0017
[1, 1] 1.1709 .6841 1.1709 .0009 1.1682 1.1735
[2, 2] .9617 .9430 .9617 .0013 .9581 .9648
[3, 3] .6858 .9769 .6858 .0013 .6817 .6895
[1, 2] 1.0994 .5536 1.0994 .0007 1.0975 1.1012
[2, 3] .8291 .6800 .8291 .0009 .8265 .8316

Table 1: β0
[a,b] is approximated (column 2) for different target populations (column 1) based

on averaging over 10,000 Monte Carlo trials the target-sample means obtained by using the
same DGP and with sample size 10 million. Columns 3-7 list the standard deviation (Std),
interquartile range (IQR), minimum (Min) and maximum (Max) of the estimator.

C.2 Simulation results

We report all the simulation results based on 10,000 Monte Carlo trials. We consider sample

sizes n = 100, 200 and 500.
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The target parameter β0
[3,3] is not interesting since the so-called complete-case estimator∑n

i=1 I(Ci = 3)Y3i/
∑n

j=1 I(Cj = 3) is the efficient estimator for β0
[3,3] (see Section 3.2.2).

This estimator is neither efficient nor consistent for the other targets. Table 2 summarizes

the performance of the complete-case estimator and, as expected, this performance is poor

and misleading for all the target sub-populations except for the one with [a, b] = [3, 3].

Target n = 100 n = 200 n = 500 n = 1000
Population Std = .3140 Std = .2207 Std = .1386 Std = .0994
[a, b] for β Bias Size Bias Size Bias Size Bias Size

[1, 3] -.3148 16.8 -.3151 29.8 -.3155 62.5 -.3148 88.7
[1, 1] -.4857 33.5 -.4860 59.1 -.4864 93.8 -.4857 99.8
[2, 2] -.2765 14.1 -.2768 24.1 -.2772 51.9 -.2765 79.7
[3, 3] -.0006 5.3 -.0009 5.2 -.0013 5.2 -.0006 4.8
[1, 2] -.4142 25.7 -.4145 46.8 -.4149 84.9 -.4142 98.7
[2, 3] -.1439 7.7 -.1442 9.9 -.1446 18.1 -.1439 30.8

Table 2: Results for the complete-case estimator are reported based on 10,000 Monte Carlo
trials. Bias stands for the mean bias. The only representative population for the complete-
case estimator is [a, b] = [3, 3]. Std stands for the Monte Carlo standard deviation, and since
the estimator is identical for all sub-populations, there is only a single Std reported for each
sample size n. Size stands for the empirical size of the asymptotic 5% two-sided t-test.

So, we focus on the five remaining target parameters β0
[a,b]. We compute our proposed

estimator, denoted as EFF henceforth, following the descriptions in Section 3.3. To estimate

the nuisance parameters, we postulate probit models for the conditional hazards and linear

model for the conditional expectations. For both, we specify the respective index function

as linear in the associated conditioning variables T1, T2, etc. and do not include interactions.

We report in Table 3: (i) the mean bias, referred to as Bias; (ii)-(iii) the average of the

estimated standard deviation, referred to as AS Std and MC Std, based on the asymptotic

variance formula (in Supplemental Appendix B.1.2) and Monte Carlo respectively; and (iv)-

(v) the empirical size, referred to as AS Size and MC Size, of the two-sided 5% test of

H0 : β[a,b] = β0
[a,b] based on t-ratios using the estimated standard deviation based on the

asymptotic variance formula (in Supplemental Appendix B.1.2) and MC Std respectively.

Our proposed estimator, EFF, performs quite well in all these aspects and for all the target
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sub-populations even when the sample size is relatively small.

To put the performance of EFF into context, we also report in Table 3 the corresponding

quantities for the Narain-Horvitz-Thompson version and Hajek version of the IPW estimator

that we refer to as naive IPW (NIPW) and IPW respectively. (Often NIPW is referred to

as IPW in the literature.) We write down here the explicit form of NIPW and IPW:

NIPW[a,b] =
n∑
i=1

ω̂IPW
[a,b],i Y3,i /n and IPW[a,b] = NIPW[a,b]

/(
1

n

n∑
i=1

ω̂IPW
[a,b],i

)

where ω̂IPW
[a,b],i is estimator of the weight from Lemma 1 for the i-th observation and is obtained

using the components of the estimator p̂(Zi) of the conditional hazards.

Let us now present a comparative discussion of the performance of the EFF, NIPW and

IPW estimators based on the simulation results in Table 3. First, we note that Bias is small

for all the estimators, but it is the smallest for EFF. The small bias should not be surprising

here because our probit specification for the conditional hazard nests the truth. Hence, EFF,

IPW and NIPW are all known to be both consistent and asymptotically unbiased.

As for the other characteristics, note that AS Std is the feasible measure of variability of

the estimators while MC Std is infeasible but a more accurate measure of variability that can

serve as the benchmark measure. Accordingly, AS Size is the empirical size of the feasible

test while MC Size is that of the infeasible test based on the infeasible MC Std.

Consider MC Std. EFF has the smallest MC Std, and often by a large margin. MC Std

of NIPW is the worst. IPW improves upon it but still is much larger than that of EFF.

Now, consider AS Std. This is based on a feasible measure of variability since AS Std is the

average over the trials of the square root of the estimated asymptotic variance. To compute

the asymptotic variance of the estimators in each trial, we always take into account that the

nuisance parameters are unknown and estimated; see Supplemental Appendix B.1.2.9

9NIPW and IPW have the same asymptotic variance under assumption CH, which holds here, since∑n
j=1 ω̂

IPW
[a,b],j/n in the denominator of IPW converges in probability to one. However,

∑n
j=1 ω̂

IPW
[a,b],j/n is often

very different from 1 in finite samples. Hence we do not impose this restriction when computing the As
Std for IPW. Specifically, in the delta-method computation involved here, we also take into account the
estimation of this denominator of IPW. This is why the AS Stds for IPW are smaller than that of NIPW.
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AS Std turns out to be a very poor measure of the true variability of NIPW and IPW

for which it is generally much smaller than the benchmark measure, MC Std. Therefore, AS

Std, which is based on the estimated asymptotic variance, paints a misleadingly optimistic

picture of the precision of NIPW and IPW. This is unfortunate because, in practice, one can

only estimate the asymptotic variance but not the Monte Carlo variance with a given data.

By contrast, the AS Std and MC Std of EFF are closer and they are essentially the same

when n = 200, 500. Therefore, fortunately, AS Std turns out to be a reliable measure for

the true variability of EFF. As a consequence, the empirical size of the 5% feasible test, i.e.,

AS Size, is much closer to the 5% level for EFF than it is for IPW and even more so when

compared to the AS Size of NIPW.10

In summary, NIPW performs the worst in terms of all characteristics. IPW improves over

NIPW in all aspects confirming the findings of, e.g., Hirano and Imbens (2001), Lunceford

and Davidian (2004), Busso et al. (2014), etc. (Hence we do not consider NIPW elsewhere in

our paper.) However, the true variability of both NIPW and IPW is underestimated by their

corresponding AS Std. As a result (recall that Bias is negligible here), the AS Size of NIPW

and IPW shows that feasible inference based on them can lead to bad over-rejection of the

truth even in quite large samples (n = 500). On the other hand, EFF seems to be largely

immune to these problems and leads to smaller bias and variability and better inference.

D Supplemental Appendix D: Empirical Illustration

For completeness, we wish to provide here a short illustration of the benefits of the efficiency

gains due to the proposed efficient estimator (EFF) over the more conventional IPW estima-

tor in drawing substantive conclusion on the effect of small class size in the Project STAR.

(As in the Monte Carlo, NIPW performs worse than IPW and so we only include the latter.)

10This relatively worse performance of AS Size of NIPW and IPW is related to the observation that AS
Stds for NIPW and IPW are much smaller than their MC Stds. To see this, note from Table 3 that MC
Size for EFF, NIPW and IPW are all quite close to the 5% level, which, in turn, indicates that any problem
related to AS Size is due to how accurately the true variability of these estimators are measured by their
respective asymptotic variance formula. NIPW and IPW suffer from this inaccuracy, but EFF does not.
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D.1 Background

Tennessee’s Student/Teacher Achievement Ratio experiment, also known as Project STAR,

has been extensively used to study the effect of small class size on future outcomes for the

students; see, e.g., Hanushek (1999), Krueger (1999), Krueger and Whitmore (2001), Ding

and Lehrer (2010), Chetty et al. (2011), etc. In Project STAR, students enrolling in grade

K of 79 participating schools in the 1985-1986 school year were randomly assigned to three

types of classes: small classes (13-17 students per teacher), regular classes (22-25 students

per teacher), and regular classes with a full-time teacher’s aide (22-25 students per teacher).

The literature on Project STAR typically does not differentiate between the latter two class

types, and we will follow that here and refer to them jointly as “not-small” classes.

We use the well-known and publicly available Project STAR data (Achilles et al. (2008))

containing characteristics of the schools, the teachers, demographic and socioeconomic char-

acteristics of the students and their standardized math and reading scores from grade K to

grade 3 or to a lower grade until which they stayed with a Project STAR school.

Many students — 917 out of 1900 (48.3%) from small classes and 2139 out of 4425 (48.3%)

from not-small classes — entering Project STAR schools in grade K did not stay until the

project ended, i.e., until the end of grade 3. (All details are available from the authors.)

We study this attrition to obtain a more complete picture of the effect of small classes on

students’ scores during this four-year-long experiment, i.e., in grades K-3. To this end, it is

useful to first ask which effects an “ideal” Project STAR experiment would have generated

with the subjects/students entering grade K in 1985 if there was no subsequent attrition or

other implementation-related compromises; see, e.g., Hanushek (1999). The answer is that,

since there was no protocol to randomly switch the class types of students after each grade,

an “ideal” Project STAR experiment would have generated in grades K, 1, 2 and 3 the effect

of continued presence in small classes with respect to continued presence in not-small classes.

We first define these effects from the “ideal” experiment. We view attrition as a mitigating

action by students in response to the treatment (class type) that they perceived as unhelpful
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to them. To gain a better understanding of this mitigating action we then decompose these

effects by the attrition behavior of students from small and not-small classes. For brevity, we

present only the results for standardized reading scores. Results for standardized math scores

and percentile reading, math and average scores (defined in Krueger (1999)) are similar.11

D.2 Results

Let Y s(grade j read) be the potential grade j reading score of a student had (s)he stayed

in the small class at least until the end of grade j for j = K, 1, 2, 3 after being initially

randomized to a small class in grade K. Similarly, with superscript “ns” denoting not-small,

define the potential scores Y ns(grade j read) for j = K, 1, 2, 3. These scores are not observed

for a student in grade j if the student left the participating school before grade j = 1, 2, 3.

As noted above, we focus on two treatment regimes — a continued presence in small

classes and a continued presence in not-small classes over the four years of Project STAR.

Denote the average difference between the outcomes of these two regimes at each grade

j = K, 1, 2, 3 as:

µread
j := E[Y s(grade j read)− Y ns(grade j read)].

Evolution of the effect of small classes:

First, consider the trajectory of µread
j for j = K, 1, 2, 3 to see how the effect of the small-class

regime with respect to the not-small class regime evolved over continued presence in these

regimes. Their EFF and IPW estimates are plotted in Figure 1(a).12 The EFF and IPW

11We ignore the compromises other than attrition to the experiment, e.g., students who enrolled after
grade K or the few students (2.1%–5.7% in the respective grades) who switched their assigned class types.

12We obtain these estimates following Section 3.3 using parametric models specified for the conditional
hazards and conditional expectations. The conditional hazard of leaving small (respectively, not-small)
classes after grade j (= K, 1, 2) is modeled as logit with a linear index of a constant, dummies for race,
sex, types of school (inner city, urban and rural), the share of students on free-lunch in school, dummies
for all grades (present and past) where the student was on free lunch, where the student’s teacher had
bachelor’s degree, and the difference in each of the past grades between the student’s standardized math and
reading scores from, respectively, the average standardized math and average standardized reading scores
in small classes and also in not-small classes in their school. The differences between the student’s and the
average scores are continuous variables, and we also include their quadratic and cubic terms in the index.
The conditional expectations of the grade j (= 1, 2, 3) scores in small (respectively, not-small) classes are
modeled linearly with exactly the same variables as above. All the estimation results are available from us.
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estimates of the trajectory are quite similar. Consistent with the literature, we observe that

the initial effect µread
K is very large compared to the “value added” (e.g., µread

j − µread
K for

j = 1, 2, 3) in the subsequent grades 1, 2 and 3. However, our value added estimates are not

as pessimistic as, e.g., Hanushek (1999)’s that led him to question the justification of the

huge cost of prolonged operation of small classes, but are more in line with Krueger (1999).

We conjecture that it is the correction for attrition that makes our estimates less pes-

simistic than Hanushek (1999)’s. To follow up on this, as proxies to Hanushek (1999)’s annual

and 4-year samples respectively, we also plot in Figure 1(a) the “In grade” and “Never left”

estimates of the trajectory. They are obtained by averaging the observed score of, respec-

tively, the students who took the tests at the end of the respective grades and the students

who continued in Project STAR until the end of grade 3. Note that, Never left actually

estimates νread
j,3 while In grade estimates νread

j,j for j = K, 1, 2, 3 where:

νread
j,l := E[Y s(grade j read)|Bs

l ]− E[Y ns(grade j read)|Bns
l ] for j, l = K, 1, 2, 3

and Bs
j (respectively, Bns

j ) is the event that a student assigned to small (respectively, not-

small) class in grade K does not leave Project STAR until the end of grade j for j =

K, 1, 2, 3. νread
K,K = µread

K but in general νread
j,l 6= µread

j for j = 1, 2, 3 and l = K, 1, 2, 3

unless suitable mean independence assumptions hold or, by happenstance, the biases for

small and not-small classes cancel out, i.e., E[Y s(grade j read)|Bs
l ]−E[Y s(grade j read)] =

E[Y ns(grade j read)|Bns
l ] − E[Y ns(grade j read)]. Both In grade and Never left estimates

reveal that without correction for attrition the value added estimates would indeed be lower.

Does attrition matter?

But, beyond this visual inspection, does the correction for attrition matter statistically

as well? More precisely, since we observed that the attrition-corrected estimates (EFF and

IPW) are larger than the attrition-uncorrected estimates (In grade, which is typically favored

to Never left), it is natural to ask if this is entirely due to sampling variation or is there
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systematic evidence for this in the population. That is, one would want to test the null

hypothesis H0,j : µread
j = νread

j,j against the alternative H1,j : µread
j > νread

j,j for j = 1, 2, 3.

We find the p-values for the tests for H0,1, H0,2 and H0,3 (corresponding to grades 1, 2

and 3) to be 28.5%, 14.0% and 13.9% respectively when the EFF estimates for µread
j are

used. The p-values are 26.8%, 42.7% and 35.3% when the IPW estimates for µread
j are used.

The EFF p-values for H0,2 and H0,3 are small and not sufficient in practice to take for

granted the reliability of the attrition-uncorrected In grade estimates for the true effect µread
2

and µread
3 .13 On the other hand, the IPW p-values are quite a bit larger for H0,2 and H0,3. It

is however not prudent (and possibly misleading) to take H0,2 and H0,3 for granted because,

as we will see below, the large IPW p-values are entirely due to the imprecise nature of

the IPW estimates. By contrast, our proposed EFF estimates help to avoid the misleading

confidence in H0,2 and H0,3 and point toward the possibility that attrition does matter here.

Do attrition-corrected estimates give substantive conclusions on the effects?

Attrition-correction will be of limited use to practitioners if it does not lead to precisely

estimated (zero or non-zero) effects. To explore if that is the case here, we plot in Figure 1(b)

the 90%, 95% and 99% two-sided confidence intervals around the EFF and IPW estimates for

µread
K , µread

1 , µread
2 and µread

3 . We observe that while the EFF and IPW estimates are similarly

precise for µread
1 (and identical by definition for µread

K ), the EFF estimates for µread
2 and µread

3

are much more precise than their IPW estimates that seem to be very uninformative.14 These

IPW estimates fail to reject a zero or negative value of µread
2 or µread

3 even at (much above)

the 10% level. That is, IPW cannot rule out statistically that a continued presence for more

than two years in small classes as opposed to not-small classes can, on average, even hurt

the students. (This is not a case of a precisely estimated zero or negative effect which, on

13These are all Hausman-type tests. Typically one demands a much larger p-value (e.g., think of Hausman
test for OLS versus IV regressions) to be able to have confidence in the null hypothesis for Hausman tests.

14The case of µread
1 corresponds to R = 2 (since the outcome of reading score in grade 1 happens in period

2) and a = 1, b = 2, and hence the rich parametric specification of the conditional hazard (see footnote 12)
suggests that IPW estimates could also be efficient; see, e.g., Hirano et al. (2003), Graham (2011), etc.
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the other hand, would have been informative.) The practical implication of not being able

to rule out such negative evidence against small classes is serious because operationalizing

small classes is an expensive policy proposition to begin with; see, e.g., Hanushek (1999).

By contrast, no such problem arises with EFF. EFF tries to optimally use the information

available in the selection on observables condition. This is important since attrition over

multiple periods naturally affects the later periods worse and thereby leaves little room for

wasting information like IPW. Consequently, in spite of using similar assumptions as IPW

(see footnote 1), the EFF intervals are subsets of the IPW intervals, and a zero or negative

effect of small classes is easily rejected by EFF even at the 1% level at every grade K–3.

Attrition as a mitigating action against unhelpful class type assignment:

Students were randomly assigned to small and not-small classes when they enrolled in a

Project STAR school in grade K. Many students did not score well in their randomly assigned

class type. Leaving the Project STAR school was an important course of mitigating action

available to these students. If attrition in Project STAR was primarily due to this mitigating

action then, given the initial random assignment, we would expect to see that students who

stayed scored better than what students who left would have scored had they stayed instead.

This is exactly what we observe in our estimates for each grade 1, 2 and 3. For brevity,

we report here only the results for grade 3 since it is the terminal period of the experiment,

and compare those who never left with each of the other attrition categories. Table 4 reports

the EFF and IPW estimates of αs,read
3 −αs,read

j and αns,read
3 −αns,read

j for j = K, 1, 2 where:15

αt,read
j := E[Y t(grade 3 read) | left small class after grade j] for t = s, ns, and j = K, 1, 2, 3.

EFF and IPW estimates are very similar, but EFF is much more precise than IPW.

Consequently, EFF always confirms at the conventional levels of significance the intuition

15αs,read
K = E[Y s(grade 3 read)|Bs

K , B̄
s
1], αs,read

j = E[Y s(grade 3 read)|Bs
j , B̄

s
j+1] for j = 1, 2, and αs,read

3 =

E[Y s(grade 3 read)|Bs
3] in terms of the events Bs

l for l = K, 1, 2, 3 defined earlier and where B̄s
l denotes the

complement of the event Bs
l for l = 1, 2, 3. Results for all contrasts of the α’s are available from the authors.
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that students who stayed scored better on average than what students who left would have

scored had they stayed instead. By contrast, IPW sometimes fails to confirm this standard

intuition behind the choice to leave. These failures happen not because the IPW estimates are

different from the EFF estimates (which they are not) but because they are very imprecise.

αs,read
3 − αs,read

j αns,read
3 − αns,read

j

j EFF IPW EFF IPW

K
0.39∗∗ 0.34 0.48∗∗∗ 0.48∗

(0.19) (0.46) (0.05) (0.33)

1
0.45∗∗ 0.48 0.64∗∗∗ 0.63∗∗

(0.25) (0.46) (0.11) (0.33)

2
0.51∗∗∗ 0.47∗∗∗ 0.46∗∗∗ 0.46∗

(0.12) (0.19) (0.08) (0.32)

Table 4: EFF and IPW estimates and standard errors (in parentheses) for αt,read
3 −αt,read

j for
t = s, ns and j = K, 1, 2. ∗, ∗∗ and ∗∗∗ signify if the null that the parameter is zero is rejected
against the alternative that it is greater than zero at the 10%, 5% and 1% level respectively.

The parameters reported in Table 4 are related to the following decompositions of the

effect µread
3 of small classes by attrition categories (noted in Supplemental Appendix D.1):

µread
3 =

∑
j=K,1,2,3

µread
3,j,∗×P (left small class after grade j) =

∑
j=K,1,2,3

µread
3,∗,j×P (left not-small class after grade j)

based on the attrition from small and not-small classes respectively, where for j = K, 1, 2, 3:

µread
3,j,∗ = E[Y s(grade j read)| left small class after grade j] − E[Y ns(grade j read)]

µread
3,∗,j = E[Y s(grade 3 read)] − E[Y ns(grade 3 read)| left not-small class after grade j];

and note that αs,read
3 − αs,read

j = µread
3,3,∗ − µread

3,j,∗ while αns,read
3 − αns,read

j = −(µread
3,∗,3 − µread

3,∗,j).

EFF and IPW estimates of these two decompositions, along with the 90%, 95% and

99% two-sided confidence intervals, are reported in Figures 1 (c)-(d) showing the relative

contribution of each attrition category from small and not-small classes respectively toward

the overall effect. Given the large number of students who left, it is important to understand

what the effect would have been with respect to students leaving at various junctures of the

experiment. µread
3,∗,j and µread

3,j,∗ for j = K, 1, 2, 3 are those effects on grade 3 reading scores.
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These decompositions reveal interesting patterns telling us which group of students (by

their attrition category) are driving the overall effect of small classes in the terminal period

grade 3, and by how much. Unfortunately, the imprecision of the IPW estimates prevents

them from confirming these patterns statistically at the conventional levels of significance.

On the other hand, while the EFF estimates of the decompositions are very similar to the

IPW estimates, once again the precision of EFF helps to confirm these interesting patterns

statistically and underscores the importance of efficient estimation in this analysis.16

Lastly, note that these EFF-based inferences are precise because the sub-population-

specific components of the effects are estimated much more precisely by EFF. Table 5 reports

the results for EFF and IPW estimation of a subset of such components. These parameters

are similar to the estimands in the Monte Carlo experiment in Supplemental Appendix C.

Left STAR school Randomized to small class Randomized to not-small class
at the end of grade EFF IPW EFF IPW
(a) K 0.05 0.10 -0.27 -0.26

(0.19) (0.29) (0.05) (0.22)
(b) 1 -0.01 -0.04 -0.42 -0.42

(0.25) (0.45) (0.10) (0.33)
(c) 2 -0.07 -0.03 -0.24 -0.24

(0.12) (0.18) (0.07) (0.31)
(d) 3 (never left) 0.44 0.44 0.22 0.22

(0.04) (0.04) (0.03) (0.03)

Table 5: EFF and IPW estimates of expected (counterfactual) reading scores in grade 3 by
the student’s attrition period are presented under the class types to which they were initially
randomized. The estimates are expressed as standardized deviation from the overall mean
reading score of students in grade 3. Standard deviations are presented in parentheses. All
the results in this empirical illustration are based on such parameters and the standard errors
of those results were computed by noting that the estimates in Table 5 across the two class
types are independent but are correlated within class types. Results for math, percentile,
etc. scores are similar and the complete set of results is available from the authors.

16A definitive study of these patterns is beyond the scope of the present empirical illustration. However,
thanks to the relationship between these decomposition-parameters and the parameters in Table 4, the
results on the EFF estimates in Table 4 reject the null hypotheses µread

3,∗,3 = µread
3,∗,j and µread

3,3,∗ = µread
3,j,∗ against

the alternative hypotheses µread
3,∗,3 < µread

3,∗,j and µread
3,3,∗ > µread

3,j,∗ respectively for j = K, 1, 2. As we noted in
Table 4, by virtue of its precision, EFF confirms this evidence more strongly statistically. Not reported in
Table 4 is that EFF also rejects the null hypotheses µread

3,∗,2 = µread
3,∗,1 against the alternative µread

3,∗,2 < µread
3,∗,1 at

the 5% level, while, due to its lack of precision, IPW does so only at the 26% level.
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As we have noted throughout, attrition in multi-period studies often entails substantial

loss in data and, consequently, it is imperative that all the information contained in the

identifying assumptions (in our paper, the MAR assumption in (1)) be utilized as efficiently

as possible to estimate the parameters of interest precisely. Our theoretical results were

about such estimation, and the current section illustrated its benefit based on the widely

used Project STAR data. Given that the underlying computations for efficient estimation

are quite standard, we hope that the potential benefit of being able to draw substantive

conclusions encourages practitioners to consider efficient estimation under similar contexts.
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