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Abstract

Attrition is monotonic when agents leaving multi-period studies do not return. Under a general

missing at random assumption, we study efficiency in estimation of parameters defined by moment

restrictions on the distributions of the counterfactuals that were unrealized due to monotonic at-

trition. We discuss novel issues related to over identification, usability of sample units, and the

information content of various missing at random assumptions for estimation of such parameters.

We propose a standard doubly robust estimator for these parameters by equating to zero the sample

analog of their respective efficient influence functions. Our proposed estimator performs well and

vastly outperforms other estimators in our simulation experiment and empirical illustration.
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1 Introduction

Subjects/respondents often leave at various junctures of multi-period/phase studies/surveys.

If they do not return then that creates a monotonically missing data set with respect to the

original cohort of the study/survey. Monotonicity is reflected by the fact that the members

of the original cohort that are observed in a later period are also observed in earlier periods.

Equivalently, monotonicity is also reflected by the fact that the variables observed for those

that left after an earlier period are also observed for those that left after later periods.

Attrition in the sample causes problems with statistical analysis. First, the sample’s

representativeness of the original population may be lost. Second, even if representativeness

is restored by virtue of plausible assumptions such as missingness at random (selection on

observables), the loss in data leads to imprecision in estimation; and, therefore, efficient

estimation that optimally uses the remaining available information is of utmost importance.

Our paper is about efficiency in estimation with monotonically missing at random data.

We build on the early work of Robins and Rotnitzky (1992), Robins et al. (1995), Rot-

nitzky and Robins (1995), Fitzgerald et al. (1996), Abowd et al. (2001), Wooldridge (2002),

Nicoletti (2006), Wooldridge (2010), etc. in the biostatistics and econometrics literature

extending them to sub-populations defined by the monotone pattern of missingness. Such

sub-populations are interesting because they reflect the attrition behavior of economic agents;

e.g., agents left school or job or marriage after period one, after period two, ..., never left.

To set the benchmark that any regular estimator should strive to reach, we obtain the

efficiency bound for estimating parameters in general moment restrictions models. Our

proposed estimator can reach this bound, and belongs in the class of two-step estimators

satisfying double robustness with respect to the underlying nuisance parameters that can be

estimated parametrically or nonparametrically. This class of estimators is well studied and

known to be attractive in practice; see, e.g., Robins et al. (1994), Robins and Ritov (1997),

Holcroft et al. (1997), Scharfstein et al. (1999), Bang and Robins (2005), Tsiatis (2006), Tan

(2007), Cao et al. (2009), Rothe and Firpo (2019), Chernozhukov et al. (2022), etc.
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Our results provide insights on the relation between the information content of the missing

at random (MAR) assumption and the usability of the sample units toward estimation in

sub-populations. The general (i.e., weakest) MAR assumption is that the hazard of leaving

at any period does not depend on what would have happened afterwards once we condition

on “all” that has already happened. Under this general MAR assumption, we show that if

interest lies on those that left at the end of, e.g., period four, then those that left before period

four are not usable for estimation. By contrast, we show that if it is plausible to strengthen

this general MAR assumption by restricting the “all” in its conditioning set as in, e.g.,

Chaudhuri (2020), then more (not all) sample units for who the restricted “all” is observed

and not just those that did not leave before period four become usable for estimation.

We also show that the efficiency bounds under the general MAR assumption coincide with

that of particular augmented moment condition problems. A similar analysis in Chaudhuri

(2020) was built on Graham (2011) that was based on an orthogonalization in Brown and

Newey (1998). That cannot work for sub-populations in our setup because the key nuisance

parameters — the conditional hazards of leaving — are unknown. (Known/unknown did not

matter for Graham (2011) since he focused on the full population; see Hahn (1998).) Here,

on the other hand, we need to use the orthogonalization in Newey (1994), Ackerberg et al.

(2014), Chernozhukov et al. (2022), etc. for a unified treatment of full and sub populations.

This orthogonalization implies that, in theory, the asymptotic variance of an inverse

probability weighted (IPW) estimator based on nonparametrically estimated nuisance pa-

rameters will equal the inverse of the efficiency bound under the general MAR condition.

However, our simulations suggest that this theory could severely underestimate IPW’s true

variability (measured by Monte Carlo variance) even in very large samples when, unlike in

Hirano et al. (2003), Chen et al. (2008), Graham (2011), etc., we move beyond the single

level of missingness. Our simulations also suggest that even the more conservative (in finite

samples) formula for asymptotic variance in the spirit of Ackerberg et al. (2012) can be a

poor approximation underestimating IPW’s true variability in small samples. Hence IPW is
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not our recommended estimator. On the other hand, at least in our simulations we do not

see either of these two problems with our proposed estimator.

We also note that while this orthogonalization from Newey (1994), Ackerberg et al.

(2014), Chernozhukov et al. (2022), etc. provides valid influence functions, it may not lead to

semiparametric efficiency in general. Its claim to efficiency is solely based on a given moment

function (e.g., IPW) involving unknown nuisance parameters that are nonparametrically

exactly identified by a second set of moments, and on no additional information like the

MAR assumption. In our setup, however, semiparametric efficiency is tied to the strength

of the MAR assumption. While the general MAR assumption turns out to not contain any

relevant information in this context, we show that when we strengthen that assumption then

the said orthogonalization cannot reach the resulting efficiency bound. This suggests that

while such orthogonalizations are obviously very useful, it is still important to consider all

the available information to obtain the semiparametric efficiency bound that follows from it.

Finally, an important feature of our paper is that we obtain the efficiency results for

parameters defined by over identifying moment restrictions. This is not common in this

literature; Chen et al. (2008) is among notable exceptions. To our understanding, the char-

acterization of the tangent set in Chen et al. (2008) may be incomplete because over iden-

tification is not explicitly used for that.1 We show that the efficiency results in Chen et al.

(2008) still hold. We also show that the efficiency results in Chaudhuri (2020) under — (i)

the general MAR with planned (known) conditional hazards or (ii) his convenient MAR —

can be extended to over identifying moment restrictions. On the other hand, under our setup

it seems that a complete characterization of the tangent set hinders a seamless transition

of the efficiency results for certain (not all) sub-populations between just and over identifi-

cation. We provide a detailed treatment of this issue as it seems to be less appreciated (at

least we did not know before an anonymous referee for Chaudhuri (2020) pointed it out).

Our paper proceeds as follows. Section 2 lays out the theoretical framework guided by

1We are very grateful to an anonymous referee for Chaudhuri (2020), and Patrik Guggenberger and
Whitney Newey for their help with this issue. Any error is of course only our responsibility.
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an empirical motivation based on the attrition behavior of students from the widely studied,

attrition-infested Project STAR experiment. Section 3 presents the core theory – efficiency

bound, efficient influence function, over identification, and the information content of the

MAR assumption – by relating them with the literature. Section 4 presents the estimator and

a sketch of its properties under parametric (mis)specification and nonparametric specification

of the nuisance parameters. The asymptotic theory of such estimators is well studied and

is certainly not our contribution; the sketch is presented only for completeness. Section

5 presents an elaborate empirical illustration of the benefits of the proposed estimator’s

precision in drawing substantive conclusions on the effect of small class size across dimensions

induced by the attrition behavior of students from Project STAR. Section 6 concludes.

All the proofs are collected in Supplemental Appendix A. Complementing the theory in

our paper, we present in Supplemental Appendix B a Monte Carlo experiment demonstrating

excellent small-sample properties of our proposed estimator. The experiment also suggests

that the promise of efficiency made by the theory for the competing IPW estimators based on

nonparametric estimation of nuisance parameters may not realize even in very large samples.

2 Empirical motivation and the theoretical framework

2.1 Empirical motivation

Tennessee’s Student/Teacher Achievement Ratio experiment, also known as Project STAR,

has been extensively used to study the effect of small class size on future outcomes for the

students; see, e.g., Hanushek (1999), Krueger (1999), Krueger and Whitmore (2001), Ding

and Lehrer (2010), Chetty et al. (2011), etc. In Project STAR, students enrolling in grade

K of 79 participating schools in the 1985-1986 school year were randomly assigned to three

types of classes: small classes (13-17 students per teacher), regular classes (22-25 students

per teacher), and regular classes with a full-time teacher’s aide (22-25 students per teacher).

The literature on Project STAR typically does not differentiate between the latter two class

types, and we will follow that here and refer to them jointly as “not-small” classes.
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We use the well-known and publicly available Project STAR data (Achilles et al. (2008))

containing characteristics of the schools, the teachers, demographic and socioeconomic char-

acteristics of the students and their normalized reading and math scores from grade K to

grade 3 or to a lower grade until which they stayed with a Project STAR school.2

Many students — 701 out of 1493 (47%) from small classes and 1725 out of 3477 (49.6%)

from not-small classes — entering Project STAR schools in grade K did not stay until the

project ended, i.e., until the end of grade 3.3 See Table 1. For simplicity of illustration, we

further exclude from our sample the very small percentage of students who switched classes.4

Randomized to small class Randomized to not-small class
After Stayed Left STAR Switched Stayed Left STAR Switched
grade in small school to not-small in not-small school to small
K 1004 410 79 (5.3%) 2230 1047 200 (5.8%)
1 798 188 18 (1.8%) 1674 481 75 (3.4%)
2 672 103 23 (2.9%) 1392 197 85 (5.1%)

Table 1: Number of students in our sample by their switching class type or leaving Project
STAR dynamics at the end of each grade conditional on staying until the end of that grade
in their initially assigned class. The switcher % inside the parentheses are with respect to
the class-type specific row total, e.g., 100× 79/(1004 + 410 + 79) ≈ 5.3

This attrition makes the scores of a student in a grade unobserved/counterfactual if the

student left before completing the grade. Consequently, many of the grade-specific average

scores that researchers compare to estimate the effect of small classes are unavailable. To fix

ideas, consider the reading scores reported in Table 2. Note that the grade-specific average

reading scores in small or not-small classes are the weighted average of the elements of

2We work with normalized scores for the sake of interpretation. For example, the normalized reading
score is the demeaned and standardized reading score of each student at each grade based on that grade’s
mean and standard deviation of reading scores of students across all participating Project STAR schools.

3In the original data set, 917 out of 1900 (48.3%) from small classes and 2139 out of 4425 (48.3%)
from not-small classes entering Project STAR schools in grade K did not stay until the end of grade 3.
For simplicity of the illustration, we construct our working sample by dropping from this original data set
students: (i) who did not enroll in Project STAR schools in grade K in 1985 but enrolled in grades 1, 2 and
3 in the next three years, or (ii) who left Project STAR schools after grades K or 1 or 2 but came back in
the subsequent years during the experiment, or (iii) with incidental missing (relevant) variables when the
missingness is unrelated to attrition, or (iv) with invalid test scores (see, e.g., p. 151 of Hanushek (1999)).

4Only 18 and 23 students switched from small class after grades 1 and 2 respectively. These numbers are
too small for any analysis without extremely stringent restrictions on models for the switching behavior. We
do not know enough to impose such stringent restrictions and hence exclude the switchers from our analysis.
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that grade’s column in Table 2 with weights proportional to the corresponding number of

students, e.g., for grade K in small class it is (−.19 × 410 − .14 × 188 − .09 × 103 + .45 ×

672)/(410+ 188+ 103+ 672) ≈ .14. The grade-specific averages are unavailable (marked by

“?”) except in grade K because attrition starts after grade K.

Left STAR Randomized to small class Randomized to not-small class
school at the Number of Reading score in grade Number of Reading score in grade
end of grade students K 1 2 3 students K 1 2 3

K 410 -.19 x x x 1047 -.36 x x x
1 188 -.14 -.19 x x 481 -.27 -.54 x x
2 103 -.09 -.14 -.23 x 197 -.00 -.22 -.31 x

3 (Never left) 672 .45 .50 .47 .44 1392 .20 .33 .30 .22

Average Score .14 ? ? ? -.07 ? ? ?

Table 2: Observed and unobserved normalized reading scores by attrition behavior of stu-
dents from their initially assigned classes. If the full population is of interest then the number
of levels of missingness in any grade’s score is the number of x in that grade’s column.

Naively imputing these grade-specific averages by the “Never left” category would be

extremely misleading for both small (.14 by .45) and not-small (-.07 by .20) classes in grade

K. (We could compare since grade K scores are actually observed for all.) Therefore, naive

imputation based on the Never left category would possibly be misleading as well for grades 1,

2 and 3, where some sort of imputation is actually required. Interestingly, such imputations

are less misleading when we compare the difference between the averages of grade K reading

score in small and not-small classes: (.45 - .20) - (.14 - (-.07)) = .25 - .21 = .04 — the effect of

attrition largely cancels out, which can be seen as a type of “common trend” phenomenon.5

However, the investigation cannot end here as there are two outstanding questions. First,

will the same phenomenon emerge from the scores in grades 1, 2 and 3? Second, are any of

those differences between small and not-small classes going to be statistically significant?

The first question is not answerable without assumptions on the mechanism of attrition

because it involves comparing counterfactual means with the scores of the Never left category.

5Similar observations have been made repeatedly in economics; see, e.g., the Special Issue: “Attrition in
Longitudinal Surveys” in the Journal of Human Resources (1998) where one observes that big distortions of
group means due to attrition often vanish in the results of regression, i.e., for difference in group means.
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We do not have anything original to say in this regard and will work under a very general

MAR (selection on observables) assumption with a very flexible model specification for it.

On the other hand, our paper is about efficiency in estimation and is devised to address

the second question. Under a general MAR assumption, we will estimate the counterfactual

means with likely most precision and check if the concerned differences are statistically

significant. (Section 5 will present strong evidence that such differences are significant.)

To efficiently estimate the grade-specific counterfactual mean we will need to efficiently

estimate the attrition-category-specific counterfactual means in each grade, i.e., the ones

that are marked by “x” in Table 2. These are examples of what we mean by sub-population-

specific parameters where the sub-populations partition the full population by the attrition

behavior of the students (population units). Such sub-population-specific parameters are

obviously important for many other purposes including as descriptive statistics, and we will

make use of them in various ways in the empirical illustration in Section 5.

2.2 Theoretical framework

Let Z := (Z ′
1, . . . , Z

′
R)

′ where Zr is a dr × 1 random vector and
∑R

r=1 dr is finite. Let

C be a random variable with support {1, . . . , R}. Let TC(Z) be a transformation defined

as Tr(Z) := (Z ′
1, . . . , Z

′
r)

′ for r = 1, . . . , R. The notation is standard; see, e.g., Tsiatis

(2006). Zj’s may have common elements, e.g., time invariant variables, and empirical practice

(coding, etc.) should ensure that they are not counted in the Tr(Z)’s more than once.

Let O := (C, T ′
C(Z))

′ denote what is observed for a unit in the sample.

Consider the Project STAR example. This is an R = 4 period study where grade K is

period 1,..., and grade 3 is period 4. Zr are the variables — characteristics of the schools, the

teachers, demographic and socioeconomic characteristics of the students and their normalized

reading and math scores in period r— that are observed in period r. Tr(Z) is the cumulative

history of the Zr variables (some of which may be time-invariant) observed until and including

period r. If a unit (student) leaves after period j ∈ {1, . . . , R}, then its C = j and we only
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observe Tj(Z) for it. C = R is the same as never leaving (some denote this as C = ∞).

We maintain the general MAR (selection on observables) assumption that:

P (C = r|TR(Z), C ≥ r) = P (C = r|Tr(Z), C ≥ r) for r = 1, . . . , R− 1. (1)

Since Tr(Z) is observable when C ≥ r, (1) imposes that the conditional hazard P (C =

r|TR(Z), C ≥ r) at period r does not depend on the unobservables Zr+1, . . . , ZR once condi-

tioned on the observables Tr(Z). (1) is the MAR assumption in the sense of Rubin (1976).

Plausibility of MAR depends on the context. MAR has been widely used in studies on

attrition especially if, as in our paper, the missingness is monotone.6 Ding and Lehrer (2010)

(and, less explicitly, Krueger (1999)) assumed MAR for attrition in the Project STAR data.

Generalizing the nomenclature introduced in Section 2.1, we refer to the underlying

population of O := (C, T ′
C(Z))

′ as the full population. We refer to the partition of this

full population by the values taken by C as sub-populations; e.g., sub-population r is the

underlying population from which units with C = r can be viewed as randomly drawn. There

are R unitary sub-populations indexed by r = 1, . . . , R. Unions of unitary sub-populations

form a composite sub-population, e.g., C ∈ {1, 2}, or the full population C ∈ {1, . . . , R}.

Under the general MAR condition in (1), the unconditional distribution of Z may not

be the same as the distribution of Z conditional on C = r for r = 1, . . . , R, i.e., the

sub-populations are possibly heterogeneous. In the example from Section 2.1 where the

sub-populations are defined by the attrition categories based on the timing of attrition, this

means that the distribution of the (potential) grade 3 reading scores may not be same for

those who left after grade K and those who left after grade 2 and those who never left.

We will work with a generic target sub-population C ∈ {a, . . . , b}, denoted for brevity by

a ≤ C ≤ b or [a, b], for a ≤ b and a, b ∈ {1, . . . , R}. If a = b = r then this is the underlying

6If the missingness is non-monotone, then MAR or selection on observables is unrealistic since the choice
to return could depend on unobservables, i.e., on what happened when the individual was out of the study;
see, e.g., Gill and Robins (1997), Gill et al. (1997), Robins and Gill (1997) and Vansteelandt et al. (2007).
That would be a case of selection on unobservables. Hoonhout and Ridder (2019) compare various selection
on unobservables conditions with MAR in a multi-period context. We do not contribute to that literature.
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unitary sub-population from which the units who left at the end of period r can be viewed

as randomly drawn. If a < b then this is the composite sub-population for the units who left

in the periods a, a+ 1, . . . , b. If a = 1 and b = R then this is the full-population.

Denote the distribution of Z in the target population by FZ|(a≤C≤b)(z). This is the

weighted average of the distributions of Z in sub-populations a, . . . , b with weights P (C =

j)/P (a ≤ C ≤ b) for j = a, . . . , b. We will define the parameter of interest as a finite dimen-

sional feature of FZ|(a≤C≤b)(z). Accordingly, consider a function m(Z; β) : Support(Z)×B 7→

Rdm , β ∈ B ⊂ Rdβ and dβ ≤ dm. Then, for a given a, b ∈ {1, . . . , R} with a ≤ b, define the

parameter value of interest β0
[a,b] by an over identifying system of moment restrictions as:

E[m(Z; β) | a ≤ C ≤ b] = 0 for β ∈ B if and only if β = β0
[a,b]. (2)

m(Z; β) can depend on any element of Z; e.g., reading score in grade K or 1 or 2 or 3. If

the least frequently observed element of Z that is involved in m(Z; β) belongs in Zk for some

k = 1, . . . , R then exactly the same analysis in the sequel will still apply but with a different

observability indicator C̄ instead of C where C̄ := k if C ≥ k and C̄ := C otherwise.

We will also maintain the following assumptions that are standard in this literature.

Assumption A:

(A1) The observed sample units {Oi := (Ci, T
′
Ci
(Zi))

′}ni=1 are i.i.d. copies ofO := (C, T ′
C(Z))

′.

(A2) P (C = R|TR(Z)) is bounded away from zero almost surely TR(Z).

(A3) M[a,b] is a dm × dβ finite matrix of full column rank where M[a,b] := M[a,b](β
0
[a,b]) and

M[a,b](β̄) :=
{

∂
∂β′E [m(Z; β)| a ≤ C ≤ b]

}
β=β̄

at any β̄ ∈ B where it exists.

Remark: (A1) rules out dependence and heterogeneity across sample units when viewed as

random draws from O. (A2) imposes the bounded away from zero condition instead of only

P (C = R|TR(Z)) > 0 to avoid the “limited overlap” problem; see, e.g., Khan and Tamer

(2010). (A3) gives local identification of β0
[a,b]; it allows for non-smooth m(Z; β) but requires

the expectation to be differentiable with respect to β; see, e.g., Chen et al. (2008).

10



3 The efficiency results

3.1 Efficiency bound and efficient influence function

Writing Tr(Z) as Tr for r = 1, . . . , R, let us first introduce the key quantities for this section.

Define:

φ[a,b](O; β) :=
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
φ[j,j](O; β) (3)

for the sub-population [a, b] as the weighted average of the unitary sub-population quantities:

φ[j,j](O; β) :=
R∑

r=j+1

I(C ≥ r)ωr,j(Tr−1) (E[m(Z; β)|Tr]− E[m(Z; β)|Tr−1])+
I(C = j)

P (C = j)
E[m(Z; β)|Tj]

(4)

that are feasible for each β ∈ B based on the observed data because of the equality in (5):

ωr,j(Tr−1) :=
P (C = j|Tj)

P (C = j)P (C ≥ r|Tr−1)
=

P (C = j|Tj, C ≥ j)

P (C = j)
∏r−1

k=j [1− P (C = k|Tk, C ≥ k)]
. (5)

Under regularity conditions, the weighted average representation of φ[a,b](O; β) implies:

∂

∂β′E
[
φ[a,b](O; β)

]
=

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)

∂

∂β′E
[
φ[j,j](O; β)

]
=

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)

∂

∂β′E [m(Z; β)|C = j]

=
∂

∂β′E [m(Z; β)| a ≤ C ≤ b] , and

V ar
(
φ[a,b](O; β)

)
=

b∑
j=a

b∑
k=a

P (C = j)P (C = k)

P 2(a ≤ c ≤ b)
Cov

(
φ[j,j](O; β), φ[k,k](O; β)

)
.

The covariance (j ̸= k) terms in the composite (sub-)populations simplify when a = 1, b = R.

Lemma 1 In the case of the full population a = 1, b = R the above representation gives:

φ[1,R](O; β) =
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m(Z; β)|Tr]− E[m(Z; β)|Tr−1]) + E[m(Z; β)|T1],

V ar
(
φ[1,R](O; β)

)
=

R∑
r=2

E

[
V ar (E[m(Z; β)|Tr]|Tr−1)

P (C ≥ r|Tr−1)

]
+ V ar (E[m(Z; β)|T1]) .
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Equipped with these key quantities, we will now present the main result of our paper.

Proposition 2 Let the MAR condition in (1), the moment restrictions in (2) and assump-

tion A hold. Let V[a,b] := V ar(φ[a,b](O; β
0
[a,b])) be a finite and positive definite matrix.7 Then

the semiparametric efficiency bound for β0
[a,b] is given by Ω[a,b] :=M ′

[a,b]V
−1
[a,b]M[a,b]:

(i) when a = 1, b = R (full population) or a = b (unitary sub-populations);

(ii) when a, b ∈ {1, . . . , R} with a ≤ b, if additionally β0
[a,b] is just-identified, i.e., dm = dβ.

A regular estimator β̂[a,b] whose asymptotic variance equals Ω−1
[a,b] has the asymptotically linear

representation (with obvious cancellations giving Ω−1
[a,b]M

′
[a,b]V

−1
[a,b] =M−1

[a,b] when dm = dβ):

√
n(β̂[a,b] − β0

[a,b]) = −Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]

1√
n

n∑
i=1

φ[a,b](Oi; β
0
[a,b]) + op(1).

Remarks: First, Proposition 2 covers the well-known special cases found in the literature.

R = 2 with a = b = 1 or a = 1, b = 2 covers Theorem 1 of Chen et al. (2008); also see Robins

et al. (1994). a = 1, b = R > 2 gives the full-population result like Robins and Rotnitzky

(1992), Robins and Rotnitzky (1995), Rotnitzky and Robins (1995), Holcroft et al. (1997).

Second, few papers in this literature allow for dm > dβ, i.e., over identifying restrictions

for β0
[a,b]. Chen et al. (2008) is among notable exceptions. However, it is possible that the

characterization of the tangent set there (and similar papers) may be incomplete because

over identification is not explicitly used for that. Proposition 2(i) shows that Chen et al.

(2008)’s results (Chen et al. (2008) worked with R = 2 with a = b = 1 or a = 1, b = 2) still

hold. Additionally, in Section 3.2 we also extend the main efficiency results in Chaudhuri

(2020) (also a generalization of Chen et al. (2008)) to the case of over identifying restrictions.

7While it is easier to think of primitive conditions for positive definiteness of V ar
(
φ[a,b](O;β)

)
when a = b

or a = 1, b = R, we maintain positive definiteness of V ar
(
φ[a,b](O;β0

[a,b])
)
generally. Writing φ[s,t](O;β) as

φ[s,t] for s, t = 1, . . . , R and m(Z;β) as m for brevity, the components of V ar
(
φ[a,b]

)
can be expressed as

follows. For j = a, . . . , b and k = a, . . . , j−1: V ar
(
φ[j,j]

)
=
∑R

r=j+1 E [∆r,j |C = j]+V ar
(

I(C=j)
P (C=j)E[m|Tj ]

)
and Cov

(
φ[j,j], φ[k,k]

)
= E

[∑R
r=j+1 ∆r,j +

∑j
r=k+1 ∇r,j,k

∣∣∣C = j
]
+Cov

(
I(C=j)
P (C=j)E[m|Tj ],

I(C=k)
P (C=k)E[m|Tk]

)
where, again for simplicity, we have used the notation ∆r,j := ωr,j(Tr−1)V ar (E[m|Tr]|Tr−1) for r = j +
1, . . . , R, and ∇r,j,k := ωr,k(Tr−1)E[m|Tj ] (E[m|Tr]− E[m|Tr−1])

′
for r = k + 1, . . . , j. If, e.g., a = b = j

then primitive conditions for the positive definiteness of V ar
(
φ[j,j]

)
can be guided by its expression above.
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Third, over identification is not innocuous in our general framework. Under just identi-

fication, the efficiency bound in Proposition 2 applies to any a, b ∈ {1, . . . , R} with a ≤ b.

However, in the case of over identification, the efficiency bound result is for the full popula-

tion (a = 1, b = R) and all R unitary sub-populations (a = b) but not for generic composite

sub-populations [a, b]’s. Unlike in Chaudhuri (2020), here the over identifying restrictions

for β0
[a,b] impose restrictions on the tangent set that do not seem to be satisfied for generic

[a, b]’s by the influence function presented in the proposition. Since it seems less appreciated,

we utilize Section 3.2 to be explicit about the restrictions imposed by over identification.

Fourth, the weighted average representation of φ[a,b](Oi; β
0
[a,b]) in (3), that follows from

the representation E[m(Z; β)|a ≤ C ≤ b] =
∑b

j=a
P (C=j)

P (a≤C≤b)
E[m(Z; β)|C = j], presents an

easy way of combining the efficient estimators for the unitary sub-populations to obtain the

efficient estimator for the composite sub-population [a, b] under just identification dm = dβ:

√
n

(
β̂[a,b] −

b∑
j=a

[
M−1

[a,b]

P (C = j)

P (a ≤ C ≤ b)
M[j,j](β

0
[a,b])

]
β̂[j,j]

)
= op(1)

where the weights for the β̂[j,j]’s add up to the identity matrix sinceM[a,b] =
∑b

j=a
P (C=j)

P (a≤C≤b)
M[j,j](β

0
[a,b]).

8

Dardanoni et al. (2011), Abrevaya and Donald (2017), Muris (2020) and others also consid-

ered combining estimators or moment restrictions in similar contexts with missing data.

Fifth, each φ[j,j](O; β
0
[a,b]) is doubly robust to the misspecification of the two sets of un-

known nuisance parameters: the conditional hazards P (C = r|Tr, C ≥ r) and the conditional

expectations E[m(Z; β)|Tr] for the various r’s. Therefore, the representation of φ[a,b](O; β
0
[a,b])

in (3) implies that φ[a,b](O; β
0
[a,b]) also satisfies such double robustness. φ[j,j](O; β

0
[a,b]) is robust

8To see this result write the weights M−1
[a,b]

P (C=j)
P (a≤C≤b)M[j,j](β

0
[a,b]) as Aj for brevity and note that:

√
n(β̂[a,b] − β0

[a,b]) = −M−1
[a,b]

1√
n

n∑
i=1

φ[a,b](Oi;β
0
[a,b]) + op(1) = −M−1

[a,b]

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)

1√
n

n∑
i=1

φ[j,j](Oi;β
0
[a,b]) + op(1)

=

b∑
j=a

Aj

[
−M−1

[j,j](β
0
[a,b])

] 1√
n

n∑
i=1

φ[j,j](Oi;β
0
[a,b]) + op(1) =

b∑
j=a

Aj

√
n
(
β̂[j,j] − β0

[a,b]

)
+ op(1).

The result follows since β0
[a,b] on both sides cancels out as

∑b
j=a Aj = Idm

= Idβ
implies β0

[a,b] =
∑b

j=a Ajβ
0
[a,b].
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to the misspecification of the P (C = r|Tr, C ≥ r)’s under (1) since if we take expectation

after replacing each P (C = r|Tr, C ≥ r) in (4) (precisely, (5)) by arbitrary scalar functions

of Tr, we still obtain E[m(Z; β)|C = j] if the expectation exists. To see that φ[j,j](O; β
0
[a,b])

is also robust to the misspecification of the E[m(Z; β)|Tr]’s, rewrite (4) as:

φ[j,j](O; β) := I(C = R)ωR,j(TR−1)m(Z; β)

+
R−1∑

r=j+1

[
I(C ≥ r)

P (C ≥ r|Tr−1)
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr)

]
P (C = j|Tj)
P (C = j)

E[m(Z; β)|Tr]

+

[
I(C = j)

P (C = j)
− I(C ≥ j + 1)

P (C ≥ j + 1|Tj)
P (C = j|Tj)
P (C = j)

]
E[m(Z; β)|Tj],

(6)

replace each E[m(Z; β)|Tr] in (6) by arbitrary dm dimensional functions of Tr, take expecta-

tion while noting that P (C ≥ r|Tr) = P (C ≥ r|Tr−1) (see Lemma 9), and finally see that (1)

gives the expectation as E[I(C = R)ωR,j(TR−1)m(Z; β)] = E[m(Z; β)|C = j] (see Lemma

5) if the expectation exists. This is double robustness with respect to misspecification of

nuisance parameters; see Robins et al. (1994), Robins and Ritov (1997), Scharfstein et al.

(1999), Bang and Robins (2005), Tan (2007), Cao et al. (2009), Rothe and Firpo (2019),

Chernozhukov et al. (2022) etc. We do not contribute to the double robustness literature but

rather use it to motivate the estimating function for β0
[a,b] in Section 4 based on φ[a,b](O; β

0
[a,b]).

Sixth, the expression for the φ[j,j](O; β)’s in (4) or (6) tells us that if a ≥ 2 then the units

with C < a do not contribute to the estimation of the target β0
[a,b].

9 We note that this is an

artifact of the general MAR condition in (1). Units with C < a can contribute to the efficient

estimation of β0
[a,b] if it is plausible to strengthen the MAR condition. A concrete example

can be found in Proposition 4 below adopted for extension from Chaudhuri (2020). (This

example of strengthened MAR is revisited in Section 3.3 to caution against sub-optimal use

of sample units in case of over identification of the nuisance conditional hazards.) In extreme

contrast, Proposition 3 below adopted for extension from Chaudhuri (2020) shows that all

sample units are usable for all target β0
[a,b]’s if the conditional hazards are actually known.

9Thus, generalizing the caption of Table 2, if Zk is the least frequently observed element of Z that is
involved in m(Z;β) then the effective level of missingness is max{0, k− a} under the MAR condition in (1).
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3.2 Over identification of β0
[a,b]: restriction on the tangent set

Let f and F denote the density and distribution functions, with the concerned random

variables specified inside parentheses. Their conditional counterparts are denoted similarly.

Let L2
0(F ) denote the space of mean-zero, square integrable functions with respect to F .

We will first characterize the tangent set for all regular parametric sub-models satisfying

the semiparametric assumptions on the observed data O = (C ′, T ′
C(Z))

′. (We will then

impose on it the restrictions due to over identification.) Consider a regular parametric sub-

model indexed by a parameter η for the distribution of O. The log of this distribution is:

log fη(O) = log fη(Z1)+
R∑

r=2

I(C ≥ r) log fη(Zr|Z1, . . . , Zr−1)+
R∑

r=1

I(C = r) logPη(C = r|Z1, . . . , Zr)

in terms of (C,Z ′)′. The score function with respect to η is, in terms of (C,Z ′)′,

Sη(O) = sη(Z1) +
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1) +
R∑

r=1

I(C = r)
Ṗη(C = r|Z1, . . . , Zr)

Pη(C = r|Z1, . . . , Zr)

where sη(Z1) := ∂
∂η

log fη(Z1), sη(Zr|Z1, . . . , Zr−1) := ∂
∂η

log fη(Zr|Z1, . . . , Zr−1) for r =

2, . . . , R, and Ṗη(C = r|Z1, . . . , Zr) := ∂
∂η
Pη(C = r|Z1, . . . , Zr) for r = 1, . . . , R. The

tangent set T is the mean square closure of all dβ dimensional linear combinations of Sη(O)

(see pp. 105-106, Newey (1990)) and can be expressed as:

T := ν1(Z1) +
R∑

r=2

I(C ≥ r)νr(Z1, . . . , Zr) +
R∑

r=1

I(C = r)ωr(Z1, . . . , Zr) (7)

where ν1(Z1) ∈ L2
0(F (Z1)) and νr(Z1, . . . , Zr) ∈ L2

0(F (Zr|Z1, . . . , Zr−1)) for r = 2, . . . , R,

and ωr(Z1, . . . , Zr) is any square integrable function of Z1, . . . , Zr for r = 1, . . . , R.

This is typically how the tangent set is characterized in this literature (e.g., Chen et al.

(2008)), but it does not take into account the additional restrictions imposed by over iden-

tification of β0
[a,b]. Apart from the incompleteness in the proofs due to such omissions, it

does seem that the additional restrictions will matter in our general setup with generic
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sub-populations [a, b]. Hence we will provide the details behind these additional restrictions.

For simplicity we will drop the subscript η from all quantities (e.g., in (8) below) evaluated

at η0 where η0 is the “true” sub-model η, i.e., fη0(O) is the actual distribution of the observed

data. Note that the moment restrictions in (2) give the following identity in η for given a, b:

0 ≡ Eη[m(Z; β0
[a,b])|a ≤ C ≤ b] ≡ Eη

[
Pη(a ≤ C ≤ b|Z)
Pη(a ≤ C ≤ b)

m(Z; β0
[a,b])

]
.

Differentiate it with respect to η under the integral at η = η0, and use (1) and (2) to get:

0 =M[a,b]

∂β0
[a,b](η0)

∂η′
+ E

[
m(Z; β0

[a,b])

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
(8)

where s(Z) := s(Z1) +
∑R

r=2 s(Zr|Tr−1) (with abuse, we briefly revert to the Tr notation for

brevity). Now, we note that (2) also gives the following identity in η for given a, b:

0 ≡ AEη[m(Z; β0
[a,b])|a ≤ C ≤ b] ≡ AEη

[
Pη(a ≤ C ≤ b|Z)
Pη(a ≤ C ≤ b)

m(Z; β0
[a,b])

]

for any A that is a full row rank dβ × dm matrix such that AM[a,b] is nonsingular. Such an

A always exists under our assumptions; e.g., A = M ′
[a,b]V

−1
[a,b]. Therefore, following the same

steps as in (8) and then solving for
∂β0

[a,b]
(η0)

∂η′
, we obtain that:

∂β0
[a,b](η0)

∂η′
= −

(
AM[a,b]

)−1
AE

[
m(Z; β0

[a,b])

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
,

which when substituted for in (8) gives (noting that s(Z) := s(Z1) +
∑R

r=2 s(Zr|Tr−1)):

0 =
(
Idβ −M[a,b]

(
AM[a,b]

)−1
A
)
E

[
m(Z; β0

[a,b])

{
s(Z1) +

R∑
r=2

s(Zr|Tr−1) +
Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
.

(9)

Note that (9) is trivially true under just identification dm = dβ since thenM[a,b]

(
AM[a,b]

)−1
A =

Idβ by the definition of inverse. However, under over identification, (9) imposes restrictions
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on the quantities inside the expectations that must be reflected by the tangent set. Therefore,

a complete characterization of the tangent set T in the case of over identification would aug-

ment what is defined in (7) such that its components additionally satisfy (10) if [a, b] = [1, R]

and satisfy (11) if [a, b] ̸= [1, R]. Letting B[a,b] :=
(
Idβ −M[a,b]

(
AM[a,b]

)−1
A
)
,

� if the moment restrictions in (2) hold for [a, b] = [1, R] then:

0 = B[1,R]E

[
m(Z; β0

[1,R])
R∑

r=1

νr(Z1, . . . , Zr)
′

]
(10)

as Ṗη(1 ≤ C ≤ R|Z) = 0 in (9) since obviously Pη(1 ≤ C ≤ R|Z) ≡ 1 for all η;10

� if the moment restrictions in (2) hold for [a, b] ̸= [1, R] then:

0 = B[a,b]E

m(Z; β0
[a,b])

{
R∑

r=1

νr(Z1, . . . , Zr) +
b∑

r=a

P (C = r|Z1, . . . , Zr)

P (a ≤ C ≤ b|Z1, . . . , Zb)
ωr(Z1, . . . , Zr)

}′
∣∣∣∣∣∣ a ≤ C ≤ b

 .
(11)

Hence, −Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]φ[a,b](O; β

0
[a,b]) has to satisfy the restriction (10) or (11), as appro-

priate, to belong in T that is necessary for it to be the efficient influence function. General-

izing the literature, Proposition 2(i) showed that −Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]φ[a,b](O; β

0
[a,b]) satisfies the

restriction when focus lies on the full population, i.e., [a, b] = [1, R], or on the unitary sub-

populations, i.e., a = b. Curiously, however, −Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]φ[a,b](O; β

0
[a,b]) does not seem to

satisfy the restriction when a ̸= b but [a, b] ̸= [1, R], i.e., for composite sub-populations that

are not the full population, and hence it is not efficient in that case although it remains a

valid influence function since it satisfies the so-called “pathwise derivative” condition.

For completeness we note that a similar characterization of the tangent set allows us

to extend the main efficiency results in Chaudhuri (2020) to the case of over identification.

Those results work with strengthened MAR conditions but apply to remarkably more general

10We have not imposed enough structure on the ωr(Z1, . . . , Zr)’s to write (10) as a special case of (11).
Other than here — restriction on tangent set due to over identification (that to our knowledge has not been
covered in the MAR literature) — we presented full and sub-population analysis under the same framework
instead of treating them separately as in; e.g., Hahn (1998), Hirano et al. (2003), Chen et al. (2008), etc.

17



target (sub-) populations λ. Precisely, Propositions 3 and 4 will concern a β0
λ defined by the

following moment restrictions: For any λ that is a subset of {1, . . . , R} including the full set,

let

E[m(Z; β) | C ∈ λ] = 0 for β ∈ B if and only if β = β0
λ. (12)

Proposition 3 Let the MAR condition in (1) and the moment restrictions in (12) hold.

Let assumption A hold with M[a,b] in A3 replaced by Mλ := E[∂m(Z; β0
λ)/∂β

′ | C ∈ λ]. Let

V̄λ := V ar(φ̄λ(O; β
0
[a,b])) be a finite and positive definite matrix where:

φ̄λ(O; β
0
λ) := φ̄1,λ+

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(φ̄r,λ − φ̄r−1,λ) with φ̄r,λ := E

[
P (C ∈ λ|Tr)
P (C ∈ λ)

m(Z; β0
λ)

∣∣∣∣Tr]

for r = 1, . . . , R. If we additionally assume that P (C = r|Tr, C ≥ r) is known for r =

1, . . . , R−1, i.e., the incompleteness is planned, then the semiparametric efficiency bound for

β0
λ is given by Ω̄λ :=M ′

λV̄
−1
λ Mλ and the efficient influence function is −Ω̄−1

λ M ′
λV̄

−1
λ φ̄λ(O; β

0
[a,b]).

The planned monotonic incompleteness condition was motivated in Chaudhuri (2020) as

a cost cutting measure in survey designs. Another condition considered in Chaudhuri (2020)

is a strengthened version of MAR, referred to as convenient MAR (CMAR), whereby:

P (C = r|Z,C ≥ r) = P (C = r|T1, C ≥ r) for r = 1, . . . , R. (13)

Proposition 4 Let the moment restrictions in (12) and the CMAR condition in (13) hold.

Let assumption A hold with M[a,b] in A3 replaced by Mλ := E[∂m(Z; β0
λ)/∂β

′ | C ∈ λ]. Let

V CMAR
λ := V ar(φCMAR

λ (O; β0
λ)) be a finite and positive definite matrix where:

φCMAR
λ (O; β0

λ) :=
I(C ∈ λ)

P (C ∈ λ)
E[m(Z; β0

λ)|T1]+
R∑

r=2

I(C ≥ r)

P (C ≥ r|T1)
P (C ∈ λ|T1)
P (C ∈ λ)

(
E[m(Z; β0

λ)|Tr]− E[m(Z; β0
λ)|Tr−1]

)
.

Then the semiparametric efficiency bound for β0
λ is given by ΩCMAR

λ := M ′
λ[V

CMAR
λ ]−1Mλ

and the efficient influence function is −[ΩCMAR
λ ]−1M ′

λ[V
CMAR
λ ]−1φCMAR

λ (O; β0
[a,b]).
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3.3 IPW, variance adjustment, and information content of MAR:

Returning to the general MAR condition in (1), it is clear from (6) that φ[j,j](O; β) is an

augmented inverse probability weighted (AIPW) moment vector where the first term on the

right hand side (RHS) of (6) is the IPW term, while the other terms on the RHS are the

augmentation. Therefore, the weighted average representation in (3) implies that φ[a,b](O; β)

is also another AIPW moment vector, but concerning a different set of moments.

Lemma 5 summarizes in the current context the idea behind the Narain (1951)-Horvitz

and Thompson (1952)-Hajek (1971) IPW principle under the general MAR condition in (1).

For each β ∈ B, this IPW principle enables identification of E[m(Z; β)|a ≤ C ≤ b] whose

sample version is infeasible, based on a quantity whose sample version is feasible.

Lemma 5 If P (C = R|TR) > 0 almost surely TR then the general MAR condition in (1)

implies that E[m(Z; β)|a ≤ C ≤ b] = E
[
I(C = R)ωIPW

[a,b] m(Z; β)
]
for each β ∈ B where:

ωIPW
[a,b] :=

b∑
j=a

P (C = j|Tj, C ≥ j)

j−1∏
r=1

[1− P (C = r|Tr, C ≥ r)]

R−1∏
r=1

[1− P (C = r|Tr, C ≥ r)]P (a ≤ C ≤ b)

=
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ωR,j(TR−1)

and where ωR,j(TR−1) is defined in (5), and indeed ωR,j(TR−1) = ωIPW
[j,j] for j = 1, . . . , R.

For brevity we used the convention that if a = 1 then
∏a−1

r=1(1− P (C = r|Tr, C ≥ r)) = 1.

Lemma 5 gives the foundation for IPW estimation based on an estimator of E[I(C =

R)ωIPW
[a,b] m(Z; β)], namely,

1

n

n∑
i=1

I(Ci = R)ω̂IPW
[a,b] m(Zi; β) (14)

as the GMM sample moment vector, where ω̂IPW
[a,b] is an estimator of ωIPW

[a,b] obtained by replac-

ing each conditional hazard by its parametric or nonparametric estimator. In this section,

our discussion of variance adjustment and efficiency in the context of the information content

of the general MAR condition in (1) will correspond to nonparametric estimation of ωIPW
[a,b] .
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Proposition 6 (i) The “limited information” efficient GMM estimator of β0
[a,b] based on the

moment restrictions:

E
[
I(C = R)ωIPW

[a,b] m(Z; β0
[a,b])

]
= 0 (15)

where for each r = a . . . , R−1 the P (C = r|Tr, C ≥ r)’s in ωIPW
[a,b] solve for the pr(Tr)’s from:

E [I(C ≥ r) {I(C = r)− pr(Tr)} | Tr] = 0 almost surely Tr, (16)

has asymptotic variance equal to the inverse of the semiparametric information bound for

β0
[a,b] under the “full information” contained jointly in the restrictions (15) and (16).

(ii) Furthermore, this asymptotic variance from (i) is equal to Ω−1
[a,b] where Ω[a,b] :=

M ′
[a,b]V

−1
[a,b]M[a,b] is defined in the statement of Proposition 2.

Proposition 6(i) applies Theorem 1 of Ackerberg et al. (2014) to show that the “limited

information” and “full information” (using their terminology) efficient GMM estimation

of β0
[a,b] based on (15) and (16) are equivalent in terms of the asymptotic variance of the

estimator of β0
[a,b]. Concretely, this “limited information” estimator is the efficient GMM

estimator based on the IPW GMM sample moment vector in (14), i.e,

β̂IPW
[a,b] (Wn) := argmin

β∈B

(
1

n

n∑
i=1

I(Ci = R)ω̂IPW
[a,b] m(Zi; β)

)′

Wn

(
1

n

n∑
i=1

I(Ci = R)ω̂IPW
[a,b] m(Zi; β)

)
(17)

when W−1
n is consistent for the asymptotic variance of the moment vector, accounting for

the estimation of the nuisance conditional hazards P (C = r|Tr, C ≥ r)’s involved in ωIPW
[a,b] .

The equivalence in asymptotic variance in Proposition 6(i) holds because the conditional

hazards P (C = r|Tr, C ≥ r)’s that constitute ωIPW
[a,b] are “exactly identified” by (16).

Proposition 6(ii) shows that this asymptotic variance in Proposition 6(i) reaches the

semiparametric efficiency bound that was obtained in Proposition 2 under the general MAR

condition in (1) for β0
[a,b] defined by (2). Thus, in the spirit of Graham (2011), we say that

the moment restrictions (15) and (16) exhaust all available information about β0
[a,b] under
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the general setup of Proposition 2. Similar results with R = 2 are known from Hirano et al.

(2003), Chen et al. (2008), Graham (2011), etc. but the case of R > 2 will help us to get

further insights into this result and the information content of the MAR assumption.

We spend the rest of this section discussing Proposition 6(ii) with the following remarks.

First, there are two different semiparametric efficiency bounds present in Proposition 6:

in (i) it is the bound based on the system (15) and (16), whereas in (ii) it is the bound

based on our general framework (1) and (2). The result on semiparametric efficiency in

Newey (1994), Ackerberg et al. (2014), etc. of the “limited information” approach concerns

the first efficiency bound, i.e., the result in Proposition 6(i). On the other hand, the second

efficiency bound is traditionally established independently in this literature, albeit in simpler

contexts. Graham (2011) established the equality of these two bounds when R = 2 and

a = 1, b = R and dm = dβ; however, his result was based on the Brown and Newey (1998)-

orthogonalization that is not applicable here if interest lies on sub-populations.

Second, we find the equality of the two efficiency bounds remarkable in the case of R > 2

considering how much information the general MAR condition in (1) has and how little of

it is used by the moment restrictions (15) and (16) leading to the first efficiency bound.

In fact, (1) does not play any direct role in Proposition 6. (1)’s only role would be in the

background ensuring that (15) holds, and Proposition 6(i) takes (15) as given.11 The general

MAR condition in (1) has no role to play in (16) — it contains no information about the

unknown parameters in (16) since these moment restrictions simply follow from the definition

of the conditional hazards and thus the parameters involved there are what is variously called

“nonparametrically identified”, “exactly identified” or “locally just identified”; see Newey

(1994), Ackerberg et al. (2014), Chen and Santos (2018), Chernozhukov et al. (2022), etc.

Third, we point out that an equivalence result like Proposition 6(ii) will not hold if the

general MAR condition in (1) is strengthened. The limited or full information approach will

“pay a price” in terms of efficiency for not considering the (strengthened) MAR condition.

11For (15) to hold, it only requires the part of MAR with r = a, . . . , R− 1. The part with r = 1, . . . , a− 1
is unused since only the P (C = r|Tr, C ≥ r)’s for r = a, . . . , R− 1 appear in the weight ωIPW

[a,b] ; see (5).
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For a clean demonstration of paying a price, Lemma 7(ii) strengthens (1) by imposing an

extreme dimension reduction on the conditioning set leading to the CMAR condition in (13).

Lemma 7 (i) The efficient GMM estimator of β0
[a,b] based on the moment restrictions:

E

[
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)

I(C = R)∏R−1
r=j (1− P (C = r|T1, C ≥ r))

P (C = j|T1, C ≥ j)

P (C = j)
m(Z; β0

[a,b])

]
= 0,

where for each r = a . . . , R− 1 the P (C = r|T1, C ≥ r)’s solve for the pr(T1)’s from:

E [I(C ≥ r) {I(C = r)− pr(T1)} | T1] = 0 almost surely T1,

has the same asymptotic variance

(
M ′

[a,b]

[
V †
[a,b]

]−1

M[a,b]

)−1

under both the “limited and full

information” approaches under regularity conditions where V †
[a,b] := E

[
φ†
[a,b]φ

†′
[a,b]

]
and:

φ†
[a,b] =

I(C = R)

P (C = R|T1)
P (a ≤ c ≤ b|T1)
P (a ≤ C ≤ b)

[
m(Z; β0

[a,b])− E[m(Z; β0
[a,b])|T1]

]
+

I(a ≤ C ≤ b)

P (a ≤ C ≤ b|T1)
E[m(Z; β0

[a,b])|T1].

(ii) The inverse of the semiparametric information bound for β0
[a,b] in Proposition 4 that

works under the CMAR condition in (13) cannot exceed this asymptotic variance

(
M ′

[a,b]

[
V †
[a,b]

]−1

M[a,b]

)−1

because V †
[a,b] − V CMAR

[a,b] is positive semi-definite since V †
[a,b] − V CMAR

[a,b] is given by:

R∑
r=2

E

[
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

{
1

P (C ≥ R|T1)
− 1

P (C ≥ r|T1)

}
V ar

(
E[m(Z; β0

[a,b])|Tr] | Tr−1

)∣∣∣∣ a ≤ C ≤ b

]
.

The moment function for β0
[a,b] in Lemma 7(i) could be more compactly written as the

weighted average of the I(C = R)ωR,j(T1)m(Z; β0
[a,b])’s where ωR,j(.) is defined in (5). How-

ever, the more elaborate form in the lemma helps to better visualize where/how the variance

adjustment, as in Newey (1994), Ackerberg et al. (2014), Chernozhukov et al. (2022), etc.,

works in this IPW estimation. It works in Lemma 7(i) because there the conditional hazards

are still exactly identified by the respective conditional moment restrictions. By contrast,
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the variance adjustment of IPW does not (and should not) work in Lemma 7(ii) in a way

that leads to the efficient influence function and efficiency bound from Proposition 4.

The variance adjustment of IPW does not lead to the efficiency bound from Proposition 4

because the variance adjustment is based only on the given moment restrictions and no other

information such as the MAR or CMAR conditions.12 Note, e.g., that the CMAR condition

in (13) contains additional information P (C = r|Z,C ≥ r) = . . . = P (C = r|Tr, C ≥ r) =

. . . = P (C = r|T1, C ≥ r) about the nuisance conditional hazards P (C = r|T1, C ≥ r) in

Lemma 7(i), thus providing a sequence of additional feasible moment restrictions:

E [I(C ≥ r) {I(C = r)− pr(T1)} | Tj] = 0 almost surely Tj for j = 1, . . . , r

to solve for the pr(T1)’s in Lemma 7(i). Lemma 7(i) does not use this additional information

and hence the IPW variance adjustment fails to reach the efficiency bound in Proposition 4.

While CMAR is a strong assumption, other types of strengthening of MAR — e.g.,

P (C = r|Z,C ≥ r) = P (C = r|Zr, C ≥ r), i.e, with conditioning set involving only period

r’s observables and not the entire history — could be more plausible. In general, the common

empirical practice of any kind of variable selection also leads to an implicit strengthening of

the MAR condition by imposing exclusion restrictions. It is likely that in such cases the IPW

variance adjustment will also not lead to the efficiency bound like in the CMAR example.

Finally, we note that despite Proposition 6 and the elegant theory in the literature be-

hind the variance adjustment of IPW estimators based on nonparametric estimation of the

conditional hazards, IPW is not our recommended estimator even under MAR. The theory

depends crucially on proper conditioning on the conditioning sets Tr’s. However, the dimen-

sion of the conditioning set Tr increases with r, and in practice it is difficult to condition on

all those variables especially if they are continuous. This makes the theory of nonparametric

12This did not matter in Proposition 6(ii) that worked under the MAR condition (1) because MAR did not
have any information on the nuisance conditional hazards P (C = r|Tr, C ≥ r) in Proposition 6(i). MAR’s
information P (C = r|Z,C ≥ r) = P (C = r|Tr, C ≥ r) cannot be feasibly used based on the observed data
for efficiency via over identification of P (C = r|Tr, C ≥ r). This led to the equivalence in Proposition 6(ii).
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variance adjustment less reflective of the finite-sample behavior even in very large samples

when R > 2, which is a key feature of our paper. Simulations in Supplemental Appendix B

suggest that nonparametric variance adjustment can underestimate IPW’s true variability

(measured by Monte Carlo variance) even in very large samples when R > 2, while para-

metric variance adjustment in (17) in the spirit of Newey (1994) or Ackerberg et al. (2012)

can reflect the true variability in moderately large samples. This issue with IPW is distinct

from the problems with IPW (primarily concerning bias) that have been noted in the recent

double robustness literature; see Rothe and Firpo (2019), Chernozhukov et al. (2022), etc.

4 Estimator of β0
[a,b] and its asymptotic properties

Our proposed estimator for β0
[a,b] will utilize the doubly robust structure of φ[a,b](O; β) that

was highlighted in remark five following Proposition 2. We know from (3), (4) and (5)

that φ[a,b](O; β) depends on the unknown conditional hazards and conditional expectations.

Denote the true value of these nuisance parameters by p0(TR−1) and q
0(TR−1; β) where:

p0(TR−1) := (P (C = R− 1|TR−1, C ≥ R− 1), . . . , P (C = a|Ta, C ≥ a))′,

q0(TR−1; β) := (E[m(Z; β)|TR−1]
′, . . . , E[m(Z; β)|Ta]′)′.

Let p(TR−1) and q(TR−1; β) be generic functions of same dimension as p0(TR−1) and q
0(TR−1; β).

Define the function g(O; β, p(TR−1), q(TR−1; β)) as φ[a,b](O; β) with the conditional haz-

ards and conditional expectations replaced by the concerned elements of p(TR−1) and q(TR−1; β)

respectively. Note that g(O; β, p0(TR−1), q
0(TR−1; β)) ≡ φ[a,b](O; β) for all β.

We will use the following dm × 1 GMM sample moment vector to estimate the dβ × 1

β0
[a,b]:

ḡn(β, p̂(TR−1), q̂(TR−1, β)) :=
1

n

n∑
i=1

g(Oi; β, p̂(TR−1,i), q̂(TR−1,i, β)) (18)

where p̂(TR−1,i) and q̂(TR−1,i, β) are nonparametric or parametric estimators of p0(TR−1,i)

and q0(TR−1,i; β) for i = 1, . . . , n; see Robins and Rotnitzky (1992), Robins et al. (1994), etc.
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For a dm × dm weighting matrix Wn, we will define the GMM estimator of β0
[a,b] as:

β̂(Wn) := argmin
β∈B

[ḡn(β, p̂(TR−1), q̂(TR−1, β))]
′Wn [ḡn(β, p̂(TR−1), q̂(TR−1, β))] . (19)

Practitioners often use flexible parametric models to estimate the nuisance parameters.

If there is “promise” to make the models more flexible when sample size increases then

such estimators can be considered as nonparametric, otherwise they are parametric; see,

e.g., Newey (1994) (p. 1369), Ackerberg et al. (2012), etc. We adopt this convention in

our paper and provide a brief heuristic discussion of the properties of β̂(Wn) by considering

both parametric and nonparametric estimation of the nuisance parameters under a unified

framework. Some generality is lost due to the unified presentation; but these results are

already well known and our presentation here is only for the sake of completeness.

First, consider the conditional hazards. Let the parametric model, e.g., logit/probit, for

P (C = r|Tr, C ≥ r) be pr(Tr; γr) where γr is a dγr × 1 unknown vector for r = a, . . . , R− 1.

We obtain the quasi-maximum likelihood estimator γ̂r of γr solving the score equations:

0 =
1

n

n∑
i=1

Sr(Oi; γ̂r) for r = a, . . . , R− 1, where for i = 1, . . . , n,

Sr(Oi; γr) := I(Ci ≥ r)
I(Ci = r)− pr(Tr,i; γr)

pr(Tr,i; γr)(1− pr(Tr,i; γr))

{
∂

∂γr
pr(Tr,i; γr)

}
.

(20)

Now, consider the conditional expectations. Let the parametric model, e.g., linear model, for

the j-th element E[mj(Z; β)|Tr] of E[m(Z; β)|Tr] be qr,j(Tr; β, λr,j(β)). Let qr(Tr; β, λr(β)) =

(qr,1(Tr; β, λr,1(β)), . . . , qr,dm(Tr; β, λr,dm(β)))
′ where λr(β) = (λ′r,1(β), . . . , λ

′
r,dm

(β))′ and λr,j(β)

is a dλr,j
×1 unknown vector for r = a, . . . , R−1, j = 1, . . . , dm. We obtain the least squares

estimator λ̂r,j(β) of λr,j(β) for j = 1, . . . , dm as functions of β solving the normal equations:

0 =
1

n

n∑
i=1

Lr,j(Oi; β, λ̂r,j(β)) for r = a, . . . , R− 1, where for i = 1, . . . , n,

Lr,j(Oi; β, λr) := I(Ci = R)

{
∂

∂λr,j
qr,j(Tr,i; β, λr,j)

}
(mj(TR,i; β)− qr,j(Tr,i; β, λr,j)) .

(21)

In empirical work, the pr(Tr; γr)’s are typically logit/probit with index ξ′dγr (Tr)γr, and the
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qr,j(Tr; β, λr,j(β))’s are typically linear π′
dλr,j

(Tr)λr,j(β) where the ξdγr (Tr)’s and πdλr,j (Tr)’s

are possibly the first dγr and dλr,j
terms of some basis function; e.g., powers. We consider

the estimator p̂(TR−1) = (pR−1(TR−1; γ̂R−1), . . . , pa(Ta; γ̂a))
′ for p0(TR−1) and the estimator

q̂(TR−1; β) = (q′R−1(TR−1; β, λ̂R−1(β)), . . . , q
′
a(Ta; β, λ̂a(β)))

′ for q0(TR−1; β) as parametric if

the dγr ’s and dλr,j
’s are fixed, and as nonparametric if the dγr ’s and dλr,j

’s increase with n.

Assumption CH: The conditional hazard (CH) models are correct, i.e., there exists a

γ0 = (γ0
′

a , . . . , γ
0′
R−1)

′ such that pr(Tr; γ
0
r ) = P (C = r|Tr, C ≥ r) for r = a, . . . , R− 1.

Assumption CE: The conditional expectation (CE) models are correct, i.e., there exists a

λ0 = (λ0
′

a , . . . , λ
0′
R−1)

′ such that qr(Tr; β
0
[a,b], λ

0
r) = E[m(Z; β0

[a,b])|Tr] for r = a, . . . , R− 1.

Assumptions CH and CE can be assumed to hold approximately arbitrarily well if p̂(TR−1)

and q̂(TR−1; β) are nonparametric. But assumptions CH and CE may not hold if p̂(TR−1)

and q̂(TR−1; β) are parametric. We will assume that ∥p̂− p∗∥ = op(1) and ∥q̂ − q∗∥ = op(1)

(at suitable rates and with respect to suitable metrics in suitable function spaces) for some

pseudo true functions p∗(TR−1) and q
∗(TR−1; β) where p

∗(TR−1) = p0(TR−1) if CH holds and

q∗(TR−1; β
0
[a,b]) = q0(TR−1; β

0
[a,b]) if CE holds. If both CH and CE fail to hold then there is no

protection of double robustness and the GMM moment for β0
[a,b] may be misspecified. Then,

in case of over identification (dm > dβ) there may be no solution to the GMM population

moment restriction and the probability limit of β̂(Wn), if it exists, may depend on the

limiting behavior of Wn; see, e.g., Hall and Inoue (2003). Such probability limits may not be

of interest in the related empirical literature where the focus is on the true value β0
[a,b] and

not the pseudo true values. Therefore, in our heuristic discussion below of the asymptotic

properties of β̂(Wn), we will maintain that assumptions CH and CE cannot be jointly false.

First, consistency. Double robustness implies (see remark 5 following Proposition 2) that:

E[g(O; β, p∗(TR−1), q
0(TR−1; β))] = E[g(O; β, p0(TR−1), q

∗(TR−1; β))] = E[m(Z; β)|a ≤ C ≤ b].

Therefore, consistency β̂(Wn)
p−→ β0

[a,b] follows under standard conditions (see, e.g., Theorem

1 of Chen et al. (2003)) if CH and CE are not jointly false.
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Now, the asymptotic distribution of β̂(Wn). We can see that the same double robustness

property also implies that the M[a,b] defined in assumption A3 satisfies:

M[a,b] =
∂

∂β′E[g(O; β
0
[a,b], p

0(TR−1), q
∗(TR−1; β))] =

∂

∂β′E[g(O; β
0
[a,b], p

∗(TR−1), q
0(TR−1; β

0
[a,b]))].

Let Gp(β, p, q)[vp] and Gq(β, p, q)[vq] be the pathwise derivatives of E[g(O; β, p, q)] at p and q

in the directions vp and vq such that p+τvp and q+τvq for τ ∈ [0, 1] belong in the respective

function spaces. We can see that the same double robustness property also implies that:

Gp(β
0
[a,b], p

∗(TR−1), q
0(TR−1, β

0
[a,b])) = 0 and Gq(β

0
[a,b], p

0(TR−1), q
∗(TR−1, β)) = 0. (22)

Let Wn
p−→ W . If β̂(Wn)

p−→ β0
[a,b] as we just noted above, then it now follows under standard

conditions (see, e.g., Theorem 2 of Chen et al. (2003)) that:

√
n
(
β̂(Wn)− β0

)
=− (M ′WM)

−1
M ′W

√
n
[
ḡn(β

0, p∗, q∗)

+ Gp(β
0, p∗, q∗)[p̂− p∗] +Gq(β

0, p∗, q∗)[q̂ − q∗]
]
+ op(1)

writing the triple β, p(TR−1), q(TR−1; β) as β, p, q, and dropping the subscript [a, b] for brevity.

Therefore, if assumption CH holds, then p∗(TR−1) = p0(TR−1) and hence by (22):

√
n
(
β̂(Wn)− β0

)
= − (M ′WM)

−1
M ′W

√
n
[
ḡn(β

0, p0, q∗) +Gp(β
0, p∗, q∗)[p̂− p0]

]
+ op(1).

So the estimation of the unknown conditional expectations E[m(Z; β0)|Tr]’s has no effect on

the asymptotic distribution of β̂(Wn) if the conditional hazard models are correct.

Similarly, if assumption CE holds, then q∗(TR−1; β
0) = q0(TR−1; β

0) and hence by (22):

√
n
(
β̂(Wn)− β0

)
= − (M ′WM)

−1
M ′W

√
n
[
ḡn(β

0, p∗, q0) +Gq(β
0, p0, q0)[q̂ − q0]

]
+ op(1).

So the estimation of the unknown conditional hazards P (C = r|Tr;C ≥ r)’s has no effect on

the asymptotic distribution of β̂(Wn) if the conditional expectation models are correct.

Finally, if both assumptions CH and CE hold, then we have p∗(TR−1) = p0(TR−1) and
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q∗(TR−1; β
0) = q0(TR−1; β

0) and hence by (22):

√
n
(
β̂(Wn)− β0

)
= − (M ′WM)

−1
M ′W

√
nḡn(β

0, p0, q0) + op(1).

Now consider efficiency in the sense of Proposition 2. IfW−1 = V ar (g(O; β0, p∗(TR−1), q
∗(TR−1, β

0)))

=: V (β0, p∗, q∗), which when CH and CE hold jointly is denoted by V (β0, p0, q0), then:

√
n
(
β̂(Wn)− β0

)
= −

(
M ′[V (β0, p0, q0)]−1M

)−1
M ′[V (β0, p0, q0)]−1

√
nḡn(β

0, p0, q0) + op(1)

when CH and CE hold jointly. Now, since the moment vector g(O; β, p, q) was defined such

that g(O; β0, p0, q0) ≡ φ[a,b](O; β
0) (and hence V (β0, p0, q0) ≡ V[a,b]), it follows that:

√
n
(
β̂(Wn)− β0

)
= −Ω−1

[a,b]M
′
[a,b]V

−1
[a,b]

1√
n

n∑
i=1

φ[a,b](Oi; β
0) + op(1) (23)

where the non-op(1) term on the RHS is the influence function from Proposition 2 which

was shown to be efficient for any [a, b] when dm = dβ and for a = b or a = 1, b = R when

dm > dβ. Under the conditions maintained in Proposition 2, it follows from (23) that:

√
n
(
β̂(Wn)− β0

)
d−→ N

(
0,Ω−1

[a,b]

)
.

The related literature on the doubly or locally robust moment functions using nonparametric

p̂ and q̂, or even parametric p̂ and q̂ but without allowing for the violation of CH or CE,

focuses solely on (23) and takes Ω−1
[a,b] as the asymptotic variance of β̂(Wn) whenWn

p−→ V −1
[a,b].

However, assumption CH or CE may not hold if p̂ and q̂ are parametric. Then the

above asymptotically linear representations of β̂(Wn) are not practically useful to obtain

the asymptotic variance of β̂(Wn) without more structure on p̂ and q̂. The usual solution

is to exploit the parametric structure of p̂ and q̂, and obtain the asymptotic variance of

β̂(Wn) based on the standard stacked representation of the moment vectors for β, γ :=

(γ′a, . . . , γ
′
R−1)

′ and λ := (λ′a, . . . , λ
′
R−1)

′ where λr := (λ′r,1, . . . , λ
′
r,dm

)′ for r = a, . . . , R − 1.
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Accordingly, consider the
(
dm +

∑R−1
r=a dγr +

∑R−1
r=a

∑dm
j=1 dλr,j

)
× 1 stacked moment vector:

ψ(Oi; β, γ, λ) :=


g(Oi; β, p(Zi; γ), q(Zi; β, λ))

S(Oi; γ)

L(Oi; β, λ)

 where S(Oi; γ) :=


Sa(Oi; γa)

...

SR−1(Oi; γR−1)

 ,

L(Oi; β, λ) :=


La(Oi; β, λa)

...

LR−1(Oi; β, λR−1)

 , and Lr(Oi; β, λr) :=


Lr,1(Oi; β, λr,1)

...

Lr,dm(Oi; β, λr,dm)


for r = a, . . . , R− 1. We will obtain the GMM estimator β̂ using the usual two-step GMM.

We will refer to β̂ as EFF (as in efficient). In step one, we use the identity ma-

trix as the GMM weighting matrix to obtain the first step estimators β̄, γ̄ and λ̄ for β, γ

and λ, and estimate the efficient weighting matrix as Σ̂−1
n (β̄, γ̄, λ̄) where Σ̂n(β, γ, λ) :=∑n

i=1 ψ(Oi; β, γ, λ)ψ
′(Oi; β, γ, λ)/n. Step one is not needed if dm = dβ. In step two, we ob-

tain the efficient GMM estimators β̂, γ̂ and λ̂ by minimizing with respect to β, γ, λ the GMM

objective function based on the efficient weighting matrix. Finally, we estimate the asymp-

totic variance of β̂, i.e., EFF, as the first dβ × dβ block diagonal of the GMM asymptotic

variance matrix
(
Ψ̂′

n(β̂, γ̂, λ̂)Σ̂
−1
n (β̂, γ̂, λ̂)Ψ̂n(β̂, γ̂, λ̂)

)−1

where Ψ̂n(β̂, γ̂, λ̂) is the (possibly nu-

merical) derivative of
∑n

j=1 ψ(Oj; β, γ, λ)/n with respect to β, γ and λ at β̂, γ̂ and λ̂.

The asymptotic theory for EFF with parametric (fixed) nuisance models is simple. When

CH and CE are not jointly false, the interesting structure described in the text between equa-

tions (22) and (23) is preserved by the influence function of EFF (and hence its asymptotic

variance) thanks to the double robustness to the misspecification of the parametric nuisance

models. If the parametric nuisance models are not fixed but “promise” to become suffi-

ciently flexible with the increase in sample size, then, as shown in Ackerberg et al. (2012)

(also see Newey (1994)), EFF can be interpreted as semiparametric and the estimator of its

asymptotic variance obtained above can be consistent for the benchmark variance Ω−1
[a,b].
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5 Empirical Illustration based on Project STAR

We continue with the motivating example from Section 2.1 of attrition in the Project STAR.

We wish to illustrate the possible benefits of the efficiency gains due to our proposed estimator

EFF in drawing substantive conclusion from this experiment on the effect of small class size

on students’ performance. As a reference to EFF, we also present the same results using the

IPW estimator from (14) that is the re-weighted Hajek (1971) version of IPW.

To this end, it is useful to first ask which effects an “ideal” Project STAR experiment

would have generated with the subjects/students entering grade K in 1985 if there was

no subsequent attrition or other implementation-related compromises; see, e.g., Hanushek

(1999). The answer is that, since there was no protocol to randomly assign the class types of

students except at the beginning, an “ideal” Project STAR experiment would have generated

in grades K, 1, 2 and 3 the effect of continued presence in small classes with respect to

continued presence in not-small classes. Our illustration will focus on the “ideal” experiment.

We first formally define these effects that the “ideal” experiment would have generated.

We view attrition — a compromise to the ideal experiment — as a mitigating action by

students in response to the treatment (class type) that they perceived as unhelpful to them.

To gain a better understanding of this mitigating action we then decompose these effects by

the attrition behavior of students from small and not-small classes.

For brevity of this illustration, we present only the results for (normalized) reading

scores.13 Let Y s(grade j read) be the potential grade j reading score of a student had (s)he

stayed in the small class at least until the end of grade j for j = K, 1, 2, 3 after being initially

randomized to a small class in grade K. Similarly, with superscript “ns” denoting not-small,

define the potential scores Y ns(grade j read) for j = K, 1, 2, 3. These scores are not observed

for a student in grade j if the student left the participating school before grade j = 1, 2, 3.

13To streamline our empirical illustration we ignore the compromises other than attrition to the experiment,
e.g., students who enrolled after grade K or the few students (1.8%–5.8% in the respective grades; see Table 1)
who switched their assigned class types. Some of these compromises can be accommodated in this illustration
at the cost of strong modeling assumptions and messier notation that we want to avoid here for simplicity.
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As noted above, we focus on two treatment regimes — a continued presence in small

classes and a continued presence in not-small classes over the four years of Project STAR.

Denote the average difference between the outcomes of these two regimes at each grade

j = K, 1, 2, 3 as:

µread
j := E[Y s(grade j read)− Y ns(grade j read)].

Evolution of the effect of small classes:

First, consider the trajectory of µread
j for j = K, 1, 2, 3 to see how the effect of the small-class

regime with respect to the not-small class regime evolved over continued presence in these

regimes. Their EFF and IPW estimates are plotted in Figure 1(a).14 The EFF and IPW

estimates of the trajectory are quite similar. Consistent with the literature, we observe that

the initial effect µread
K is very large compared to the “value added” (e.g., µread

j − µread
K for

j = 1, 2, 3) in the subsequent grades 1, 2 and 3. However, our value added estimates are not

as pessimistic as Hanushek (1999)’s that led him to question the justification of the huge

cost of prolonged operation of small classes, but are more in line with Krueger (1999).

We conjecture that the correction for attrition makes our estimates less pessimistic than

Hanushek (1999)’s. This would happen under asymmetric selection, e.g., if the students

leaving not-small classes left because they were going to score badly had they stayed whereas

the students leaving small classes left under other concerns or lesser concerns of bad scores.

Following up on our conjecture, as proxies to Hanushek (1999)’s annual and 4-year sam-

14We obtain these estimates following Section 4 using parametric models specified for the conditional
hazards and conditional expectations. The conditional hazard of leaving small (respectively, not-small)
classes after grade j (= K, 1, 2) is modeled as logit with a linear index of a constant, dummies for race, sex,
types of school (inner city, urban and rural), the share of students on free-lunch in school, dummies for all
grades (present and past) where the student was on free lunch, where the student’s teacher had bachelor’s
degree, and the difference in each of the past grades between the student’s normalized math and reading
scores from, respectively, the average normalized math and average normalized reading scores in small classes
and also in not-small classes in their school. The differences between the student’s and the average scores
are continuous variables, and we also include their quadratic and cubic terms in the index. The conditional
expectations of the grade j (= 1, 2, 3) scores in small (respectively, not-small) classes are modeled linearly
with exactly the same set of variables. These estimation results are not reported but are available from us.
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ples respectively, we also plot in Figure 1(a) the “In grade” and “Never left” estimates of the

trajectory. These are based on the average observed score of the students who took the tests

at the end of the respective grades (for In grade estimates) and the students who continued

in Project STAR until the end of grade 3 (for Never left estimates).15 Note that Never left

actually estimates νreadj,3 while In grade estimates νreadj,j for j = K, 1, 2, 3 where:

νreadj,l := E[Y s(grade j read)|Bs
l ] − E[Y ns(grade j read)|Bns

l ] for j, l = K, 1, 2, 3

and Bs
l is the event that a student assigned to small class in grade K does not leave before

the end of grade l for l = K, 1, 2, 3; and similarly Bns
l is the event for the not-small class.16

Supporting our conjecture, visual inspection of In grade and Never left estimates reveals

that without correction for attrition the value added estimates would indeed be pessimistic.

Does attrition matter?

But, beyond this visual inspection, does the correction for attrition matter statistically

as well? More precisely, since we observed that the attrition-corrected estimates (EFF and

IPW) are larger than the attrition-uncorrected estimates (In grade, which is typically favored

to Never left), it is natural to ask if this is entirely due to sampling variation or is there

systematic evidence for this in the population. That is, one would want to test the null

hypothesisH0,j : µ
read
j = νreadj,j against the alternativeH1,j : µ

read
j > νreadj,j for grades j = 1, 2, 3.

The p-values for these tests using EFF and IPW estimates of µread
j for grades j = 1, 2, 3

15“In grade” and “Never left” are those that correspond to the so-called “available cases” and “complete
cases” respectively in the parlance of the missing data literature. To fix ideas consider Table 2. Never left
has its own row in the table, while In grade for each grade is composed of the non-x entries in the column
for that grade. In grade is preferred in practice (not always correctly) to Never left as a representative of the
full population since it contains Never left and also units from various sub-populations of the full population.

16While we have deviated from the C-notation for attrition category to better reflect the sequencing
K, 1, 2, 3 of grades, in this 4-period experiment: Bs

K ≡ {C ≥ 1} and Bs
l ≡ {C ≥ l+ 1} if l = 1, 2, 3 for small

class, and similarly Bns
l for not-small class. We hope that this switch from C to B notation is not confusing.

Equipped with this notation, let us now recall and generalize the motivating discussion below Table 2
in Section 2.1 on the problem of selection. νreadK,K = µread

K obviously as attrition started only after the

end of grade K. However, in general νreadj,l ̸= µread
j for j = K, 1, 2, 3 and l = 1, 2, 3 unless suitable mean

independence assumptions hold or, by happenstance, the biases for small and not-small classes cancel out,
i.e., E[Y s(grade j read)|Bs

l ]− E[Y s(grade j read)] = E[Y ns(grade j read)|Bns
l ]− E[Y ns(grade j read)].
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are as follows:

� 21% using EFF and 26.3% using IPW for H0,1 : µ
read
1 = νread1,1 against H1,1 : µ

read
1 > νread1,1 .

(Note that grade 1 score has a single level of missingness; see caption of Table 2.)

� 5.5% using EFF and 30.7% using IPW forH0,2 : µ
read
2 = νread2,2 againstH1,2 : µ

read
2 > νread2,2 .

� 6.6% using EFF and 23.3% using IPW forH0,3 : µ
read
3 = νread3,3 againstH1,3 : µ

read
3 > νread3,3 .

The EFF p-values for H0,2 and H0,3 are small and not sufficient in practice to take for

granted the reliability of the attrition-uncorrected In grade estimates for the true effect µread
2

and µread
3 . On the other hand, the IPW p-values are quite a bit larger for H0,2 and H0,3. It

is however not prudent (and possibly misleading) to take H0,2 and H0,3 for granted because,

as we will see below, the large IPW p-values are entirely due to the imprecise nature of the

IPW estimates. By contrast, EFF helps to avoid this possibly misleading confidence in H0,2

and H0,3 and points toward the possibility that attrition does matter here.

Do attrition-corrected estimates give substantive conclusions on the effects?

Attrition-correction will be of limited use to practitioners if it does not lead to precisely

estimated (zero or non-zero) effects. To explore if that is the case here, we plot in Figure 1(b)

the 90%, 95% and 99% two-sided confidence intervals around the EFF and IPW estimates

for µread
K , µread

1 , µread
2 and µread

3 . The EFF intervals turn out to be subsets of the IPW intervals.

Specifically, while the EFF and IPW intervals are identical for µread
K by definition and

are similarly precise for µread
1 (one level of missingness), the EFF intervals are much more

precise than the IPW intervals for µread
2 and µread

3 (more than one level of missingness).

EFF rejects a zero or negative value of µread
j for all j = K, 1, 2, 3 at all conventional levels

but IPW fails to reject it for j = 2, 3 at the 1% level. (The EFF p-values do not exceed

even .01%.) Small classes are an expensive policy proposition. Hence, the fact that EFF can

rule out with extreme confidence any negative evidence against continued presence in small

classes for every duration 1-4 years (after starting in grade K) has serious policy implications.
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Attrition as a mitigating action against unhelpful class type assignment:

Students were randomly assigned to small and not-small classes when they enrolled in a

Project STAR school in grade K. Many students did not score well in their randomly assigned

class type. Leaving the Project STAR school was an important course of mitigating action

available to these students. If attrition in Project STAR was primarily due to this mitigating

action then, given the initial random assignment, we would expect that students who stayed

scored better than what students who left would have scored had they stayed instead.

This is exactly what we observe in our estimates for each grade 1, 2 and 3. For brevity,

we report here only the results for grade 3 since it is the terminal period of the experiment,

and compare those who never left with each of the other attrition categories. Table 3 reports

the EFF and IPW estimates of αs,read
3 − αs,read

j and αns,read
3 − αns,read

j for j = K, 1, 2 where:

αs,read
j := E[Y s(grade 3 read) | As

j], and αns,read
j := E[Y ns(grade 3 read) | Ans

j ]

and As
j is the event that a student assigned to small class in grade K leaves exactly at the

end of grade j; and similarly Ans
j is the event for not-small classes.17

EFF and IPW estimates are very similar, but EFF is much more precise than IPW.

Consequently, EFF confirms with a higher level of confidence in all cases the intuition that

students who stayed scored better on average than what students who left would have scored

had they stayed instead. By contrast, IPW fails to confirm at conventional levels of signifi-

cance this intuition behind the choice to leave not-small classes at the end of grade 2.

Relatedly, consider the two decompositions of the effect µread
3 of small classes by attrition

categories:

µread
3 =

∑
j=K,1,2,3

µread
3,j,∗ × P

(
As

j

)
=

∑
j=K,1,2,3

µread
3,∗,j × P

(
Ans

j

)
based on the attrition from small and not-small classes respectively, where for j = K, 1, 2, 3:

17This switch from the C to A notation in this 4-period experiment is trivial: As
K ≡ {C = 1} and

As
j ≡ {C = j + 1} if j = 1, 2, 3 for small class, and similarly Ans

j for not-small class. As in footnote 16, this
switch better reflects the sequencing K, 1, 2, 3 of grades and does so in small and not-small classes separately.
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αs,read
3 − αs,read

j αns,read
3 − αns,read

j

j EFF IPW EFF IPW

K
0.39∗∗∗ 0.34∗∗∗ 0.48∗∗∗ 0.48∗∗∗

(0.11) (0.14) (0.05) (0.18)

1
0.45∗∗∗ 0.48∗∗ 0.64∗∗∗ 0.63∗∗∗

(0.16) (0.24) (0.08) (0.19)

2
0.51∗∗∗ 0.47∗∗∗ 0.46∗∗∗ 0.46
(0.11) (0.20) (0.09) (0.53)

Table 3: EFF and IPW estimates and standard errors (in parentheses) for αt,read
3 −αt,read

j for
t = s, ns and j = K, 1, 2. ∗, ∗∗ and ∗∗∗ signify if the null that the parameter is zero is rejected
against the alternative that it is greater than zero at the 10%, 5% and 1% level respectively.

µread
3,j,∗ = E[Y s(grade j read)| As

j] − E[Y ns(grade j read)],

µread
3,∗,j = E[Y s(grade 3 read)] − E[Y ns(grade 3 read)|Ans

j ].

EFF and IPW estimates of these two decompositions, along with the 90%, 95% and

99% two-sided confidence intervals, are reported in Figures 1 (c)-(d) showing the relative

contribution of each attrition category from small and not-small classes respectively toward

the overall effect. Given the large number of students who left, it is important to understand

what the effect would have been with respect to students leaving at various junctures of the

experiment. µread
3,∗,j and µ

read
3,j,∗ for j = K, 1, 2, 3 are those effects on the grade 3 reading scores.

Figure 1 (c) reveals that if we compare a randomly chosen student assigned to small

class with a randomly chosen student assigned to not-small class who never left not-small

class, then there is no benefit of small classes on the grade 3 reading score. The benefit on

the grade 3 reading score is driven by the comparison of the former student with randomly

chosen students assigned to not-small class who left not-small class after grade K, 1 or 2.

Figure 1 (d) reveals that if we compare a randomly chosen student assigned to not-small

class with randomly chosen students assigned to small class who left small class after grade

K or 1 or 2, then there is no harm to the grade 3 reading score due to not-small classes. The

harm to the grade 3 reading score due to not-small classes is driven by the comparison of the

former student with a randomly chosen student assigned to small class who never left small
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class. Thus, attrition was clearly a mitigating action against unhelpful class assignment.

These decompositions reveal such interesting patterns telling us which group of students

(by attrition category) are driving the overall effect of small classes in the terminal period

grade 3, and by how much. While the EFF estimates of the decompositions are very similar

to the IPW estimates, the precision of EFF provides more statistical confidence toward

confirming the contribution of each group of students to the overall effect of small classes.18

Lastly, as we noted in Section 2.1, these EFF-based inferences are precise mainly because

the sub-population-specific components of the effects are estimated more precisely by EFF.

Table 4 reports the results for EFF and IPW estimation of a subset of such components.

Rows (a)-(c) correspond to the components marked with “x” in the columns for the grade

3 score in Table 2 that was presented in Section 2.1 as an empirical motivation behind the

theoretical contribution of our paper. The gain in precision due to EFF is clear in all cases.

Left STAR school Randomized to small class Randomized to not-small class
at the end of grade EFF IPW EFF IPW
(a) K 0.05 0.10 -0.27 -0.26

(0.11) (0.13) (0.05) (0.17)
(b) 1 -0.02 -0.04 -0.42 -0.42

(0.16) (0.23) (0.08) (0.19)
(c) 2 -0.07 -0.03 -0.24 -0.24

(0.11) (0.19) (0.09) (0.53)
(d) 3 (Never left) 0.44 0.44 0.22 0.22

(0.04) (0.04) (0.03) (0.03)

Table 4: EFF and IPW estimates of expected (counterfactual) reading scores in grade 3
by the student’s attrition period are presented under the class types to which they were
initially randomized. Standard deviations are presented in parentheses. All results in this
empirical illustration are based on such parameters and the standard errors of those results
were computed by noting that the estimates in this table across the two class types are
independent but are correlated within class types. Row (d), i.e., Never left, involves nothing
unobserved and hence both IPW and EFF estimates are equal to the simple group averages.

18Note that for each j = K, 1, 2, the estimands from Table 3 are related to these decompositions as follows:

αs,read
3 − αs,read

j = µread
3,3,∗ − µread

3,j,∗ while αns,read
3 − αns,read

j = −(µread
3,∗,3 − µread

3,∗,j).

Therefore, going back to Table 3, we see that it suggests that EFF rejects the null µread
3,∗,3 = µread

3,∗,j against

µread
3,∗,3 < µread

3,∗,j and the null µread
3,3,∗ = µread

3,j,∗ against µread
3,3,∗ > µread

3,j,∗ for each j = K, 1, 2 even at the 1% level.

IPW cannot do that, and moreover it does not reject µread
3,3,∗ = µread

3,2,∗ at any conventional level of significance.
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6 Conclusion

Our paper provided a comprehensive presentation of efficiency in estimation of parameters

defined by the missingness pattern of monotonically missing at random data. The efficiency

results on the parameters for generic sub-populations are new, and extend the well-known

results on the treatment effects on the treated or the untreated or the parameters from the

so-called “verify-out-of-sample” case in various empirically relevant directions.

We saw in the empirical illustration that such parameters are, among other things, fun-

damental to our understanding of the economic agent’s mitigation behavior when faced with

unhelpful situations; e.g., leaving a school where a class-assignment is perhaps not working

well for the student. Our proposed estimator for such parameters is a standard two-step

doubly robust estimator. We saw that its computation is standard, and its precision may

help to draw substantive conclusions when the standard estimators fail to do so. The ex-

cellent performance of our proposed estimator in our simulation experiment (Supplemental

Appendix B) and, by contrast, the poor performance of its competitors give credibility to the

results obtained by our proposed estimator; and we hope that encourages its use in practice.

We now conclude by recalling two important technical features of our paper. First, we

clearly characterized the additional restrictions that were imposed on the tangent set for the

underlying semiparametric model by the over identification of the parameters of interest. To

our knowledge, this characterization was missing from the related literature on missing data.

In the process we validated and extended various existing results.

Second, we analyzed the information content (strength) of the MAR assumption linking it

to the usability of sample units toward efficient estimation in sub-populations. This allowed

us to contrast between the efficiency bound that is reached by the variance adjustment due

to the estimation of exactly identified nuisance parameters and the efficiency bound that is

obtained under the model assumptions involving the strength of the MAR assumption.

To our knowledge, these two technical features distinguish our paper from the related

literature on missing data, and are possibly of independent interest for future work on semi-
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parametric efficiency bounds in broader contexts.
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A Supplemental Appendix A: Proofs

A.1 Auxiliary lemmas:

Lemma 8 The MAR condition in (1) implies and is implied by the following condition:

P (C = r|TR) = P (C = r|Tr) for r = 1, . . . , R− 1. (24)

Proof of Lemma 8: First we show that if (1) holds then (24) also holds. Take any

r = 1, . . . , R− 1 and note that:

P (C = r|TR) = P (C = r|TR, C ≥ r)
r−1∏
k=1

[1− P (C = k|TR, C ≥ k)]

= P (C = r|Tr, C ≥ r)
r−1∏
k=1

[1− P (C = k|Tk, C ≥ k)] [by (1)]

= P (C = r|Tr, C ≥ r)
r−1∏
k=1

[1− P (C = k|Tr, C ≥ k)] [by (1)]

= P (C = r|Tr).

Now we show that if (24) holds then (1) also holds. Take any r = 1, . . . , R − 1 and note

that:

P (C = r|TR, C ≥ r) =
P (C = r|TR)
P (C ≥ r|TR)

=
P (C = r|TR)

1− P (C ≤ r − 1|TR)
=

P (C = r|TR)
1−

∑r−1
j=1 P (C = j|TR)

=
P (C = r|Tr)

1−
∑r−1

j=1 P (C = j|Tj)
=

P (C = r|Tr)
1−

∑r−1
j=1 P (C = j|Tr)

=
P (C = r|Tr)
P (C ≥ r|Tr)

= P (C = r|Tr, C ≥ r)

where the fourth and fifth equalities follow by (24).

Lemma 9 The MAR condition in (1) implies that:

P (C ≥ r|Tj) = P (C ≥ r|Tr−1) for r = 1, . . . , R− 1 and j = r, . . . , R.

2



Proof of Lemma 9: Lemma 8 shows that (1) implies (24). Now, take r = 1, . . . , R− 1 and

j = r, . . . , R and note that:

P (C ≥ r|Tj) = 1−
r−1∑
k=1

P (C = k|Tj) = 1−
r−1∑
k=1

P (C = k|Tk) = 1−
r−1∑
k=1

P (C = k|Tr−1) = P (C ≥ r|Tr−1)

where the second and third equalities follow by (24).

Remarks:

1. Lemma 9 implies that if R = 2 then P (C = 2|T2) = P (C = 2|T1). This is the familiar

form in which the MAR assumption is generally found in the econometrics literature where

the focus has typically been on the case of R = 2.

2. We introduced the notation in the above two lemmas for brevity of expression in

the proofs in this appendix. The original notation with the conditional hazards is very

transparent in terms of accounting for the observability of the conditioning variables (and

hence for estimation), and precisely for that reason it leads to longer expressions.

Lemma 10 Under the conditions of Proposition 2 and using the notation of Section 3.2:

E
[
φ[a,b](O, β

0
[a,b])S(O)

′] = E

[
m

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
.

Proof of Lemma 10: Note from (3), (4) and (5) that:

φ[a,b](O; β
0
[a,b]) =

R∑
r=b+1

I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])

+
b∑

r=a+1

I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])

+
b∑

r=a

I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]. (25)

This alternative formulation of φ[a,b](O; β
0
[a,b]) without the conditional hazards stated explic-

itly is not intuitively transparent for actual computational purpose, but will be adopted here

3



since it provides shorter expressions in the proof. Based on (25) we can writeE[φ[a,b](O; β
0
[a,b])S(O)

′] =∑3
i=1

∑2
j=1Bij where:

B11 :=
R∑

r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])D
′
]
,

B12 :=
R∑

r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
R∑

k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B21 :=
b∑

r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])D

′
]
,

B22 :=
b∑

r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])

×
R∑

k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B31 :=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]D′

]
,

B32 :=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]

R∑
k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

D := s(Z1) +
R∑

k=2

I(C ≥ k)s(Zk|Tk−1).

We wrote this with the understanding that if b = R then B11 = B12 = 0, and if a = b then

B21 = B22 = 0. For notational brevity define T0 as any constant, so that s(Z1) ≡ s(Z1|T0).

First, note that:

B11 =
R∑

r=b+1

r∑
k=1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

+
R∑

r=b+1

R∑
k=r+1

E

[
I(C ≥ k)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

=
R∑

r=b+1

r∑
k=1

E

[
P (C ≥ r|Tr−1)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

+
R∑

r=b+1

R∑
k=r+1

E

[
P (C ≥ k|Tk−1)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

4



where the third and fourth lines follow by Lemma 9. Hence, we subsequently obtain that:

B11 =
R∑

r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

E[m|Tr]s(Zr|Tr−1)
′
]
+ 0

= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
ms(ZR, . . . , Zb+1|Tb)′

]
= E [ms(ZR, . . . , Zb+1|Tb)′|a ≤ C ≤ b] . (26)

The first equality follows since for all k = 1, . . . , r−1: E [(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)
′] =

E [E[(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)
′|Tr−1]] = 0 while for k ≥ r+1: E [E[m|Tr]s(Zk|Tk−1)

′] =

E [E[m|Tr]E[s(Zk|Tk−1)
′|Tk−1]] = 0. The second equality follows by (1) and Lemma 8 and

the definition of score. The last equality is obvious.

Second, following the steps that led to the first line on the RHS of (26), we obtain that:

B21 =
b∑

r=a+1

E

[
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
E[m|Tr−1]s(Zr|Tr−1)

′
]
.

Therefore,

B21 =
b∑

r=a+1

r−1∑
k=a

E

[
P (C = k|Tk)
P (a ≤ C ≤ b)

ms(Zr|Tr−1)
′
]

=
b∑

r=a+1

r−1∑
k=a

E [ms(Zr|Tr−1)
′|C = k]

P (C = k)

P (a ≤ C ≤ b)

=
b−1∑
k=a

E

[
m

b∑
r=k+1

s(Zr|Tr−1)
′

∣∣∣∣∣C = k

]
P (C = k)

P (a ≤ C ≤ b)

=
b−1∑
k=a

E [ms(Zb, . . . , Zk+1|Tk)′|C = k]
P (C = k)

P (a ≤ C ≤ b)
. (27)

The first equality follows by (1) and Lemma 8. The second equality follows by the same steps

that gave the second line on the RHS of (26). The third equality follows by interchanging

the order of summations (allowed here). The last equality follows by the definition of score.

Third, we consider B31 and note that using the definition of score in the second equality

5



below and the same argument as before in the third (last) equality below give:

B31 =
b∑

r=a

r∑
k=1

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Zk|Tk−1)

′
]

=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Tr)′

]

=
b∑

r=a

E [ms(Tr)
′|C = r]

P (C = r)

P (a ≤ C ≤ b)
. (28)

Adding (27) and (28) gives:

B21 +B31 = E [ms(Tb)
′|C = b]

P (C = b)

P (a ≤ C ≤ b)
+

b−1∑
k=a

E [ms(Tb)
′|C = k]

P (C = k)

P (a ≤ C ≤ b)

= E [ms(Tb)
′|a ≤ C ≤ b] . (29)

Now, we consider the terms B12, B22 and B32 respectively. Accordingly, first note that:

B12 =
R∑

r=b+1

R∑
k=r

E

[
I(C = k)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
Ṗ (C = k|Tk)′

P (C = k|Tk)

]

=
R∑

r=b+1

E

[
1

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
R∑

k=r

Ṗ (C = k|Tk)′
]

=
R∑

r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
Ṗ (C ≥ r|Tr−1)

′

P (C ≥ r|Tr−1)

]
= 0. (30)

The second equality follows by (1) and Lemma 8. The third equality follows by Lemma 8

and Lemma 9. The fourth (last) equality follows by taking expectation conditional on Tr−1

for the r-th term inside the summation. Exactly following the same steps as in the above

(recall the analogy with B11 and B12 above) we obtain:

B22 = 0. (31)

6



Lastly, as before, note that:

B32 =
b∑

r=a

E

[
I(C = r)

P (C = r|Tr)
E[m|Tr]Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]
= E

[
m

b∑
r=a

Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]

= E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

m
Ṗ (a ≤ C ≤ b|Tb)′

P (a ≤ C ≤ b)

]
= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b|Tb)
m
Ṗ (a ≤ C ≤ b|Tb)′

P (a ≤ C ≤ b)

]

= E

[
m
Ṗ (a ≤ C ≤ b|Tb)′

P (a ≤ C ≤ b|Tb)

∣∣∣∣∣ a ≤ C ≤ b

]
(32)

Therefore, (26) and (29)-(32) give the result.

A.2 Proof of the results stated in the main text

Proof of Lemma 1: For simplicity we suppress the dependence of quantities on O,Z, Tr, β,

etc. unless confusing. Taking a = 1, b = R in (3), note by using (4) and (5) that φ[1,R](.) is:

R∑
j=1

P (C = j)

{
R∑

r=j+1

I(C ≥ r)P (C = j|Tj)
P (C = j)P (C ≥ r|Tr−1)

(E[m|Tr]− E[m|Tr−1]) +
I(C = j)

P (C = j)
E[m|Tj]

}

=
R∑

r=2

r−1∑
j=1

I(C ≥ r)
P (C = j|Tj)
P (C ≥ r|Tr−1)

(E[m|Tr]− E[m|Tr−1]) +
R∑

j=1

I(C = j)E[m|Tj]

=
R∑

r=2

I(C ≥ r)
P (C ≤ r − 1|Tr−1)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) +

R∑
r=1

I(C = r)E[m|Tr]

=
R∑

r=2

I(C ≥ r)
1− P (C ≥ r|Tr−1)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) +

R∑
r=1

I(C = r)E[m|Tr]

=
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])−

R∑
r=2

I(C ≥ r)(E[m|Tr]− E[m|Tr−1]) +
R∑

r=1

I(C = r)E[m|Tr]

=
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) + E[m|T1]

where the last line follows because we can write
∑R

r=2 I(C ≥ r)(E[m|Tr]− E[m|Tr−1]) as:

I(C = R)E[m|TR] +
R−1∑
r=2

E[m|Tr][I(C ≥ r)− I(C ≥ r + 1)] + I(C ≥ 2)E[m|T1].
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The law of iterated expectations gives E[φ[1,R](O; β)] = 0+E[E[m(Z; β)|T1]]. Therefore,

E[φ[1,R]] = E
[
φ[1,R]

{
φ[1,R] − E[E[m(Z; β)|T1]]

}′]
= E

[
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])

R∑
s=2

I(C ≥ s)

P (C ≥ s|Ts−1)
(E[m|Ts]− E[m|Ts−1])

′

]
+E[E[m|T1](E[m|T1]− E[E[m|T1]])′]

=
R∑

r=2

E

[
1

P (C ≥ r|Tr−1)
E [(E[m|Tr]− E[m|Tr−1])(E[m|Tr]− E[m|Tr−1])

′|Tr−1]

]
+E[E[m|T1](E[m|T1]− E[m])′]

=
R∑

r=2

E

[
V (E[m|Tr]|Tr−1)

P (C ≥ r|Tr−1)

]
+ V (E[m|T1])

giving the desired result, where the last equality follows simply by definition while the third

equality follows since for r > s by using (1) and the law of iterated expectations:

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])

I(C ≥ s)

P (C ≥ s|Ts−1)
(E[m|Ts]− E[m|Ts−1])

′
]

= E

[
1− I(C ≤ r − 1)

(1− P (C ≤ r − 1|Tr−1))P (C ≥ s|Ts−1)
(E[m|Tr]− E[m|Tr−1])(E[m|Ts]− E[m|Ts−1])

′
]

= 0

and for r > 1, again by using (1) and the law of iterated expectations,

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])(E[m|T1]− E[E[m|T1]])′

]
= 0.

Remark: Unless confusing, we will write m(Z; β0
[a,b]) simply as m for brevity in the sequel.

Proof of Proposition 2: We obtained the tangent set T in Section 3.2. In the just identified

case the tangent set is given by (7) in the case of any generic [a, b] with a, b ∈ {1, . . . , R}

and a ≤ b, while in the over identified case the tangent set is given by (7) and the additional

restriction (10) if a = 1, b = R, and by (7) and the additional restriction (11) if a = b.

The rest of the proof will proceed as follows. We will show that φ[a,b](O, β
0
[a,b]) satisfies

8



the pathwise derivative condition for any generic [a, b] with a, b ∈ {1, . . . , R} and a ≤ b in

the over identified case (dm ≥ dβ). Thus, this will obviously be satisfied in the just identified

case (dm = dβ). Then we will show that the concerned influence function obtained from

φ[a,b](O, β
0
[a,b]) belongs in T in the over identified case if a = 1, b = R or if a = b, and belongs

in T in the just identified case for any generic [a, b] with a, b ∈ {1, . . . , R} and a ≤ b.

Taking any A that is a full row rank dβ × dm matrix such that AM[a,b] is nonsingular, we

know from Section 3.2 that:

∂β0
[a,b](η0)

∂η′
= −

(
AM[a,b]

)−1
AE

[
m(Z; β0

[a,b])

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
.

Therefore, the pathwise derivative condition

∂β0
[a,b](η0)

∂η′
=
(
AM[a,b]

)−1
AE

[
φ(O, β0

[a,b])S(O)
′] ,

where S(O) is defined in Section 3.2, will hold if:

E
[
φ[a,b](O, β

0
[a,b])S(O)

′] = E

[
m

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
,

and this is true by Lemma 10. The calculations for this demonstration are tedious and hence

they are presented separately under Lemma 10 stated immediately before the present proof.

The pathwise derivative condition holds in the general over identified case (dm ≥ dβ).

Hence, it also holds in the just identified case (dm = dβ). To avoid any confusion (at

the cost of brevity), we will first complete the proof for case (ii), i.e., the just identi-

fied case. We will show that the influence function −M−1
[a,b]φ[a,b](O, β

0
[a,b]) obtained from

φ[a,b](O, β
0
[a,b]) belongs in T . This follows simply by matching the first set of terms in

−M−1
[a,b]φ[a,b](O; β

0
[a,b]) (i.e., those that correspond to line one in (25)) to the terms correspond-

ing to νb+1(Z1, . . . , Zb+1), . . . , νR(Z1, . . . , ZR) in T ; the second set of terms (i.e., those that

correspond to line two in (25)) to the terms corresponding to νa(Z1, . . . , Za), . . . , νb(Z1, . . . , Zb)

9



in T ; and the third set of terms (i.e., those that correspond to line three in (25)) to the terms

corresponding to ωa(Z1, . . . , Za), . . . , ωb(Z1, . . . , Zb) in T ; while matching zeros with the re-

maining terms in T . Hence, −M−1
[a,b]φ[a,b](O; β

0
[a,b]) is the efficient influence function. The

expectation of the outer-product of −M−1
[a,b]φ[a,b](O; β

0
[a,b]) gives the inverse efficiency bound

M−1
[a,b]E

[
φ[a,b](O; β

0
[a,b])φ

′
[a,b](O; β

0
[a,b])

]
M−1′

[a,b] =M−1
[a,b]V[a,b]M

−1′

[a,b].

Now let us get back to the over identified case (dm ≥ dβ). As noted in Section 3.2, this is

where our proof markedly differs from similar proofs in the over identified case because those

proofs only do a matching exercise similar to the above without considering the additional

restrictions on the tangent set that are imposed by over identification. Arriving at the

optimal A, i.e., M ′
[a,b]V

−1
[a,b], after this exercise is the same as in Chen et al. (2008) and hence

to avoid repetition it is omitted for brevity.

First, consider the case of a = b. The above matching also holds with the influence

function −(M ′
[a,a]V

−1
[a,a]M[a,a])

−1M ′
[a,a]V

−1
[a,a]φ[a,a](O, β

0
[a,a]). Hence, we focus on verifying the

additional restriction (11) due to over identification. If a = b then (11) is:

0 = B[a,a]E

[
m(Z; β0

[a,a])

{
R∑

r=1

νr(Z1, . . . , Zr) + ωa(Z1, . . . , Za)

}′∣∣∣∣∣C = a

]
.

Therefore, guided exactly by the above matching exercise, −(M ′
[a,a]V

−1
[a,a]M[a,a])

−1M ′
[a,a]V

−1
[a,a]φ[a,a](O, β

0
[a,a])

will satisfy (11) and hence belong in T if we can show that:

0 = B[a,a]E

[
m

{
R∑

r=1

P (C = a|Ta) (E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)P (C = a)

+
E[m|Ta]
P (C = a)

}′

V −1
[a,a]M[a,a](M

′
[a,a]V

−1
[a,a]M[a,a])

−1

∣∣∣∣C = a

]
.

Now, recalling that B[a,b] :=
(
Idβ −M[a,b]

(
AM[a,b]

)−1
A
)
, it follows that the above equation

will hold if:

E

[
m

{
R∑

r=1

P (C = a|Ta) (E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)P (C = a)
+

E[m|Ta]
P (C = a)

}′∣∣∣∣∣C = a

]
= V[a,a],
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which is true since by definition V[a,a] = E

[{
φ[a,a](O; β

0
[a,a])

}{
φ[a,a](O; β

0
[a,a])

}′
]
, i.e.,

V[a,a] = E

[{
R∑

r=a+1

I(C ≥ r)P (C = a|Ta)
P (C ≥ r|Tr−1)P (C = a)

(E[m|Tr]− E[m|Tr−1]) +
I(C = a)

P (C = a)
E[m|Ta]

}
{}′
]

= E

[
R∑

r=a+1

P 2(C = a|Ta)
P (C ≥ r|Tr−1)P 2(C = a)

m (E[m|Tr]− E[m|Tr−1])
′ +

I(C = a)

P 2(C = a)
mE[m|Ta]′

]

= E

[
R∑

r=a+1

I(C = a)P (C = a|Ta)
P (C ≥ r|Tr−1)P 2(C = a)

m (E[m|Tr]− E[m|Tr−1])
′ +

I(C = a)

P 2(C = a)
mE[m|Ta]′

]

= E

[
m

{
R∑

r=1

P (C = a|Ta) (E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)P (C = a)
+

E[m|Ta]
P (C = a)

}′∣∣∣∣∣C = a

]
.

Now, consider the case of a = 1, b = R. The matching exercise from the just identified

case will not be appropriate here because we have not imposed enough restrictions on the

ωr(Z1, . . . , Zr)’s; see footnote 10. Instead, here we will be guided by the simplified expression

of φ[1,R](O; β
0
[1,R]) in Lemma 1, i.e.,

φ[1,R](O; β
0
[1,R]) =

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) + E[m|T1],

and match the term −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]

(E[m|Tr]−E[m|Tr−1])
P (C≥r|Tr−1)

of the influence

function −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]φ[1,R](O; β

0
[1,R]) with the term νr(Z1, . . . , Zr) of

T for r = 2, . . . , R− 1 and the term −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]E[m|T1] of the influ-

ence function −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]φ[1,R](O; β

0
[1,R]) with the term ν1(Z1) of T .

Guided exactly by this matching exercise, −(M ′
[1,R]V

−1
[1,R]M[1,R])

−1M ′
[1,R]V

−1
[1,R]φ[1,R](O, β

0
[1,R])

will satisfy (10) and hence belong in T if we can show that:

0 = B[1,R]E

[
m

{
R∑

r=1

(E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)
+ E[m|T1]

}′

V −1
[1,R]M[1,R](M

′
[1,R]V

−1
[1,R]M[1,R])

−1

]
.

Now, recalling that B[1,R] :=
(
Idβ −M[1,R]

(
AM[1,R]

)−1
A
)
, it follows that the above equation

11



will hold if:

E

[
m

{
R∑

r=1

(E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)
+ E[m|Ta]

}′]
= V[1,R],

which it is easy to see is true by following the same steps (but more easily) as done for the

case a = b. Therefore, we have now established that for both cases a = b and a = 1, b = R,

the influence function −Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]φ[a,b](O; β

0
[a,b]) belong in the tangent set T . Therefore,

−Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]φ[a,b](O; β

0
[a,b]) is the efficient influence function and hence the expectation

of its outer-product gives the inverse efficiency bound Ω−1
[a,b].

Proof of Proposition 3: The pathwise derivative condition for this result was verified in

Chaudhuri (2020) for the just identified case and applies equally well to the over identified

case (similar to what we saw in the proof of Proposition 2). Therefore, we only focus on

characterizing the additional restrictions on the tangent set imposed by over identification,

and showing that the claimed influence function satisfies those restrictions and thus is the

efficient influence function. We hope that it will be clear along the process that the method

in Section 3.2 to obtain the additional restrictions, is general enough to obtain the additional

restriction on a tangent set that are imposed by over identification in other models too.

Proceeding exactly as in Section 3.2 but, importantly, reflecting the fact that P (C =

r|Z1, . . . , Zr) is known, write the log of the distribution of O in terms of (C,Z ′)′ for a regular

parametric sub-model indexed by η as (η was θ and Zr was Z(r) in Chaudhuri (2020)):

log fη(O) = log fη(Z1)+
R∑

r=2

I(C ≥ r) log fη(Zr|Z1, . . . , Zr−1)+
R∑

r=1

I(C = r) logP (C = r|Z1, . . . , Zr)

and the score function with respect to η as:

Sη(O) = sη(Z1) +
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1)

where sη(Z1) := ∂
∂η

log fη(Z1), and sη(Zr|Z1, . . . , Zr−1) := ∂
∂η

log fη(Zr|Z1, . . . , Zr−1) for

12



r = 2, . . . , R. The tangent set is the mean square closure of all dβ dimensional linear

combinations of Sη(O) for all such smooth parametric sub-models, and it can be generically

defined as:

T := ν1(Z1) +
R∑

r=2

I(C ≥ r)νr(Z1, . . . , Zr), (33)

where ν1(Z1) ∈ L2
0(F (Z1)) and νr(Z1, . . . , Zr) ∈ L2

0(F (Zr|Z1, . . . , Zr−1)) for r = 2, . . . , R.

We will proceed as before, but maintain that P (C = r|Z1, . . . , Zr) is known, to obtain

the additional restrictions on T due to over identification. The moment restrictions in (12)

give the following identity in η for a given λ:

0 ≡ Eη[m(Z; β0
λ)|C ∈ λ] ≡ Eη

[
P (C ∈ λ|Z)
P (a ≤ C ≤ b)

m(Z; β0
λ)

]
.

Differentiate it with respect to η under the integral at η = η0, and use (1) and (12) to get:

0 =Mλ
∂β0

λ(η0)

∂η′
+ E

[
m(Z; β0

λ)s(Z)
′∣∣C ∈ λ

]
(34)

where s(Z) := s(Z1) +
∑R

r=2 s(Zr|Tr−1) (with abuse, we briefly revert to the Tr notation for

brevity). Now, we note that (12) also gives the following identity in η for given λ:

0 ≡ AEη[m(Z; β0
λ)|C ∈ λ] ≡ AEη

[
P (C ∈ λ|Z)
P (C ∈ λ)

m(Z; β0
λ)

]

for any A that is a full row rank dβ × dm matrix such that AMλ is nonsingular. Then, as

before, solving for
∂β0

λ(η0)

∂η′
, we obtain that:

∂β0
λ(η0)

∂η′
= − (AMλ)

−1AE
[
m(Z; β0

λ)s(Z)
′∣∣C ∈ λ

]
,

which when substituted for in (34) gives (noting that s(Z) := s(Z1) +
∑R

r=2 s(Zr|Tr−1)):

0 =
(
Idβ −Mλ (AMλ)

−1A
)
E

[
m(Z; β0

λ)

{
s(Z1) +

R∑
r=2

s(Zr|Tr−1)

}′∣∣∣∣∣C ∈ λ

]
.
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While this is trivially true under just identification, in the case of over identification it implies

that the tangent set T in (33) must satisfy the additional restrictions that

0 =
(
Idβ −Mλ (AMλ)

−1A
)
E

[
m(Z; β0

λ)

{
ν(Z1) +

R∑
r=2

ν(Z1, . . . , Zr)

}′∣∣∣∣∣C ∈ λ

]
. (35)

Matching terms of −Ω̄−1
λ M ′

λV̄
−1
λ φ̄λ(O; β

0
[a,b]) with that of T where the term involving φ̄1,λ

is matched to ν1(Z1) and the terms involving 1
P (C≥r|Tr−1)

(φ̄r,λ − φ̄r−1,λ) are matched to

νr(Z1, . . . , Zr) for r = 2, . . . , R, we can say that −Ω̄−1
λ M ′

λV̄
−1
λ φ̄λ(O; β

0
[a,b]) ∈ T if additionally

0 =
(
Idβ −Mλ (AMλ)

−1A
)
E

[
m(Z; β0

λ)

{
φ̄1,λ +

R∑
r=2

(φ̄r,λ − φ̄r−1,λ)

P (C ≥ r|Tr−1)

}′

V̄ −1
λ MλΩ̄

−1
λ

∣∣∣∣∣C ∈ λ

]

which is true since we can easily see that, by repeatedly using (1) and the law of iterated

expectations, we can write V̄λ := E
[
φ̄λ(O; β

0
[a,b])φ̄λ(O; β

0
[a,b])

′
]
as:

V̄λ =
R∑

r=2

E

[
(φ̄r,λ − φ̄r−1,λ) (φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
φ̄1,λφ̄

′
1,λ

]
=

R∑
r=2

E

[
φ̄r,λ (φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
φ̄1,λφ̄

′
1,λ

]
=

R∑
r=2

E

[
E

[
P (C ∈ λ|Tr)
P (C ∈ λ)

m

∣∣∣∣Tr] (φ̄r,λ − φ̄r−1,λ)
′

P (C ≥ r|Tr−1)

]
+ E

[
E

[
P (C ∈ λ|T1)
P (C ∈ λ)

m

∣∣∣∣T1] φ̄′
1,λ

]

=
R∑

r=2

E

[
P (C ∈ λ|Tr)
P (C ∈ λ)

m
(φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
P (C ∈ λ|T1)
P (C ∈ λ)

mφ̄′
1,λ

]

=
R∑

r=2

E

[
I(C ∈ λ)

P (C ∈ λ)
m
(φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
I(C ∈ λ)

P (C ∈ λ)
mφ̄′

1,λ

]

= E

[
m(Z; β0

λ)

{
φ̄1,λ +

R∑
r=2

(φ̄r,λ − φ̄r−1,λ)

P (C ≥ r|Tr−1)

}′∣∣∣∣∣C ∈ λ

]
.

Proof of Proposition 4: The pathwise derivative condition for this result was verified in

Chaudhuri (2020) for the just identified case and applies equally well to the over identified

case (similar to that in the proof of Proposition 2). Therefore, we only focus on characterizing
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the additional restrictions on the tangent set imposed by over identification, and showing that

the claimed influence function satisfies those restrictions and thus is the efficient influence

function. Proceeding as in Section 3.2 but imposing (13), write the log of the distribution

of O in terms of (C,Z ′)′ for a regular parametric sub-model indexed by η as:

log fη(O) = log fη(Z1)+
R∑

r=2

I(C ≥ r) log fη(Zr|Z1, . . . , Zr−1)+
R∑

r=1

I(C = r) logP (C = r|Z1)

and the score function with respect to η as:

Sη(O) = sη(Z1) +
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1) +
R∑

r=1

I(C = r)
Ṗη(C = r|Z1)

Pη(C = r|Z1)

where sη(Z1) := ∂
∂η

log fη(Z1), sη(Zr|Z1, . . . , Zr−1) := ∂
∂η

log fη(Zr|Z1, . . . , Zr−1) for r =

2, . . . , R, and Ṗη(C = r|Z1) := ∂
∂η
Pη(C = r|Z1) for r = 1, . . . , R. We will actually use an

apparently cumbersome but ultimately more convenient representation of the score function

by using the two equivalent factorizations of the joint distribution of I(C ∈ λ) and Z1:

sη(Z1) + I(C ∈ λ)
Ṗη(C ∈ λ|Z1)

Pη(C ∈ λ|Z1)
+ I(C /∈ λ)

Ṗη(C /∈ λ|Z1)

Pη(C /∈ λ|Z1)

= I(C ∈ λ)

[
Ṗη(C ∈ λ)

Pη(C ∈ λ)
+ sη(Z1|C ∈ λ)

]
+ I(C /∈ λ)

[
Ṗη(C /∈ λ)

Pη(C /∈ λ)
+ sη(Z1|C /∈ λ)

]
(36)

where sη(Z1|C ∈ λ) := ∂
∂η

log fη(Z1|C ∈ λ), sη(Z1|C /∈ λ) := ∂
∂η

log fη(Z1|C /∈ λ), Ṗη(C ∈

λ|Z1) :=
∂
∂η
Pη(C ∈ λ|Z1) =: −Ṗη(C /∈ λ|Z1) and Ṗη(C ∈ λ) := ∂

∂η
Pη(C ∈ λ) =: −Ṗη(C /∈ λ).

Then substituting for sη(Z1) in Sη(O) we obtain the cumbersome but useful expression:

Sη(O) = I(C ∈ λ)

[
Ṗη(C ∈ λ)

Pη(C ∈ λ)
+ sη(Z1|C ∈ λ)− Ṗη(C ∈ λ|Z1)

Pη(C ∈ λ|Z1)

]

+I(C /∈ λ)

[
Ṗη(C ∈ λ)

Pη(C ∈ λ)− 1
+ sη(Z1|C /∈ λ)− Ṗη(C ∈ λ|Z1)

Pη(C ∈ λ|Z1)− 1

]

+
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1) +
R∑

r=1

I(C = r)
Ṗη(C = r|Z1)

Pη(C = r|Z1)
.
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Hence the representation of the tangent set that we will consider is:

T := I(C ∈ λ)

[
a

b
+ µ1(Z1, C ∈ λ)− a(Z1)

b(Z1)

]
+ I(C /∈ λ)

[
a

b− 1
+ µ2(Z1, C /∈ λ)− a(Z1)

b(Z1)− 1

]
+

R∑
r=2

I(C ≥ r)νr(Z1, . . . , Zr) +
R∑

r=1

I(C = r)ωr(Z1), (37)

where a and b ∈ (0, 1) are constants; a(z1) and b(Z1) are such that a(Z1)/b(Z1) and

a(Z1)/(b(Z1) − 1) are square integrable functions of Z1; µ1(Z1, C ∈ λ) ∈ L2
0(F (Z1|C ∈ λ))

and µ2(Z1, C /∈ λ) ∈ L2
0(F (Z1|C /∈ λ)); and the terms described so far satisfy the restric-

tion that the first line on the RHS of (37) is L2
0(F (Z1)) (since it represents s(Z1)); whereas

νr(Z1, . . . , Zr) ∈ L2
0(F (Zr|Z1, . . . , Zr−1)) for r = 2, . . . , R, and ωr(Z1) is any square inte-

grable function of Z1 for r = 1, . . . , R. To obtain the additional restrictions due to over

identification of β0
λ, we write

(
Idβ −Mλ (AMλ)

−1A
)
as Bλ for brevity, and then imposing

CMAR in (13) we arrive at the counterpart of (9) for a given λ as:

0 = BλE

[
m(Z; β0

λ)

{
s(Z1) +

R∑
r=2

s(Zr|Tr−1) +
Ṗ (C ∈ λ|Z1)

P (C ∈ λ|Z1)

}′∣∣∣∣∣C ∈ λ

]

which gives the additional restrictions on T in (37) as:

0 = Bλ

{
E

[
m(Z; β0

λ)
R∑

r=2

νr(Z1, . . . , Zr)
′

∣∣∣∣∣C ∈ λ

]
+ E

[
m(Z; β0

λ)
I(C ∈ λ)

P (C ∈ λ)

{
s(Z1) +

Ṗ (C ∈ λ|Z1)

P (C ∈ λ|Z1)

}′]}
.

Substitute for I(C ∈ λ)
{
s(Z1) + Ṗ (C ∈ λ|Z1)/P (C ∈ λ|Z1)

}
from (36) to get:

0 = BλE

[
m

R∑
r=2

νr(Z1, . . . , Zr)
′

∣∣∣∣∣C ∈ λ

]
+BλE

[
m
I(C ∈ λ)

P (C ∈ λ)

{
s(Z1|C ∈ λ) +

Ṗ (C ∈ λ)

P (C ∈ λ)

}′]

= BλE

[
m

R∑
r=2

νr(Z1, . . . , Zr)
′

∣∣∣∣∣C ∈ λ

]
+BλE

[
m
I(C ∈ λ)

P (C ∈ λ)
s(Z1|C ∈ λ)′

]
(38)

using the moment restrictions in (12). (We are writing m(Z; β0
λ) as m for brevity.) Hence,
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over identification of β0
λ imposes the additional restrictions (38) on T in (37).

Now, match the terms of −
[
ΩCMAR

λ

]−1
M ′

λ

[
V CMAR
λ

]−1
φCMAR
λ (O; β0

[a,b]) with the terms

of T as follows. The terms involving P (C∈λ|T1)
P (C≥r|Tr−1)P (C∈λ) (E[m|Tr]− E[m|Tr−1]) are matched

to νr(Z1, . . . , Zr) for r = 2, . . . , R. The term involving I(C∈λ)
P (C∈λ)E[m|T1] is matched to I(C ∈

λ)s(Z(1)|C ∈ λ). The other terms in T are matched to zeros. Therefore, the influence

function
[
ΩCMAR

λ

]−1
M ′

λ

[
V CMAR
λ

]−1
φCMAR
λ (O; β0

[a,b]) will belong in T and hence will be the

efficient influence function if additionally:

0 = Bλ

{
E

[
m

R∑
r=2

P (C ∈ λ|T1)
P (C ≥ r|Tr−1)P (C ∈ λ)

(E[m|Tr]− E[m|Tr−1])
′

∣∣∣∣∣C ∈ λ

]

+ E

[
m

I(C ∈ λ)

P 2(C ∈ λ)
E[m|T1]′

]} [
V CMAR
λ

]−1
Mλ

[
ΩCMAR

λ

]−1

i.e., if:

V CMAR
λ = E

[
m

R∑
r=2

P 2(C ∈ λ|T1)
P (C ≥ r|Tr−1)P 2(C ∈ λ)

(E[m|Tr]− E[m|Tr−1])
′

]
+ E

[
m

I(C ∈ λ)

P 2(C ∈ λ)
E[m|T1]′

]
,

which it can be seen is true by writing out the expression for V CMAR
λ := V ar(φCMAR

λ (O; β0
λ))

and then using CMAR in (13) and the law of iterated expectations as in the last proof.

Proof of Lemma 5: Note that:

ωIPW
[a,b] :=

I(C = R)∏R−1
r=1 (1− P (C = r|Tr, C ≥ r))

∑b
j=a P (C = j|Tj, C ≥ j)

∏j−1
k=1(1− P (C = k|Tk, C ≥ k))

P (a ≤ C ≤ b)

=
b∑

j=a

I(C = R)∏R−1
r=1 (1− P (C = r|Tr, C ≥ r))

P (C = j|Tj, C ≥ j)
∏j−1

k=1(1− P (C = k|Tk, C ≥ k))

P (a ≤ C ≤ b)

=
b∑

j=a

I(C = R)

P (C = R|TR)
P (C = j|Tj)
P (a ≤ C ≤ b)

[
=

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)

I(C = R)

P (C = R|TR)
P (C = j|Tj)
P (C = j)

]

=
b∑

j=a

I(C = R)

P (C = R|TR)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

=
b∑

j=a

I(C = R)

P (C = R|TR)
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

where the last two equalities follow by (1). Therefore, since Z ≡ TR, it follows by using the
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law of iterated expectations in the second and third equalities below, that:

E
[
ωIPW
[a,b] m(Z; β)

]
= E

[
I(C = R)

P (C = R|TR)
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

m(TR; β)

]
= E

[
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

m(TR; β)

]
= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
m(TR; β)

]
= E[m(Z; β)|a ≤ C ≤ b].

Proof of Proposition 6: (i) will follow if Condition 1 of Ackerberg et al. (2014) holds.

Our assumptions A1 and A3 directly imply Condition 1(i) and 1(ii) hold. Furthermore,

Condition 1(iii) also holds by virtue of our assumption A2 because for any r = a, . . . , R− 1:

∂

∂pr(Tr)
E [I(C ≥ r) {I(C = r)− pr(Tr)} |Tr] = −P (C ≥ r|Tr) ̸= 0 a.s. Tr.

Before proceeding further, we note using the expression in (5) and Lemma 5 that:

I(C = R)ωIPW
[a,b] m(Z; β) =

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
I(C = R)ωIPW

[j,j] m(Z; β); (39)

and hence for the sake of a cleaner proof it is useful to work on:

I(C = R)ωIPW
[j,j] m(Z; β) where ωIPW

[j,j] =
P (C = j|Tj, C ≥ j)

P (C = j)
∏R−1

k=j [1− P (C = k|Tk, C ≥ k)]

and then combine the results based on the weights P (C = j)/P (a ≤ C ≤ b).

For any j = a, . . . , b replace P (C = r|Tr, C ≥ r) by hj,r(Tr) := 1/(1 − pr(Tr)) for

r = j + 1, . . . , R − 1 and P (C = j|Tj, C ≥ j) by hj,j(Tj) := pj(Tj)/(1 − pj(Tj)) in ω
IPW
[j,j] to

define (the reason behind the double subscript j, r in h will be clear soon):

ϕ[j,j](C, TR; β, hj,j(Tj), . . . , hj,R−1(TR−1)) := I(C = R)

∏R−1
k=j hj,k(Tj)

P (C = j)
m(TR; β). (40)
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Let h0j,r(Tr) := 1/(1 − P (C = r|Tr, C ≥ r)) for r = j + 1, . . . , R − 1 and h0j,j(Tj) = P (C =

j|Tj, C ≥ j)/(1−P (C = j|Tj, C ≥ j)). Then, trivially
∂E[ϕ[j,j](C,TR;β,h0

j,j(Tj),...,h
0
j,R−1(TR−1))]

∂hj,r
[.] is

a linear functional for r = j, . . . , R−1. We maintain the assumption that it is also a bounded

functional as defined in Ackerberg et al. (2014). (The boundedness is maintained as a high

level assumption since under our assumption A2 it can hold in various ways depending on the

interplay between the E[m|Tr]’s and the conditional hazards; e.g., taking j = 1, R = 2, we

can see that
∂E[ϕ[1,1](C,T2;β,h1,1)]

∂h1,1
= E[P (C = 2|T1)m(Z; β0

[1,R])/P (C = 1)].) Thus, Condition

1(iv) of Ackerberg et al. (2014) also holds under our maintained assumptions. However, our

interest is not always on a unitary sub-population [j, j] but more generally on [a, b], and for

that we know from (39) that we should be looking at:

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ[j,j](C, TR; β, hj,j(Tj), . . . , hj,R−1(TR−1)).

Before proceeding further we remark here about the double subscript in h. We redefined

the nuisance parameters as h to make the functionals linear in h. However, the h’s that

enter the above linear combination are not unique — ha,k(Tk) = . . . = hk−1,k(Tk) for any

k = a+ 1, . . . , b and ha,k(Tk) = . . . = hk−1,k(Tk) for any k = b+ 1, . . . , R − 1, while hj,k(Tk)

appearing in ϕ[j,j](.) and hk,k(Tk) appearing in ϕ[k,k](.) for k = j+1, . . . , b and j = a . . . , b−1

both depend on pk(Tk) only but in different ways. Pretending that the h’s are distinct does

not cause any problem, not even with the invertibility in Condition 1(iii) of Ackerberg et al.

(2014) since that will lead to a diagonal matrix (and it will be important to keep this last

statement in mind for the proof of part (ii)). Therefore if Condition 1 of Ackerberg et al.

(2014) holds for ϕ[j,j](.) for j = a, . . . , b, which we have already shown, then it also holds for

the above linear combination those ϕ[j,j](.) ’s. This completes the proof of part (i).

(ii) It is straightforward to see that:

E

[
∂

∂β′

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ[j,j](C, TR; β

0
[a,b], hj,j(Tj), . . . , hj,R−1(TR−1))

]
=M[a,b].
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Hence, we know from Theorem 1 of Ackerberg et al. (2014) that the efficiency bound for

β0
[a,b] based on the information contained in only the moment restrictions in part (i) is:

Ω̃[a,b] :=M ′
[a,b]

[
V ar

(
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j(Tj), . . . , h

0
j,R−1(TR−1))

)]−1

M[a,b]

(41)

where, writing (hj,j(Tj), . . . , hj,R−1(TR−1)) as hj,j:R−1(TR−1) and its true value as h0j,j:R−1(TR−1):

ϕ̃[j,j](C, TR; β, hj,j:R−1(TR−1)) := ϕ[j,j](C, TR; β, hj,j:R−1(TR−1))−
R−1∑
k=j

D0
j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, hj,k(Tk))

(42)

and where D0
j,k(Tk; β), S

0
j,k(Tk) and sj,k(C, Tk, hj,k(Tk)) are as follows. For j = a, . . . , b:

sj,k(C, Tk, hj,k(Tk)) := I(C ≥ k)

[
I(C = k)− hj,k(Tk)− 1

hj,k(Tk)

]
for k = j + 1, . . . , R− 1

:= I(C ≥ k)

[
I(C = k)− hj,k(Tk)

1 + hj,k(Tk)

]
for k = j

whereas for j = a, . . . , b and k = j, . . . , R− 1:

S0
j,k(Tk) :=

∂E[sj,k(C, Tk, h
0
j,k(Tk))]

∂hj,k
= −P (C ≥ |k|Tk) (1− P (C = k|Tk, C ≥ k))2 .

D0
j,k(Tk; β)vj,k(Tk) is the pathwise derivative of E[ϕ[j,j](C, TR; β, hj,j:R−1(TR−1))|Tk] with re-

spect to hj,k(Tk) in the direction vj,k(Tk) ∈ Hj,k(Tk)−{h0j,k(Tk)} (where Hj,k(Tk) is the func-

tion space for hj,k(Tk)) evaluated at h0j,j:R−1(TR−1), i.e., for j = a, . . . , b and k = j, . . . , R−1:

D0
j,k(Tk; β)vj,k(Tk) =

∂E[ϕ[j,j](C, TR; β, h
0
j,j:R−1(TR−1))|Tk]

∂hj,k
[vj,k].

First, note that:

D0
j,k(Tk; β) = E

[{ ∏
r=j,...,R−1;r ̸=k

hj,r(Tr)

}
I(C = R)

m(Z; β)

P (C = j)

∣∣∣∣∣Tk
]
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i.e., for k = j + 1, . . . , R− 1:

D0
j,k(Tk; β) = E

[{
R−1∏
r=j

hj,r(Tr)

}
I(C = R)

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣∣Tk
]

= E

[
I(C = R)P (C = j|Tj, C ≥ j)∏R−1
r=j (1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣∣Tk
]

= E

[
I(C = R)P (C = j|Tj, C ≥ j)

∏j−1
r=1(1− P (C = r|Tr, C ≥ r))∏R−1

r=1 (1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣∣Tk
]

= E

[
I(C = R)P (C = j|Tj)

P (C = R|TR−1)

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣Tk]
= E

[
m(Z; β)P (C = j|Tj)
P (C = j)hj,k(Tk)

∣∣∣∣Tk]
=

E[m(Z; β)|Tk]P (C = j|Tj)(1− P (C = k|Tk, C ≥ k))

P (C = j)

where the second last equality follows by (1) and the law of iterated expectations, whereas:

D0
j,j(Tj; β) = E

[{
R−1∏

r=j+1

hj,r(Tr)

}
I(C = R)

m(Z; β)

P (C = j)

∣∣∣∣∣Tj
]

= E

[
I(C = R)∏R−1

r=j+1(1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)

∣∣∣∣∣Tj
]

= E

[
I(C = R)

∏j
r=1(1− P (C = r|Tr, C ≥ r))∏R−1

r=1 (1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)

∣∣∣∣∣Tj
]

= E

[
I(C = R)P (C ≥ j + 1|Tj)

P (C = R|TR−1)

m(Z; β)

P (C = j)

∣∣∣∣Tj]
= E

[
P (C ≥ j + 1|Tj)

m(Z; β)

P (C = j)

∣∣∣∣Tj]
=

E[m(Z; β)|Tj]P (C ≥ j + 1|Tj)
P (C = j)

where, as before, the second last equality follows by (1) and the law of iterated expectations.

Plugging them in (42) at β0
[a,b], h

0
j,j:R−1(TR−1) gives:

ϕ̃[j,j](C, TR; β
0
[a,b], h

0
j,j:R−1(TR−1)) = ϕ[j,j](C, TR; β

0
[a,b], h

0
j,j:R−1(TR−1))−

R−1∑
k=j

D0
j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, h
0
j,k(Tk))
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where, writing m(Z; β0
[a,b]) as m for brevity, the RHS of the above equation is:

I(C = R)ωIPW
[j,j] m−

R−1∑
k=j+1

D0
j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, h
0
j,k(Tk))−

D0
j,j(Tk; β)

S0
j,j(Tk)

sj,j(C, Tk, h
0
j,j(Tj))

= φ[j,j](O; β
0
[a,b]) (43)

by (6) because we know from the above calculations that for k = j + 1, . . . , R− 1:

−
D0

j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, h
0
j,k(Tk))

=
E[m|Tk]P (C=j|Tj)

P (C=j)
(1− P (C = k|Tk, C ≥ k))

P (C ≥ k|Tk)(1− P (C = k|Tk, C ≥ k))2
[I(C = k)− I(C ≥ k)P (C = k|Tk, C ≥ k)]

=
E[m|Tk]P (C=j|Tj)

P (C=j)

P (C ≥ k|Tk)(1− P (C = k|Tk, C ≥ k))
[I(C ≥ k)− I(C ≥ k + 1)− I(C ≥ k)P (C = k|Tk, C ≥ k)]

=

[
I(C ≥ k)

P (C ≥ k|Tk)
− I(C ≥ k + 1)

P (C ≥ k|Tk)(1− P (C = k|Tk, C ≥ k))

]
P (C = j|Tj)
P (C = j)

E[m|Tj]

=

[
I(C ≥ k)

P (C ≥ k|Tk)
− I(C ≥ k + 1)

P (C ≥ k + 1|Tk)

]
P (C = j|Tj)
P (C = j)

E[m|Tj]

=

[
I(C ≥ k)

P (C ≥ k|Tk−1)
− I(C ≥ k + 1)

P (C ≥ k + 1|Tk)

]
P (C = j|Tj)
P (C = j)

E[m|Tj] [by Lemma 8]

whereas for k = j:

−
D0

j,j(Tj; β)

S0
j,j(Tj)

sj,j(C, Tj, h
0
j,j(Tj))

=
E[m|Tj]P (C≥j+1|Tj)

P (C=j)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))2
[I(C = j)− I(C ≥ j)P (C = j|Tj, C ≥ j)]

=
E[m|Tj]P (C≥j+1|Tj)

P (C=j)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))2
[I(C = j)− {I(C = j) + I(C ≥ j + 1)}P (C = j|Tj, C ≥ j)]

=

[
I(C = j)P (C ≥ j + 1|Tj)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))
− I(C ≥ j + 1)P (C ≥ j + 1|Tj)P (C = j|Tj, C ≥ j)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))2

]
E[m|Tj]
P (C = j)

=

I(C = j)P (C ≥ j + 1|Tj)
P (C ≥ j + 1|Tj)

−
I(C ≥ j + 1)P (C ≥ j + 1|Tj)P (C=j|Tj)

P (C≥j|Tj)

P (C ≥ j + 1|Tj)P (C≥j|Tj)−P (C=j|Tj)

P (C≥j|Tj)

 E[m|Tj]
P (C = j)

=

[
I(C = j)− I(C ≥ j + 1)

P (C = j|Tj)
P (C ≥ j + 1|Tj)

]
E[m|Tj]
P (C = j)

.
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Therefore, using (43) and (6) for the first equality and then (3) for the second, imply that:

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j:R−1(TR−1)) =

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
φ[j,j](O; β

0
[a,b]) = φ[a,b](O; β

0
[a,b]).

Hence, by (41) we obtain that Ω̃[a,b] = Ω[a,b] as defined in Proposition 2.

Proof of Lemma 7: (i) The equivalence of the limited and full information approach here

follows exactly as in part (i) of Proposition 6, with the only change that the conditional

hazards are all now conditioned on T1 only. Consequently, the influence function in part (i)

will take a different form here, and for the rest of the proof of part (i) we derive that form.

To avoid introducing new notation we follow the notation from the last proposition as much

as we can. We know from Theorem 1 of Ackerberg et al. (2014) that the efficiency bound

for β0
[a,b] based on the information contained only in the moment restrictions in part (i) is:

M ′
[a,b]

[
V ar

(
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j(T1), . . . , h

0
j,R−1(T1))

)]−1

M[a,b]

where, writing (hj,j(T1), . . . , hj,R−1(T1)) as hj,j:R−1(T1) and its true value as h0j,j:R−1(T1):

ϕ̃[j,j](C, TR; β, hj,j:R−1(T1)) := ϕ[j,j](C, TR; β, hj,j:R−1(T1))−
R−1∑
k=j

D0
j,k(T1; β)

S0
j,k(T1)

sj,k(C, T1, hj,k(T1))

ϕ[j,j](C, TR; β, hj,j:R−1(T1)) := I(C = R)

∏R−1
k=j hj,k(T1)

P (C = j)
m(TR; β)

sj,k(C, T1, hj,k(T1)) := I(C ≥ k)

[
I(C = k)− hj,k(T1)− 1

hj,k(T1)

]
for k = j + 1, . . . , R− 1

:= I(C ≥ k)

[
I(C = k)− hj,k(T1)

1 + hj,k(T1)

]
for k = j

S0
j,k(T1) :=

∂E[sj,k(C, T1, h
0
j,k(T1))]

∂hj,1
= −P (C ≥ |k|T1) (1− P (C = k|T1, C ≥ k))2

for j = a, . . . , b and k = j, . . . , R − 1. D0
j,k(T1; β)vj,k(T1) is the pathwise derivative of

E[ϕ[j,j](C, TR; β, hj,j:R−1(T1))|T1] with respect to hj,k(T1) in the direction vj,k(T1) ∈ Hj,k(T1)−
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{h0j,k(T1)} (where Hj,k(T1) is the function space for hj,k(T1)) evaluated at h0j,j:R−1(T1), i.e.,

D0
j,k(T1; β)vj,k(T1) =

∂E[ϕ[j,j](C, TR; β, h
0
j,j:R−1(T1))|T1]

∂hj,k
[vj,k] for j = a, . . . , b and k = j, . . . , R− 1.

Therefore, just like before (but now with conditioning set T1 for all terms):

D0
j,k(T1; β) =

E[m(Z; β)|T1]P (C = j|T1)(1− P (C = k|T1, C ≥ k))

P (C = j)
for k = j + 1, . . . , R− 1,

D0
j,j(T1; β) =

E[m(Z; β)|T1]P (C ≥ j + 1|T1)
P (C = j)

,

and hence for k = j + 1, . . . , R− 1:

−
D0

j,k(T1; β)

S0
j,k(T1)

sj,k(C, T1, h
0
j,k(T1)) =

[
I(C ≥ k)

P (C ≥ k|T1)
− I(C ≥ k + 1)

P (C ≥ k + 1|T1)

]
P (C = j|T1)
P (C = j)

E[m|T1]

whereas for k = j:

−
D0

j,j(T1; β)

S0
j,j(T1)

sj,j(C, T1, h
0
j,j(T1)) =

[
I(C = j)− I(C ≥ j + 1)

P (C = j|T1)
P (C ≥ j + 1|T1)

]
E[m|T1]
P (C = j)

,

and therefore:

−
R−1∑
k=j

D0
j,k(T1; β)

S0
j,k(T1)

sj,k(C, T1, h
0
j,k(T1)) =

{
I(C = j)

P (C = j)
− I(C = R)

P (C = R|T1)
P (C = j|T1)
P (C = j)

}
E[m|T1],

which gives:

ϕ̃[j,j](C, TR; β
0
[a,b], h

0
j,j:R−1(T1))

=
I(C = R)

P (C = R|T1)
P (C = j|T1)
P (C = j)

m+

{
I(C = j)

P (C = j)
− I(C = R)

P (C = R|T1)
P (C = j|T1)
P (C = j)

}
E[m|T1].

Therefore,
n∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j:R−1(T1)) = φ†

[a,b].
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Adding and subtracting the same terms to φ†
[a,b] in order to match φCMAR(O; β0

[a,b]) from

Proposition 4, we obtain:

φ†
[a,b] =

R∑
r=2

I(C ≥ R)

P (C ≥ R|T1)
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])

+

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
−
(

I(C ≥ R)

P (C ≥ R|T1)
− I(C ≥ R)

P (C ≥ R|T1)

)
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

]
E[m|T1]

=
R∑

r=2

I(C ≥ R)

P (C ≥ R|T1)
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) +
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
E[m|T1].

(ii) Taking variance, we obtain:

V †
[a,b] =

R∑
r=2

E

[
P 2(a ≤ C ≤ b|T1)

P (C ≥ R|T1)P 2(a ≤ C ≤ b)
V ar (E[m|Tr]|Tr−1)

]
+ E

[
I(a ≤ C ≤ b)

P 2(a ≤ C ≤ b)
E[m|T1]E ′[m|T1]

]

whereas we know from Proposition 4 that:

V CMAR
[a,b] =

R∑
r=2

E

[
P 2(a ≤ C ≤ b|T1)

P (C ≥ r|T1)P 2(a ≤ C ≤ b)
V ar (E[m|Tr]|Tr−1)

]
+ E

[
I(a ≤ C ≤ b)

P 2(a ≤ C ≤ b)
E[m|T1]E ′[m|T1]

]
.

Therefore, we obtain that V †
[a,b] − V CMAR

[a,b] is:

R∑
r=2

E

[
P 2(a ≤ C ≤ b|T1)
P 2(a ≤ C ≤ b)

[
1

P (C ≥ R|T1)
− 1

P (C ≥ r|T1)

]
V ar (E[m|Tr]|Tr−1)

]

=
R∑

r=2

E

[
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

[
1

P (C ≥ R|T1)
− 1

P (C ≥ r|T1)

]
V ar (E[m|Tr]|Tr−1)

∣∣∣∣ a ≤ C ≤ b

]
,

which is positive semi-definite by construction.

Remark: The results also hold if the moment restrictions in Lemma 7(i) are replaced by:

E

[
I(C = R)

pR(T1)

p[a,b](T1)

P (a ≤ C ≤ b)
m(Z; β)

]
= 0 and E


 I(C = R)− pR(T1)

I(a ≤ C ≤ b)− p[a,b](T1)


∣∣∣∣∣∣∣T1
 = 0

almost surely T1. This representation is also usable in practice since T1 is always observed.
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B Supplemental Appendix B: Monte Carlo experiment

We will now study the small-sample properties of our proposed estimator EFF and inference

based on it for estimands that are similar to those considered in our empirical illustration.

B.1 Simulation design

We will consider a setup reflecting the individual’s decision to stay or leave dynamically

over periods from programs (e.g., smoking cessation, weight loss), school, job, marriage,

experiments, surveys, market, etc. We model this decision to leave after any period as a

simple comparison between the individual’s expectation of the outcome and their actual

outcome after that period. Accordingly, we will consider an R-period program where Yr is

the outcome from staying until the end of the r-th period for r = 1, . . . , R in the program.

We will assume that this outcome is generated as follows. For t = 1, . . . , T , let:

Yt = |Yt−1|+ Yt−2 +Xt + et, where Xt = Xt−1 + vt.

et and vt are the model errors.20 Take X0, Y−1, Y0 independently N(1, 1) as the initial state.

Our analysis below is not conditional on the initial state, but this could be done. We will take

R = T = 3, and let Xr be the other observed variables for the r-th period for r = 1, . . . , R.

Let the individual’s expectation for the outcome in the r-th period be Y ∗
r . Suppose that

the individual decides to leave the program at the end of the r-th period, conditional on

staying until then, if and only if the actual outcome exceeds the expectation, i.e., Y ∗
r < Yr.

In other words, let the decision to leave at the end of period r be represented by:

I(C = r) = I(Y ∗
r < Yr)

r−1∏
j=1

I(Y ∗
j ≥ Yj) for r = 1, . . . , R− 1

whereas the decision to never leave be represented by I(C = R) = 1−
∑R−1

r=1 I(C = r).

The researcher observes C but not Y ∗
r . This means that Z1 = (Y−1, Y0, Y1, X−1, X0, X1)

′,

20Estimation of regression coefficients in the case of attrition under some form of MAR in dynamic panel
data models with fixed effects has been studied in, e.g., Abrevaya (2019).
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Z2 = (Y2, X2)
′ and Z3 = (Y3, X3)

′ in our notation. So, the observables are T1 = Z1, T2 =

(Z ′
1, Z

′
2)

′ and T3 = (Z ′
1, Z

′
2, Z

′
3)

′ for those with C = 1, C = 2 and C = 3 respectively.

Our distributional assumptions on the data generating process (DGP) are as follows. et

and vt are i.i.d. N(0, 1) for all t. ur := Y ∗
r − Yr is i.i.d. N(0, 7) for all r. We stipulate a

rather large variance for ur to abstract away from limited overlap. MAR in (1) is imposed

by maintaining that et, vt, ur, X0, Y−1, Y0 are mutually independent for all t, r. This results

in roughly 62% of the individuals with C = 1, 23% with C = 2, and 15% with C = 3.

There are six different targets [a, b] = [1, 3], [1, 1], [2, 2], [3, 3], [1, 2] and [2, 3] that our

theoretical results can accommodate for, and we have simulation results for all of them. For

brevity, however, we will focus here on [a, b] = [1, 3], [1, 1] and [2, 2, ]. ([3, 3] is the complete

case and is trivial whereas the results for [1, 2] and [2, 3] are similar to those reported here.)

To define β0
[a,b], we take the moment function in (2) as m(Z; β) = Y3−β and consider the

three targets [a, b] = [1, 3], [1, 1] and [2, 2] giving three parameters of interest. These target

parameters are purposely defined similarly to the estimands in our empirical illustration.

We compute the “true value” of these target parameters numerically by generating data

from the above DGP with sample size 10 million, estimating the mean of Y3 for each sub-

population, and then averaging each mean over 10,000 Monte Carlo trials. Consequently,

the three target “true values” are: β0
[1,3] = 9.6162, β0

[1,1] = 10.5232 and β0
[2,2] = 8.9914. As

evident from Table 5, the error in this approximation is of a rather small order to seriously

affect our subsequent analysis that is based on far smaller (than 10 million) sample size.

Target Descriptive Statistics
[a, b] for β Mean Std Median IQR Min Max

[1, 3] 9.6162 0.0022 9.6162 0.0029 9.6086 9.6249
[1, 1] 10.5232 0.0027 10.5232 0.0037 10.5111 10.5329
[2, 2] 8.9914 0.0044 8.9914 0.0060 8.9745 9.0084
[3, 3] 6.8724 0.0050 6.8724 0.0067 6.8516 6.8924

Table 5: β0
[a,b] is approximated (column 2) for different target populations (column 1) based

on averaging over 10,000 Monte Carlo trials the target-sample means obtained by using the
same DGP and with sample size n = 10 million. Columns 3-7 list the standard deviation
(Std), interquartile range (IQR), minimum (Min) and maximum (Max) of the estimator.
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B.2 Simulation results

We compute our proposed estimator EFF following the description in Section 4. To estimate

the nuisance parameters we use as working models the probit models for the conditional

hazards and linear models for the conditional expectations. For each working model, we

specify the index function as linear in the associated conditioning variables T1, T2, etc. and

do not include interactions. The true conditional hazards p0(.)’s but not the true conditional

expectations q0(.)’s are contained in their respective nuisance working models.

We report in Table 6 the simulation results based on these working models and 10,000

Monte Carlo trials, and for sample size n ranging from quite small to large.21 We report:

(i) Bias, the empirical mean bias; (ii) MC Std, the Monte Carlo standard deviation; (iii) AS

Std, the average of the estimated standard error based on the asymptotic variance formula;

and (iv) Size, the empirical size of the asymptotic 5% two-sided t test of H0 : β[a,b] = β0
[a,b].

Our proposed EFF performs very well in all these aspects (and others) and for all the

target β0
[a,b] (including those unreported here) even when the sample size n is relatively small.

To put the performance of EFF in context, we also report the same properties of the IPW

estimator from (14). IPW performs worse, often much worse, than EFF in every aspect.

First, consider empirical bias. The working parametric models contain the true con-

ditional hazards, i.e., CH holds, and, therefore, IPW and EFF are both asymptotically

unbiased. This shows for IPW in the simulation results if we focus on the relatively large

samples. On the other hand, the empirical bias of EFF is quite small even in small samples.

Second, consider the variability of the IPW and EFF estimators. MC Std is of course

infeasible in practice but is a better measure of the true variability. EFF seems to have much

smaller MC Std than IPW. The same observation holds true for AS Std, which is the average

of the estimated standard error, a feasible measure, from all the Monte Carlo trials.22

21n = 200 with P (C = 3) ≈ .15 is small relative to the number of nuisance parameters; n = 5000 is not.
22We should however note that the observation that MC Std and AS Std are both smaller for EFF than

IPW in our simulations is not theoretically promised. This is because: (i) although CH holds, the working
models do not contain the true conditional expectations q0(.)’s and hence EFF is not semiparametrically
efficient, and (ii) we do not use the Cao et al. (2009)-modification of EFF that, in these cases of scalar
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n Target Bias MC Std AS Std Size
[a, b] EFF IPW EFF IPW EFF IPW EFF IPW
[1,3] -.043 -.229 .658 1.322 .587 1.006 8.6 15.4

200 [1,1] -.053 -.330 .782 1.580 .728 1.212 7.1 16.9
[2,2] -.044 -.132 1.042 1.452 1.003 1.301 6.2 9.0

[1,3] -.030 -.147 .571 1.177 .523 .911 7.4 13.9
250 [1,1] -.042 -.223 .680 1.429 .645 1.105 6.7 15.8

[2,2] -.021 -.072 .927 1.313 .897 1.169 6.2 7.8

[1,3] -.024 -.122 .520 1.044 .477 .822 7.8 12.6
300 [1,1] -.032 -.189 .617 1.277 .586 1.004 6.4 14.4

[2,2] -.025 -.054 .845 1.172 .816 1.054 6.3 7.4

[1,3] -.021 -.102 .479 .944 .443 .764 7.2 11.7
350 [1,1] -.033 -.160 .566 1.169 .544 .939 6.0 14.2

[2,2] -.007 -.040 .782 1.056 .757 .974 6.0 6.7

[1,3] -.014 -.079 .445 .882 .414 .714 6.8 10.8
400 [1,1] -.019 -.125 .530 1.090 .508 .881 5.9 12.6

[2,2] -.012 -.033 .730 1.001 .709 .907 5.9 6.5

[1,3] -.020 -.062 .391 .782 .371 .643 6.8 10.1
500 [1,1] -.024 -.093 .472 .988 .454 .800 5.9 11.6

[2,2] -.013 -.025 .643 .854 .633 .806 5.3 6.2

[1,3] -.004 -.033 .313 .615 .305 .530 5.4 8.6
750 [1,1] -.008 -.055 .375 .785 .372 .667 4.9 9.9

[2,2] -.004 -.014 .522 .681 .518 .650 5.1 5.4

[1,3] -.002 -.005 .121 .222 .119 .213 5.5 6.3
5000 [1,1] -.002 -.008 .145 .290 .145 .276 5.2 6.6

[2,2] -.004 -.005 .202 .248 .201 .245 5.1 5.1

Table 6: Results for EFF and IPW are reported based on 10,000 Monte Carlo trials and
various sample sizes n. Bias stands for the empirical bias. MC Std and AS Std stands for the
standard deviation based on Monte Carlo and the asymptotic variance formula respectively.
Size stands for the empirical size of the asymptotic 5% two-sided t-test of H0 : β[a,b] = β0

[a,b].
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We also note from Table 6 that the feasible measure AS Std resembles very well the

infeasible but truer measure MC Std in the case of EFF. Interestingly, on the other hand,

AS Std of IPW is much smaller than its MC Std. For practical purposes this means that

the user’s estimate of the standard error for IPW likely gives a misleadingly higher sense

of precision especially in smaller samples. Theoretically, this indicates that the asymptotic

approximation better resembles the small sample behavior of EFF than of IPW.

Finally, and extending the discussion of underestimated standard error and quality of

asymptotic approximation, we consider Size. Size denotes the empirical size defined as

the estimated probability of rejecting the truth by an asymptotic 5% two-sided t test for

H0 : β[a,b] = β0
[a,b]. We observe that Size is much closer to the nominal 5% level for EFF

than it is for IPW. (IPW over-rejects the truth much more in small samples.23) This is

doubly attractive for EFF in these simulations since, as anticipated from our observations

on bias and variability, this shows that EFF’s gain in precision over IPW comes with another

advantage that EFF rejects the truth much less often than IPW, especially in small samples.

Now we move to the case where the nuisance parameters are nonparametrically estimated.

The asymptotic variance of IPW estimators should decrease in such cases and, under suitable

assumptions, can even reach the efficiency bound; see our Proposition 6(ii) in Section 3.3.

Also see, e.g., Hirano et al. (2003), Wooldridge (2007), Chen et al. (2008), Graham (2011),

Ackerberg et al. (2014), etc. in similar contexts and Newey (1994), Ackerberg et al. (2012),

etc. more generally. We will pursue here this line of argument by obtaining the AS Std of

the following three variants of the IPW estimator by enriching the original working model:

� IPW2: based on a working model that augments the original working model (for IPW

in Table 6) with the squared terms but no interactions;

parameters of interest, would guarantee that the asymptotic variance of EFF is not larger than that of IPW
if CH holds. Nevertheless, it is certainly a welcome observation that EFF delivers estimates that are much
more precise than the IPW estimates. We have also noticed this in our other works with more than one level
of missingness (R > 2). This discussion will need to be modified if the working models “promise” increased
flexibility with sample size n; see Ackerberg et al. (2012); and we will do that later with the help of Table 7.

23Given Hahn and Liao (2021)’s result of the conservativeness of bootstrap standard error, this observation
seems to justify that the anecdotally-common empirical practice of using bootstrap standard errors for IPW.
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� IPW2in: based on a working model that augments the original working model (for IPW

in Table 6) with the squared terms and all the first order interactions;

� IPW23: based on a working model that augments the original working model (for IPW

in Table 6) with the squared and cubic terms but no interactions.

When the progressively richer working models used by these estimators are viewed as

a function of sample size n, one would hope that these estimators’ asymptotic variances

computed as before would eventually converge to the efficiency bound; see, e.g., Newey

(1994) and Ackerberg et al. (2012). We report in Table 7 the AS Std and MC Std of

IPW2, IPW2in and IPW23 along with IPW and EFF for progressively large sample size. To

abstract from: (i) the increased bias (unreported) in smaller samples that is not our focus

but nevertheless important and well-studied (see, e.g., Chernozhukov et al. (2022), Rothe

and Firpo (2019)) and (ii) more generally from any number of smaller sample issues (see,

e.g., Sur and Candes (2019)), we even consider the extremely large sample size of 100, 000.

We also computed another variant IPW23in that is based on a working model that

augments the original working model (for IPW in Table 6) with the squared and cubic terms

and all first and second order interactions. However, we do not discuss IPW23in except

in footnote 25 and omit it from Table 7 because it performs terribly except that when

n = 100, 000, its MC Std is slightly smaller than that of IPW23 (but still bigger, sometimes

much bigger, than EFF) that in that instance is the best among the rest of the IPW variants.

We wish to discuss now several observations from Table 7.

First, continuing on the discussion of Table 6, the difference between MC Std and AS

Std for each estimator ultimately vanishes with very large sample size (n = 10, 000 or more).

Second, both MC Std and AS Std of IPW2, IPW2in and IPW23 are smaller than that

of IPW for sample size n = 5000 and more. This ranking of variability is reassuring since

the working models used by IPW2, IPW2in and IPW23 nest the model used by IPW.

Third, although the working models used by both IPW2in and IP23 nest the model used

by IPW2, the variability of the former two, as measured by both MC Std and AS Std, seems
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to exceed that of IPW2 even for sample size as large as n = 10, 000.

The above observations suggest that even in a simple framework such as ours, the sample

size of n = 10, 000 may not be large enough for the intuitions of the large sample theory of

IPW to hold convincingly. Other basis functions could lead to a more encouraging picture.

Nevertheless, our discussion based on the power series basis is practically relevant since power

series resembles the common parametric specification of main variables and interactions used

in empirical work and, therefore, it renders the transition from parametric to nonparametric

specifications (by adding higher order terms) seamless and empirically palatable.

Fourth, the working models used by IPW2in and IPW23 do not nest each other and

hence the ranking of the variability of IPW2in and IPW23 is theoretically unclear. The

simulation results lead us to prefer IPW23. For this reason we use this working model in

our empirical application (see footnote 14) where the sample size and the dimension of the

covariates are comparable to those in the setup here. Some sort of formal regularization or

variable selection could be useful, but that is beyond the scope of our current paper.

Finally, we observe from Table 7 that the variabilities, as measured by MC Std and AS

Std, of IPW2, IPW2in and IPW23 are still worse, and sometimes much worse, than that of

EFF even though EFF is based only on the original working model (as in Table 6).

Let us elaborate on this last observation because this also brings us back to one of our

motivations behind extending the MAR analysis to sub-populations with multi-level miss-

ingness. To abstract away from any small sample issues that could have worked unfavorably

for IPW2, IPW2in and IPW23 because of the large number of nuisance parameters involved

in them, let us focus on an extreme case of very large sample size n = 100, 000.24

Now the variabilities of IPW2, IPW2in and IPW23 come quite close to that of EFF for

the target β0
[2,2]. This is a case of only one level of missingness because R = 3 while a = b = 2;

see footnote 9. One level of missingness is what has been considered in the cited references

that showed nice properties of IPW based on nonparametric estimation of the conditional

24IPW2, IPW2in and IPW23 involve 19, 28 and 55 parameters respectively in their working models for
P (C = 2|C ≥ 2, T2) to be estimated based on approximately 38,000 observations (C ≥ 2) when n = 100, 000.
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hazard (propensity score). Therefore, this closeness of variability and the realization of the

promised benefit of nonparametrics is not surprising for the target β0
[2,2] when R = 3.

However, the variability of IPW2, IPW2in and IPW23 are still substantially larger than

that of EFF for the target β0
[1,1] that is a case of two levels of missingness since R = 3 while

a = b = 1. We observe the same for β0
[1,3] since β

0
[1,3] is a weighted average involving β0

[1,1].
25

We conclude by restating the three take away points. First, the promises of nonpara-

metrics may not always hold even in very large samples. Second, it is indeed remarkable

that the simple EFF estimator fared so well against the other estimators that were based

on much richer working models. Third, apart from performing much better than IPW, EFF

also performs well in all aspects in absolute terms even in samples of relatively small size.
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