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1 Introduction

Let (y;, ;)% be i.i.d. copies of the random variables (y,z’) from a linear regression model:

y=2'B" +u with FElu|z] =0 almost surely in z. (1)

Let h(B) be our scalar parameter of interest with h® := h(3°) its true value.

In principle, a semiparametric weighted least squares estimator of h(/5) based on nonpara-
metric estimation of V(u|z) delivers semiparametric efficiency; see Carroll [1982], Robinson
[1987], etc. However, it is rare to see such estimation in practice because nonparametric esti-
mation of V'(u|z) generally requires very large sample size for the asymptotic properties of the
semiparametric weighted least squares estimator to be good approximation of its finite-sample
properties. Parametric weighted least squares, where V(ul|x) is estimated based on some user-
specified parametric model, is also not an attractive solution because its precision can be even
less than that of ordinary least squares (OLS) if the user-specified parametric model is incorrect.

Starting with the paper “Resurrecting weighted least squares” by Romano and Wolf [2017],
the recent literature has come up with various interesting proposals to mitigate this twin prob-
lems with semiparametric and parametric weighted least squares; see, e.g., DiCiccio, Romano,
and Wolf [2019], Spady and Stouli [2019], Lu and Wooldridge [2020], etc. Taking as given a user-
specified and possibly incorrect parametric model w?(z;7), known up to a finite dimensional
parameter v € I' C R% | for V(u|x) this literature proposes parametric estimators that improve
upon OLS and parametric weighted least squares (WLS) estimators in terms of precision.

Our paper follows this recent literature and shows that we can obtain further substantial
improvement in precision by an “optimal” treatment of v in the parametric model w?(z;~).!
We classify the recently proposed estimators of h(f) into three categories and consider their
infeasible (with respect to 7) versions as functions of v, i.e., we take the estimators without
plugging in the values of v that were proposed in the literature. Our proposed estimator of h(j3)
under each category then plugs in an estimator of that « that minimizes the asymptotic variance
of that category’s infeasible estimator of h(8). By construction, the asymptotic variance of our
proposed estimators of h(3) cannot exceed that of any estimator of h(S) in their respective
categories. Simulations under the designs of these recent papers demonstrate that the gain in

precision due to our proposal can be substantial without much cost even in small samples.

'Nonparametric estimators with“fixed” tuning parameters — e.g. series estimators with the number of terms in
the series fixed — can be viewed as parametric estimators since the quality of their approximation of V' (u|x) does not
get better with the increase in n. Although not considered explicitly, such estimators are covered by our discussion.



Our proposed estimators build on Cragg [1992]’s idea of minimizing the trace or determinant
of the asymptotic variance of a similar infeasible version of the WLS estimator of 3 (denote it
by Bn(fy)) with respect to v. While Cragg [1992] does not discuss it, such minimization leads
respectively the well-known notions of A and D optimality; see Elfving [1952], Chernoff [1953]
and, respectively, Wald [1943]. These notions of optimality (and others, e.g., the E-optimality
of Ehrenfeld [1956]; the L-optimality due to Karlin and Studden [1966] and Federov [1971];
Kiefer [1974])’s general optimality, etc.) would be compromises for the fact that unless w?(z;7)
correctly specifies V' (ulx), there is no guarantee of existence of a minimized (with respect to
~) asymptotic variance matrix of Bn (7). Without that existence, for some of the regression
coefficients, the standard errors of estimators from using Cragg [1992] may exceed that from
using WLS, and it is evident in hindsight that similar notions of optimality are not attractive
in empirical work.? This concern of nonexistence is not just academic; we found ample evidence
of its adverse effect resulting in Cragg’s method having much larger than WLS standard error.

We bypass this critical issue of existence of the minimized matrix by reducing the problem
to minimization of a scalar function, the asymptotic variance of an estimator of h(3). Then,
continuity of this function with respect to v € I' and compactness of I' in R% ensure the
existence of the minimized variance and its minimizer by the extreme value theorem.

Of course, if w?(x;7y) correctly specifies V (u|z) then the “optimal” + exists for 3 itself and
hence works for all h(8)’s, e.g., elements of 5. Then WLS (also OLS if V(u|z) is constant),
the recently proposed estimators, and our proposed estimators are all asymptotically equivalent
and deliver semiparametric efficiency. Otherwise, our proposed estimators under each category
deliver the “second-best” solution while WLS and others cannot, and OLS does not even try.

We conclude the introduction by noting that other literatures — see e.g. Cao, Tsiatis, and
Davidian [2009] for doubly-robust estimation, Noack, Olma, and Rothe [2021] for regression
discontinuity design, etc. — have also gainfully used ideas similar to that in our paper.

Our paper proceeds as follows. Section 2 begins with a discussion of the recently proposed
estimators to motivate the construction of the infeasible (with respect to ) estimators. Then it
presents the algorithm for implementation of our proposed estimators based on minimizing with
respect to 7y the estimated asymptotic variance of these infeasible estimators. Finally, it presents
the asymptotic properties of the proposed estimators and inference based on them. Section 3

demonstrates the superior finite-sample precision (without much cost otherwise) of the proposed

2This perhaps led to Cragg [1992]’s method being unfortunately overlooked in the empirical and theoretical
literature. Even among the recent papers on this topic of improvement in precision over OLS and WLS, the only
mention of Cragg [1992] is rather cursory — Romano and Wolf [2017] mention in their footnote 2 : “For some even
earlier related work, see Cragg (1983, 1992), though he is mainly interested in estimation as opposed to inference.”




estimators using the simulation designs and empirical examples from Romano and Wolf [2017]
and Lu and Wooldridge [2020]. (Additional simulation results are available from us.) Section 4

concludes. Technical discussions and proofs of results are collected in the appendix.

2 Motivation, Implementation and Asymptotic properties

We will call the user’s chosen parametric model w?(z;) correctly specified for V (u|z) if:
there exists 7* € I' € R such that w?(x;7°) o< V(ulz). (2)

We will not maintain (2), but will only consider it as an unlikely special case. On the other hand,
following the related literature and resembling common empirical practice, we will maintain that
the user’s parametric model w?(z;7°) can accommodate for conditional homoskedasticity of u,
ie.,

there exists 7 € T' such that w?(z;7) o 1. (3)

2.1 DMotivation behind the proposed estimators:

It will be useful at the outset to define the following building blocks to fix ideas and streamline

the discussion. For any v € ' we define an infeasible weighted-by-w?(z;~) estimator of h(3) as:

-1
~ > 5 —~ 7] ~ Ty
h(v) == h(B(v)) where B(y) = S - (4)
; w?(2i;7) ; w?(zi;7y)

To relate h(y) with the classical estimators, do note from (4) that the OLS and WLS es-
timators of h(8) are EOLS = ?L(’y) and EWLS = E(ﬁWLS) since that of 8 are, respectively,
o~ ~ _ o~ ~ ~ ~ . 2
Bors = B(%) and Bwrs = B(Awrs) where Jwrs 2 ywrs := arg minyer B [(u2 — w?(z;7)) }

For a heuristic discussion of the motivation here, with the precise statements postponed to

Section 2.3, it will help to define the following components of the sandwich variance matrices:

By := E[za'], Ba(y):=EFE L);(Uf’y)} , B(7):=[Bi(7),B2(7)], and
Ciy o | O = BV (l)aa] Cral) = B |55 8
Ci2(7) Ca(y)=FE [%]

Now, consider any estimator 5 £ ~ for some given v € T. It is well known that Efu|z] = 0

(see (1)) gives E [wzﬁ(‘;‘w) 32,w2(x;7)] =0if 82/‘*’2(5”57) exists (almost surely in x). Therefore,



under standard conditions with H := H(3°) finite where H(3) := 0h(B°)/08’, we have:

v (h@) - 1) =va (ﬁw) - hO) +0p(1)

= HB; f Z w2 ) +0,(1) (6)

N (0,0°(y) :== HB; ' (v)Ca2(7)By ' (7)H') .

Moreover, generalizing (6) using similar steps gives the joint distribution:

hors — h° hors — h°
V| = Vn| _ +0,(1)
h(7) = n° h(v) — h°
= = +OP
0 HBy'(y) | VT | i
w ("E’Lv’Y)
!
d HB;! 0 HB;! 0
S N|[0,2() = X C() )
0 HB, " (v) 0 HB; " (v)

With this background in place, we will divide the recently proposed estimators that improve

upon OLS and WLS into three categories that all contain OLS and WLS as special cases.

e Category 1: Estimators of the form d)nﬁ( )+ (1— ¢n)hOLS for: (i) some ¢, 2 1 or ¢,, & 0
and (ii) some 7 2y ~ for some v € T'. Therefore, under standard conditions, such estimators
are asymptotically equivalent to either iAL(fy) or EO s depending on whether ¢,, 2 1 or ¢, 2 0.

Hence its asymptotic variance cannot be smaller than min{o?(7),o%(¥)}; see, (6) and (3).

Romano and Wolf [2017]’s ALS estimator takes: (i) ¢, = 1 if a consistent test cannot reject
the null of homoskedasticity at some level a (e.g. 10%) and ¢, = 0 otherwise; and (ii)
¥ = 3wrs. DiCiccio, Romano, and Wolf [2019]’s MIN estimator takes: (i) ¢, = 1 if BWLS
has smaller standard error than ﬁo rs and ¢, = 0 otherwise; and (ii) ¥ = Jwrs. Spady and
Stouli [2019]’s estimator under Efu|z] = 0 takes: (i) ¢, = 1 for all n > 1, and (ii) 7 & g5

where ygg solves E [a%w(X; 733)%;(;;7“)} = 0; see their equation (3.9), Corollary 2.

Category 2: Estimators of the form X(ﬁ)ﬁ(ﬁ) +(1- X(ﬁ))EOLS for some 3 £ ~ for some
~ €T, and where //\\(ﬁ) 2 \(v) := arg minyeo,1) Avar (x\ﬁ(fy\) +(1- )\)EOLS), ie.,

M) = AAVar(ﬁOLS)iACOV(BOLS A( ) (®)
Avar(hors) + Avar(h(7)) — 2Acov(hors, h(7))

with Avar and Acov denoting asymptotic variance and covariance respectively. Under stan-



dard conditions, we know from (7) that such estimators are asymptotically normal, asymp-

totically unbiased, and have asymptotic variance equal to:

11— 11—
02n(7) = D s o 9)
A7) A(y)

DiCiccio, Romano, and Wolf [2019]’s convex combination (CC) estimator takes ¥ = Yy s.

e Category 3: Estimators of the form h(B\Mc(ﬁ)) where BMc(ﬁ) is a moment combination

(MC) estimator, specifically the efficient GMM estimator:

/
/

) 1 & zi(y; — x38) 1T E zi(yi — xif)
are H,lﬂln g Z 1 ! C+ (’V) H Z 1 !
i=1 mxz(yz — x;3) i=1 mmz(yz —xiB)
(10)

for some 7 2 ~ for some v € T, and c+ ) 5ot () with the superscript + denoting the
Moore-Penrose (MP) inverse. For any v € T, if we write the four dg x dg (dg being dimension

of B) blocks of C*(7) as 6;; (y) for i,5 = 1,2 then we obtain the closed-form expression:

o~ ~

Brre(v) = 6(1)B() + (Ia, — 8(7))Bors (11)

~

~ ~ ~ -1/~ ~ ~ ~ ~ ~ ~
where §(v) := (B('y)CJr('y)B’(fy)) (Blclg(fy) + 32(7)0;2(7)) Bs(y) with the B’s and C’s
denoting the sample analogs of the B’ and C’s (and defined precisely in Section 2.2). Under
standard conditions and the conditions for convergence in probability of sample MP inverse

to its population counterpart (see, e.g., Puri, Russell, and Mathew [1984]):

Vi (hBae @) 1) = Vi (hBact) 1) + op(1)

Z o +0p(1)

‘ 1 cap -
=L Sy Tt

H’) : (12)

— H(BMCY()B' () " [B1,Bs(3)]C*(7)

Si-

d -1

L N (0, 02(n) = H(BH)CH(3)B'()
(Full row-rank of the Jacobian via, e.g., a nonsingular B; is maintained throughout; see, e.g.,
Bonhomme and Weidner [2021].) One can take ¥ = Ay rs. Alternatively, Lu and Wooldridge
[2020]’s estimator uses the Gamma/Exponential quasi maximum likelihood estimator (QMLE)

for 7, and the standard inverse in place of the MP inverse.®> QMLE or any converging (in

3The standard inverse does not exist in the limit (population) if u is conditionally homoskedastic because then
the asymptotic variance of the moment vector at the truth is rank-deficient and of rank equal to the dimension of .



probability to some « € T") estimator 7 is also a valid option for all three categories.

The above description of the categories directly provides the motivation behind our proposed
estimator. Building on Cragg [1992], for each category, we will use an estimator 5 2> ~* for

some v* that leads to the smallest asymptotic variance for that category. More precisely:

e Category 1: We will take ¢, = 1 for n > 1 and 7 = J.qs1 for some estimator eqs1 TN
Vi1 i= argminer 02(7); see (6). This leads to the proposed estimator being h(Feat) with

. . 2 .
asymptotic variance o}, := min,er o2(7).

e Category 2: We will take 7 = Jqs2 for some estimator Jeqra = 7yq = arg min,er 02,45(7),
see, (9). This leads to the proposed estimator being X(:}/\Ctltg)ﬁ(;}/\catg) +(1- X(fy\catg))EOLS

. : : 2 .
with asymptotic variance o7, 1= min,er 02,,5(7).

e Category 3: We will take § = Feqes for some estimator Feqrs — Viars 1= arg miner 02,,5(7),
see, (12). This leads to the proposed estimator being h(ﬁ M (Feats)) with asymptotic variance
2 .
Tpats = Millyer Tog3(7)-

%2

Remarks: Three remarks are in order. First, while azzﬂ > ok, IN & given application the
standard error of X(ﬁcatg)ﬁ(%aﬂ) + (1= X(fy\catg))/ﬁO[‘S may exceed that of ﬁ(ﬁcaﬂ). This is
because in each category the optimal v is obtained minimizing a sample variance based on some
preliminary estimator (}Azo Ls, in effect, BO rs) while, following convention, the standard error is
computed based on that category’s final/proposed estimator of h(3); see Section 2.2 for details.

Second, Category 3 does not generalize Category 1 or holds equivalence with Category 2
unless 3 is a scalar like h(3). The non-equivalence between Categories 2 and 3 is evident from
comparing X(’y)ﬁ(’y) + (1 - X(’Y))/HOLS in Category 2 with h(EMc(’y)) (see (11)) in Category
3 even if h(f) is linear in . Since our focus is on h(f) and not B, this non-equivalence does
not contradict Chen, Jacho-Chavez, and Linton [2016]. Their result — the optimal linear
combination of estimators of § that are obtained by solving their respective just-identifying-for-
B moment restrictions is the same as the efficient GMM estimator of 5 obtained by optimally
combining all those just-identifying moment restrictions for § — is for 8 and not h(8).

Third, while our proposal can in principle be extended to accommodate for a weighted
version of Papadopoulosa and Tsionas [2021], it will require a separate treatment of the matter.
Extension to nonlinear regressions as in Lin and Chou [2018] is more immediate. We do not

pursue these interesting extensions to focus on our main message and keep the exposition simple.



2.2 Implementation of the proposed estimators:

Informed by (6), (9) and (12), we define the key sample quantities for implementation by category

as follows. For ¢ € R% and b, by, by € R% where dg is the dimension of /3, we define:

52 (bg) = H(b)By (9)Cas(b.g) By (9)H'(b),
~ ~ ~ ~ ~ /
3§at2(b1,b2,g) = |:1 - >‘(b17b27g)7 A(blab%g):l Z(b17b2>g) |:1 - )‘(blab27g)7 )‘(b17b27g):| 3
~ ~ —~ -1
Fslbg) = H) (B9)CH(b,9)B'(9))  H'(),

where, resembling their population analogs in (5), (7) and (8), we have defined the components:

~ 1 & ~ 1o~ 27 ~ ~ =~
By = — iy, B == ———, B(g):=|B1,B )
vi= 3wl Balo) =030 e Bl = [Bu o)
~ 1 <& ~ 1 o= (y; — 2b1)(y; — 2'bo) iz
C11(by) := - Z(yi — aiby)2wx; Cra(by, b, g) == EZ i :1)2(5;_.9) iba)it;
C(br, b, g) == R = . 1211 " (y; — x)bo) P 7
bi,b by, g) = — ) gt
C12(b1, b2, 9) Ca2(b2, 9) n; (@2 (21 9))2
S (by, ba, g) S11(bi,g) = H(by) By Cua(by) By M H (b)) Sra (b, ba, g) 1= H(b1) By 'Cha(by, b, 9) By (9) H' (b2)
1,92,9) ‘= —~ —~ ~ ~ ~
Y12(b1, b2, 9) S92(ba,9) : H(b2) By ' (9)Caa(ba, 9) By (9) H' (ba)
~ i b 5 - i b ab )
N1, ba, g) = 11(b1,9) 12(b1,b2,9)

fz11(51,9) + fl22(52,9) - 23\312(5)17 ba,g)

The proposed algorithm involves three steps for each category. Step 1 constructs the suitable
sample objective function for 7. Step 2 estimates the optimal v by minimizing that sample
objective function. Step 3 uses the estimated optimal v to obtain the proposed estimator of
h(B) and thereafter its standard error. To streamline notation, we only use ﬁo rs (in effect,
BO Ls) to obtain the objective function in Step 1, while we use the estimated proposed estimator

(and the associated estimator for ) to compute the standard error of the proposed estimator.

Steps for the proposed estimator under Category 1:

1. Using the OLS estimator BoLg obtain 32“1(3(”5, ) as a function of ~.

2. Obtain the minimizer Jeq¢1 := arg min,er 02,41 (Bors,7)-

3. Obtain ﬁcatl = ﬁ(%aﬂ) asin (4) and its standard error secqs1,n, = \/agaﬂ(é(%aﬂ), ﬁcaﬂ)/ n.

Steps for the proposed estimator under Category 2:

1. Using the OLS estimator B\OLS obtain 52,,, (§OLS, EOL& ) as a function of 7.



2. Obtain the minimizer 7,qs0 := argmin,er 02,5(Bors, Bors,?Y)-

3. Obtain /ﬁcatg = X(%atg)ﬁ(%am) +(1- X(%atg))ﬁom; and its standard error secq2.n =
\/azatZ(ﬁOL5'7/B(:Y\caﬂ)v:}/\cmﬂ)/n-

Steps for the proposed estimator under Category 3:

1. Using the OLS estimator Borg obtain 2.3 (QOLS, ) as a function of ~.

2. Obtain the minimizer Jeqs3 := argminyer 0245(Bors,7)-

3. Obtain /h\catg = h(B\Mc(’y\catg)) asin (10)/(11) and its standard error secqt3.5 = \/32,1,53(31\/10(%@153)7:Y\catzz)/n.

More refined implementation — e.g., iteration of steps or joint estimation of () and -, and
(in cases of concern with bias) even cross-fitting — is also possible. If so preferred, one could
use the so-called HC3-robust standard errors (specifically, the HC3 version of C(.)) at least in
step 3, or use bootstrap for inference; see, e.g., Romano and Wolf [2017] and DiCiccio, Romano,
and Wolf [2019)] respectively.* Nevertheless, we recommended the simple implementation above
because our experience so far with simulations under the designs of the related papers suggests

that it works well even in small samples under the simple framework of those papers and ours.

2.3 Asymptotic properties of the proposed estimators:
Assumptions:

Al. yf = arginf,cr 07 (y) exists for j = catl, cat2, cat3.
A2. Forany ¢ > 0and j = catl, cat2, cat3 there exists €(5) > 0 such that: infer:|y—q2 > o3 (v)—
2| > €0).
A3. Forany d,, J Oand ally eI : ||'y—’y}‘|| <4, and j = catl, cat2, cat3 there exists a constant
3 . 2 2 (A% *
M > 0 such that: |05(y) — 5 (v;)| = M|y —~;]l.
A4, H(B) := 0h(B)/0B exists in an open ball around 3% and is continuous at V.
A5. B(y) := [Br, B2(7)] & B(v) := [B1, Ba(7)), [Br . By ' ()] & [Br ', By ()], Clbr, b, ) =
C(v) and 6+(b1, ba, ) £ C*(5) uniformly in y € T for any by, by 2 B0,

4HC3 version is straightforward for the proposed estimator in Category 1; but is more challenging in Categories 2
and 3. In fact, due to the covariance terms, the HC3 version may not even be positive (semi) definite in small samples
for Category 2. Also, a development similar to Lin and Chou [2018] does not guarantee positive (semi) definite HC3
version in small samples for Category 3. Nevertheless, the asymptotic results in the next subsection will remain
unchanged due to the asymptotic equivalence of the various HC-robust standard errors; see, e.g., Theorem 7.6 in
Hansen [2020] whose proof works in our case with minor and obvious modifications; while finite-sample inference will
possibly improve due to reduced over-rejection of the truth unless the non-positive-definiteness affects the standard
ordering HC1 > HC2 > HC(C3. The theory for validity of pairs and wild bootstrap can similarly be developed
following DiCiccio, Romano, and Wolf [2019]. However, the real justification behind HC3 or bootstrap, i.e., the proof
of asymptotic refinement (if any) due to them is, as usual, quite complicated and beyond the scope of our paper.



A6. C(by,ba,v) — C(y) = 0, (n=1/2), CH(by,ba,y) — CT(v) = O,(n~'/2) and (as implied by
A5) [B1, Ba(7)] = [B1, Ba()] = 0,(1), [Br ', By ()] = [By", By ' (7)] = 0(1) uniformly
iny el |y =75l <, for j = catl, cat2, cat3, for any &, | 0, and any 31,62 2 B0,

n * d .
AT. ﬁ Yoy (i, wiui fw? (24377)] = N (0,C(v;)) for j = catl, cat2, cat3.
A8. There exist a 1 x d, vector A j(x) and a Ag ;(x) > 0 with E|jzul, ;(z)|| < co such that

for j = catl, cat2, cat3, the following holds with probability one for large n and some § > 0:

— 3 8g;(@)|lly — ;1) <.

SUP,yer:|ly—vr]|<d {|1/w?(@;7) = 1/w?(237]) — Avj(2) (v = 7))

Remarks: The existence condition in Al can be ensured, e.g., by assuming 0]2-(7) for j =
catl, cat2, cat3 is continuous in v € I' and I is compact in R% where d, is finite. It is typically
difficult to provide primitive conditions for the global identification condition of the optimal -y
in A2. The local identification condition of the optimal v in A3 can be satisfied in various ways,
e.g., 0]2-(7) for j = catl, cat2, cat3 is differentiable with non-zero derivative at v = 7. Adis a
standard assumption enabling the use of the delta-method, and also in conjunction with A5 and
A6 leading to the consistency of the 3?(.)’8 for the 0]2(.)’5. A5 is a standard uniform convergence
assumption and under our setup can be satisfied if, e.g., in addition to pointwise convergence of
the concerned quantities (via, e.g., continuity and existence of moments), w?(x;7v) is bounded
away from 0 for v € T' with probability one. A6 strengthens A5 locally by imposing a rate
condition that leads to the rate of convergence of 7; to v; for j = catl,cat2,cat3. AT is a
standard asymptotic joint distribution assumption that follows from conventional conditions for
the central limit theorem. A8 imposes standard smoothness conditions on 1/w?(x;~) locally.

Our main results below are based on A1-A8 and the various definitions heretofore.

Lemma 1
(a) Let assumptions A1, A2, A4 and A5 hold. Then 7; LN v; for j = catl, cat2, cat3.

(b) Let 7; 2, v; for j = catl,cat2,cat3 and assumptions Al, A3, A4 and A6 hold. Then

Ny —f = O,(n=Y?) for j = catl, cat2, cat3.

Remark: The result of Lemma 1(b) is stronger than required since, as is well known in similar
contexts, 7, — v = op(n_l/ 4) for j = catl, cat2, cat3 could have been made sufficient for our

purpose. However, the n~1/2

rate follows naturally since the 7;’s are parametric estimators.
Using these properties of 7; for j = catl, cat2, cat3 we will now establish the asymptotic

properties of the proposed estimators and the standard Wald-inference based on them.

Theorem 1 Let 7; — v = Op(n_l/Q) for j = catl, cat2, cat3. Let assumptions A4, A7, AS,
and A6 (allowing a weaker form that replaces the O,(n='/2) rates by o,(1)) hold. Then:

10



(a) \/ﬁ(ﬁj —hY) 4 N(0, 0;2) for j = catl, cat2, cat3;

(b) the test that rejects the null Ky 2 h(B8) = hpwu against the alternative Kqpe @ h(8) # hnu
if |(ﬁj = hnuit)/s€jn] > 21-ay2 has asymptotic power ®(zq 2+ p/05) + (202 — p/0;) for
j = catl,cat2, catd and h® = hpy + pu/+/n where 2. satisfies ®(z.) = c € (0,1);

~

(c) the confidence interval /f;j — Z1—a/25€j,n, hj + zl,a/Qsejm} for h(B) has asymptotic cov-

erage 1 — « for j = catl, cat2, cat3.

Remark: The proposed estimators and standard Wald inference based on them have the desired
asymptotic properties. One-sided inference can be done similarly. First-order asymptotically,

the proposed estimators cannot perform worse than the estimators in their respective categories.

3 Simulation evidence and Empirical illustrations

We will explore the small-sample performance of the proposed estimators under all three cate-

gories using simulation experiments based on 10000 Monte Carlo trials. The estimators:

e OLS and WLS, that belong in all three categories, are put under the label classical estimators;
e ALS, MIN and the proposed estimator, named modified WLS (MWLS), under Category 1

e CC and the proposed estimator, named modified CC (MCC), under Category 2

e MC using WLS and QML, denoted respectively as MCls and MCqm, and the proposed
estimator, named modified MC (MMC) under Category 3,

will be included in the study.” We do not include the estimator from the working paper Spady
and Stouli [2019] since its stated purpose is different from that of the ones above. We will use
the simulation designs in Romano and Wolf [2017] and Lu and Wooldridge [2020]; the design in
DiCiccio, Romano, and Wolf [2019] is similar to that in Romano and Wolf [2017].6 We will also
revisit the empirical illustrations in Romano and Wolf [2017] and Lu and Wooldridge [2020].
The main message of the numerical results here is that if the user’s model w?(x; ) for V (u|x)
allows for improvement in precision over the existing estimators then the proposed estimators
achieve it. Like Romano and Wolf [2017], we report the improvement in the empirical mean
squared error (MSE), and find that its reduction by the proposed estimators can be huge by

any conceivable standard. Under all cases there does not seem to be any major cost, in terms

5We got helpful suggestions for more informative names of the proposed estimators, e.g., “targeted” or “minimax”
WLS, CC, MC, etc. that may have other connotations. We opted for the generic name “modified” to avoid controversy.
5The extensive simulation study here, of which only a subset of results is presented while the rest are available
from us, complements Rilstone [1991]’s early simulations that focused on OLS, WLS and its semiparametric versions.
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of empirical bias, size, etc., to using the proposed estimators. Comparison among the proposed
estimators across categories does not however give a clear winner. Based on these observations

and the simplicity of the estimators we recommend all three proposed estimators in practice.

3.1 Simulations under the design in Romano and Wolf [2017]:

Romano and Wolf [2017] take y = 2(1)B1 + 2(2)B2 + u in (1), with z) = 1,2¢5) ~ U(1,4),
= (21, 2(2); B=(B1,B), B = (0,0); u = s(z)z where z ~ N(0,1) is independent of T(2)

and thus Efu|z] = 0 and V (u|z) = s(z). They consider 10 cases for the skedastic function:

Case 1: (a) s*(z)=1; (b) s*(z) =z@); (c) s*(z) = xé); (d) s%(z) = x‘é).

Case 2: (a) s*(z) = (1Og(17(2)))2; (b) s*(z) = (IOg($(2)))4'

Case 3: (a) s%(z) =exp (.1(3:(2) + xé))); (b) s?(z) = exp (.15(m(2) + x%Q))).
1if ) <2 1if ) <2

Case 4: (a) s?(x)=4¢ 2 if 2< L) <3 ; (b) s*(z) =9 22 if 2< T <3 -
3 if 2 >3 32 if @y > 3

To emphasize the gain in precision, we will add a Case 2(c) with s?(x) = (log(x(g)))G.

Romano and Wolf [2017] consider two parametric models w?(z;7) — Model 1: w?(z;7v) =
exp(v1 + 72 log(z(2))) and Model 2: w?(x;7) := exp(y1 + Y22 (2)) — and like them our results
here are also very similar for both models. However, since there is slightly more action in terms
of improved precision in case of estimators based on Model 2, for brevity we report here the
results based on Model 2 only (the unreported results are available from us).”

Romano and Wolf [2017] report for B2 the empirical MSE’s (their ratios) of estimators,
empirical coverage probability of 95% confidence intervals (1 - empirical size of 5% t tests) and
ratios of the average length of these intervals. We will do the same while considering sample
sizes n = 50, 100, 200,400. We take the parameter of interest h(5) as 51 and f2 respectively.

Tables 1 and 2 present, respectively for 5, and s, the ratio of the empirical MSE of each
estimator with respect to that of OLS. Besides Case 1(a) (conditional homoskedasticity), the
other estimators lead to smaller, sometimes much smaller, MSE. (To compare any two non-OLS
estimators, say A with respect to B, divide the ratio under A with that under B.) Importantly,
the proposed estimator under each category either performs very similar to the other estimators

in the category or leads to really big gain in precision as in Cases 2 (a), (b) and (c).

"Model 1 is correct for V(u|z) in the sense of (2) under Cases 1(a)-1(d) with 73 = 0, 1,2, 4 respectively. Model
2 is correct for V (ul|z) only under Case 1(a) with 45 = 0. So, all estimators are asymptotically efficient under Case
1(a), and all estimators other than OLS are asymptotically efficient under Cases 1(b)-1(d) when using Model 1.

12



Tables 3 and 4 present, respectively for §; and fs, the empirical size (empirical rejection
probability of the truth) of 5% Wald tests based on each estimator. The results look reasonable
except in the case of the MC estimators with small samples. This happens because being
true to Lu and Wooldridge [2020] we use HCO standard error for the MC, i.e., Category 3,
estimators and, as is well-known, that does have an adverse effect in small samples. While the
size-corrected empirical power is not reported here for brevity (but is available from us), we
note that the proposed estimator in each category always has either the same or substantially
greater (in Cases 2) empirical size-corrected power than its competitors.

Tables 5 and 6 present, respectively for 8; and (32, the average length of each of the non-OLS
confidence intervals with respect that of the OLS intervals. For brevity we report this for Case 2
only where, as noted above, the benefit of the proposed estimators’ precision is most prominently

evident. These are indeed big gains in precision of confidence intervals by any standard.

3.2 Simulations under the design in Lu and Wooldridge [2020]:

Lu and Wooldridge [2020] take y = z(1)B1 + x(2)B2 + 2(3)3 + 2(3)B4 + w in (1), with z(;) =
Lz ~ N(1,1), z3) = .8+ 2209 + €1, 1) = 1(z(5) > 2(3)), u = s(x)e3 where ey, ez, e3 are
independent N(0,1), and x5y = .3 + .12y + .1z(3) + e2. They take x = (2(1), 2(2), T(3), T(4))’,
e3 as independent of x (giving Flu|z] = 0 and V (u|z) = s*(z)), and 3 = (B1, B2, B3, B1) with
B = (.5,1,1,1)". They consider 4 cases for the skedastic function:

Case 1: s%(z) = (b1 + Bo(2) + P32 (3) = 3[ax 4y +. 12 (x(3)+x(4))—.1x(3)a:(4)—.051‘%2)—#.0595%3)))2
Case 2: s?(z) = (b1 + Balz(2)| + ng%3) + Baz ()%

Case 3: s?(z) = exp(B1 + Bolz(2)| + Laz(a)).

Case 4: s*(x) = exp(B1 + Box(2) + Pax(s) + Laz(a)).

They consider the parametric model w?(x;v) = exp(z’7y), which is correct for V(u|x) in the
sense of (2) with 40 = 8% in Case 4.

We take h(8) = b1, P2, B3, B4 respectively and sample size n = 1000, 5000. Lu and Wooldridge
[2020] take n = 1000, 10000 and report Monte Carlo mean and standard deviations in their Table
1. In this case, the large sample size largely mitigates concerns with inference and, therefore,
similar to Lu and Wooldridge [2020] we focus and report results here only for estimation.

Table 7 presents the ratio of the empirical MSE of each estimator with respect to that of

OLS.% Tt is of interest to note that in our implementation of Cases 1 and 2, WLS based on

80ur results for WLS are not the same as Lu and Wooldridge [2020]’s because they use Gamma QMLE for « in
WLS whereas we use the conventional WLS. Our results for MCqm should have been the same as their GMM results
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an incorrect model w?(x;v) can be much less precise than OLS, which is a possibility that
DiCiccio, Romano, and Wolf [2019] (p.2, paragraph 7) noted as motivation to their MIN and
CC estimators but conjectured as “rare”. ALS also suffers from the same problem in this case
since ALS and WLS are very similar here because of high level of heteroskedasticity of u.

On the other hand, the MIN, CC and MCC estimators deliver big gains in precision over OLS.
Additionally, when the parametric model w?(z;v) is far from correct for V (u|x), i.e., Cases 1 and
2, we see that our proposed estimators deliver further substantial gains in precision. However,
when w?(x;7) is correct for V(u|z), i.e., in Case 4, there is no room for improvement since all
non-OLS estimators are then asymptotically efficient (not considering the information that 3’s
appear in both Ely|z] and V(y|z)). Then our proposed estimators are less precise than their

non-OLS competitors. This problem however diminishes with larger sample size n = 5000.

3.3 Empirically relevant simulations in Romano and Wolf [2017]:

Romano and Wolf [2017]’s simulation based on a real-life example revisits the well-known cross-
sectional data set from 1970 containing n = 506 observations from communities in the Boston

area (see, Wooldridge [2012]). They consider a linear regression as in (1) with:

Elylz] = 2'8 = x(1)B1 + z(2)2 + 2(3) 83 + (1) s + 2(5) 55

where y is the log of the median housing price in a community, x(;) = 1, x(2) is the log of
nitrogen oxide in the air (in parts per million), 23 is the log of weighted distance from five
employment centers (in miles), (4 is the average number of rooms per house, and x5 is the
average student—teacher ratio in the community’s schools.

To mimic the true conditional heteroskedasticity in this data, Romano and Wolf [2017]:
(i) obtain & = (y; — 2'Bors)//T — ¢ii for i = 1,...,n where Gii = (30, xj2;) ey is i-th
diagonal element of the hat-matrix; (ii) generate artificial data (y;,z}) for ¢ = 1,...,n where
xf =x; and yf = mgﬁo s +¢€;v; where v; ~ N(0,1) independently of the system. Thus, the true
B in this artificial data is BO rs- Romano and Wolf [2017] then report for each element of 3 the
empirical MSE’s (their ratios) of estimators, empirical coverage probability of 95% confidence
intervals (1 - empirical size of 5% t tests) and ratios of the average length of these intervals.

We will do the same, and since the improvement shown by Romano and Wolf [2017] is

noticeably better with their Model 1, i.e., w?(x;7) = exp(y + 22:2 log(z (1)), we will for

because both use Gamma QMLE for . The results were not close. To avoid a negative representation of Lu and
Wooldridge [2020]’s estimator due to possible computational error on our part, we will not report MCqm hereafter.

14



brevity only report the further improvement provided by our proposed estimators based on
Model 1. These are reported in Tables 8, 9 and 10 respectively for the ratio of the empirical
MSE’s with respect to OLS, the empirical size of 5% Wald test, and the ratio of the average
length of confidence intervals based on other estimators to that based on OLS. As is clearly

evident, the proposed estimators deliver noticeably big further gains over its competitors.

3.4 Empirical illustration in Lu and Wooldridge [2020]:

Lu and Wooldridge [2020] use a subset of the well-known cross-sectional individual-level data

set * 401ksubs’ (see Wooldridge [2012]) to estimate a linear regression as in (1) with:

10
Elylz] = 2'8 = Z$(k)5k

k=1
where y is net total financial assets (in $ 1000) and is denoted by “nettfa”; z(;) = 1 and is denoted
by “constant”; x(s) is annual income (in $1000) in excess of population (data) average and is
denoted by “incy”; x(3) = ac%z) and is denoted by “inc2”; T(4) is age in excess of population (data)
average and is denoted by “agey”; z(5) = :c%4) and is denoted by “age§”; x(g) = x(2) X (1) and
is denoted by “incg.ageo”; z(7) is a dummy variable for eligibility for a 401k plan and is denoted
by “e401k”; x(g) is a dummy variable for male and is denoted by “male”; x(9) = z(7) X x(2) and
is denoted by “e401k.ince”; and w19y = x(7) X T (4) and is denoted by “e40lk.ageg”.

We use the same data set, matching the descriptive statistics and OLS coefficients in Lu and
Wooldridge [2020]’s Table 2 and 3 respectively; the OLS standard errors don’t match because
we report the HC3 version. We report in Table 11 the various estimates and standard errors
(in parentheses) for the coefficients of this regression model. We use Lu and Wooldridge [2020]
parametric model w?(x;v) = exp(z’y). Lu and Wooldridge [2020] showed big gains in precision
by WLS over OLS, and then further improvement over WLS by their GMM estimator. Our
results in Table 11 of course confirm these findings of Lu and Wooldridge [2020]. Additionally,
our results also demonstrate that even further gains, and often substantial ones, in precision

over all those estimators can be obtained by our proposed estimators.

4 Conclusion

Inspired by Romano and Wolf [2017], our paper followed the recent literature that tries to
improve upon the OLS and (parametric) WLS estimators. This literature takes the user’s

parametric model w?(x;v) for V(u|z) as given, without assuming that it is correct, and focuses
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on estimating the coeflicients in a regression model given by y = E[y|z] 4+« where E[y|z] = 2/S.
We showed that an old idea from Cragg [1992] can be suitably adapted to improve not only
upon OLS and WLS, but also upon the recently proposed estimators in this literature.
Compared to Cragg [1983], that takes a more nonparametric approach to estimating V (u|x)
and coincides with the explosion of nonparametric estimation in theoretical econometrics, Cragg
[1992] seemed to have been largely overlooked. This might have been because the optimization
program of minimizing the determinant or trace of the asymptotic variance of the estimators of
the regression coeflicients often delivers poor (individually sub-optimal) standard errors for the
individual coefficients that are typically of interest in applied research. (They may be optimal in
other sense, e.g., minimized volume of the Wald joint-confidence set for all regression coefficients,
an attractive criterion in the early design of experiments.) While Cragg [1992] does not discuss
the motivation behind his specific optimization-proposals, the issue is that such optimizations
are compromises for the fact that a minimizer of the asymptotic variance matrix itself (in a
matrix sense) may not exist unless w?(z;7) is a correct model for V(u|z). Our adaptation
of Cragg [1992] bypassed the issue of existence by instead focusing on scalar functions of the
regression coefficients, e.g., the individual coefficients, their sums, differences, etc., that are
typically the focus in applied research. We showed how this adaptation led to our proposed
estimators that are conceptually very simple and based on elementary econometric theory. We
also demonstrated, using a variety of simulation experiments from the recent literature, the

substantial improvements that our proposed estimators can provide over the existing estimators.
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True | Sample | Classical Category 1 Category 2 Category 3
V(ulx) size WLS ALS MIN MWLS | CC MCC | MCls MCqgm MMC
50 1.0348 | 1.0348 1.0217 1.0592 | 1.0184 1.0818 | 1.0788 1.0787 1.1093
Case 100 1.0201 1.0201 1.0124 1.0409 | 1.0108 1.0635 | 1.0572 1.0569 1.0763
(1a) 200 1.0116 | 1.0116 1.0070 1.0201 | 1.0063 1.0331 | 1.0276 1.0273 1.0341
400 1.0072 | 1.0072 1.0036 1.0082 | 1.0028 1.0183 | 1.0148 1.0148 1.0193
50 .9302 9518  .9325 9391 29286  1.0099 | .9606 .9466 9753
Case 100 .9162 9242 .9260 9307 9207 .9964 | .9459 9357 .9551
(1b) 200 9075 9082 .9088 9130 9099 9425 | 9175 9153 9271
400 .8884 .8885  .8887 .8864 .8892  .9000 | .8909 .8891 .8985
50 .6765 .6853  .6812 .6763 6791 7092 | .7205 .6828 .7078
Case 100 .6674 .6677  .6688 .6718 .6714 7051 | .7006 .6781 .6885
(1c) 200 .6608 .6608  .6608 .6621 6623  .6679 | .6742 .6692 6721
400 .6330 .6330  .6330 .6298 .6330  .6296 | .6403 .6362 .6328
50 2677 2677 2677 .2736 2683  .2437 | .3752 .3651 .2867
Case 100 .2494 2494 2494 .2534 2500 .2360 | .3227 .3394 .2557
(1d) 200 .2426 2426 .2426 .2428 2427 2304 | .2958 .3109 .2382
400 .2230 2230 .2230 .2207 2223 2126 | .2506 .2798 .2126
50 4139 4139 4139 .3585 4128 2527 3611 4530 3015
Case 100 4251 4251 4251 .3547 4247 .2385 .3608 .4892 .2566
(2a) 200 4136 4136 .4136 .3623 4137 2424 | 3707 .5034 2274
400 .3864 .3864  .3864 .3339 3862 2321 | .3421 ATTT .2039
50 .2082 2082 .2082 1975 2091 .1237 | .2083 3122 1764
Case 100 .1864 1864  .1864 .1558 1870 .0908 | .1806 .3331 1324
(2b) 200 1772 A772 1772 1333 1778 .0800 | .1751 .3416 1027
400 1591 1591 1591 1079 1590 .0756 | .1540 .3153 .0780
50 1374 1374 1374 1243 1381 .0280 | .1343 .2340 1211
Case 100 .1008 .1008  .1008 .0823 1010 .0200 | .0957 .2348 .0801
(2¢) 200 .0881 .0881 .0881 .0529 .0882  .0177 | .0772 .2508 .0519
400 .0753 .0753  .0753 .0359 .0754  .0169 | .0619 2128 .0342
50 .8628 .8954  .8738 .8736 8675 .9553 | .9129 .8851 9377
Case 100 .8457 .8547  .8596 .8595 .8532  .9270 | .8887 .8693 .9097
(3a) 200 .8371 8377 .8382 .8433 8402  .8633 | .8541 .8463 .8631
400 .8100 .8100  .8102 .8101 .8109  .8161 | .8174 .8116 .8231
50 6717 .6841 .6813 .6803 .6780  .7326 | .7468 .6863 7379
Case 100 .6547 .6553  .6602 .6643 .6610  .7048 | .7278 .6688 7047
(3b) 200 .6474 6474 6472 .6518 .6496  .6606 | .6934 .6517 6671
400 .6135 6135  .6135 .6135 .6142  .6164 | .6509 .6113 .6193
50 .9444 .9541 9491 9517 9416 1.0404 | .9782 9625 9999
Case 100 .9264 9269  .9383 .9386 29296  1.0112 | .9611 .9473 .9636
(4a) 200 .9150 9150  .9218 .9206 9171 9445 | .9295 .9239 9318
400 .8960 .8960  .8983 .8960 .8956  .9055 | .9039 .8988 .9030
50 .7208 7382 .7323 7226 7202 7865 | .7641 7216 7472
Case 100 .6992 .7006  .7069 .7035 .6998  .7506 | .7288 .6990 7182
(4b) 200 .6858 .6858  .6862 .6866 .6842  .6981 | .6946 .6816 .6959
400 .6606 6606 .6609  .6561 .6557  .6607 | .6587 .6500 .6543

Table 1: Ratio of MSE of estimators with respect to MSE of OLS estimator of h(8) := 1 based
on 10000 Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.



True | Sample | Classical Category 1 Category 2 Category 3
V(ulx) size WLS ALS MIN MWLS | CC MCC | MCls MCqgm MMC
50 1.0400 | 1.0400 1.0239 1.0492 | 1.0206 1.0731 | 1.0737 1.0732 1.0937
Case 100 1.0238 | 1.0238 1.0164 1.0385 | 1.0137 1.0620 | 1.0572 1.0570 1.0703
(1a) 200 1.0137 | 1.0137 1.0081 1.0199 | 1.0073 1.0347 | 1.0289 1.0287 1.0344
400 1.0088 | 1.0088 1.0047 1.0091 | 1.0037 1.0188 | 1.0162 1.0161 1.0192
50 .9472 9683  .9542 .9497 9437 9869 | .9692 .9655 .9856
Case 100 .9326 9402 9435 9424 9368  .9772 | .9564 .9546 .9648
(1b) 200 .9226 9232 .9270 9267 9249 9388 | .9320 9333 9424
400 .9069 9069  .9084 .9050 9067  .9104 | .9091 .9099 9154
50 .7556 7624  .7665 .7592 7578 7613 | .7769 7736 7921
Case 100 7382 7383 .7439 7432 7425 7495 | 7574 .7559 .7648
(1c) 200 .7289 7289 7291 7316 7307 7291 | 7351 7420 .7419
400 .7062 7062  .7062 7042 .7048 7005 | .7084 7115 .7049
50 4289 4289 4298 4378 4327 4095 | 5454 .5356 .4540
Case 100 .3812 3812 .3813 .3859 3829  .3679 | .4839 4768 .3890
(1d) 200 .3658 .3658  .3658 .3684 3659  .3531 | .4619 4392 .3604
400 .3436 3436 .3436 .3434 3410 .3306 | 4173 4025 .3293
50 .6218 .6218  .6250 .6289 .6234  .5451 | .6153 .6870 5790
Case 100 .6035 .6035  .6037 .5967 .6046  .4942 | 5775 .6781 .4969
(2a) 200 .5980 .b980  .5980 .5963 .b983  .4851 | .5782 6797 4572
400 .b716 .b716 5716 .5662 .b682 4622 | 5442 .6491 4258
50 .4149 4149 4160 4236 4221 .3269 | .4290 .5452 3775
Case 100 .3562 3562  .3563 3374 3599 .2441 | .3570 .5199 2814
(2b) 200 .3384 3384  .3384 .3080 3403 .2057 | .3406 .5128 .2292
400 3151 3151 3151 2730 3138 .1983 | .3107 4801 .1943
50 2743 2743 2744 .2267 2777 0774 | 2533 .4050 .2233
Case 100 .1989 .1989  .1989 .1468 1998 .0547 | 1790 .3716 .1454
(2¢) 200 1728 1728 1728 1021 1730 .0457 | (1518 .3730 .0995
400 .1539 1539 .1539 .0784 1540 .0451 | .1305 .3297 .0735
50 .8617 .8953  .8742 .8638 .8662  .9015 | .8939 .8832 9118
Case 100 .8450 .8540  .8575 .8514 .8521  .8807 | .8738 .8670 .8895
(3a) 200 .8344 .8349  .8359 .8364 8375 .8459 | .8471 .8441 .8572
400 .8109 .8109 8111 .8084 .8114 8118 .8140 8118 .8187
50 .6925 7036 .7014 .6921 .6990  .7082 | .7339 7074 7369
Case 100 .6728 6733  .6776 .6745 .6783  .6880 | .7220 .6845 .7062
(3b) 200 .6615 .6615  .6615 .6611 .6637  .6655 | .6939 .6654 6770
400 .6318 .6318  .6318 .6290 6322 .6309 | .6598 .6284 .6335
50 .9658 9750 .9738 9691 9589  1.0097 | .9904 9839  1.0041
Case 100 .9467 9473 .9624 9551 9480  .9918 | .9732 9675 9751
(4a) 200 .9332 19332 .9420 .9362 9333 .9486 | .9454 .9425 .9505
400 9181 9181 9215 9154 9152 .9203 .9226 19196 .9230
50 .8132 .8256  .8387 8217 .8096  .8331 | .8345 .8190 .8370
Case 100 7821 7831 7973 7851 7785 L7987 | .7960 7824 7982
(4b) 200 .7642 7642 7665 7623 7583  .7657 | .7662 7587 7709
400 .7446 7446 .7450 7347 7322 7356 | .7359 .7292 7311

Table 2: Ratio of MSE of estimators with respe?cq to MSE of OLS estimator of h(f3) := 2 based
on 10000 Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.



True | Sample Classical Category 1 Category 2 Category 3
V(ulx) size OLS WLS | ALS MIN MWLS | CC MCC | MCls MCgm MMC
50 542 6.06 | 6.06 6.11 7.13 6.04 822 | 9.57 9.66 11.82
Case 100 4.70 493 | 493 4.93 5.60 496 6.29 | 6.91 6.83 7.66
(la) 200 4.88 5.03 | 5.03 5.06 5.11 5.03 5.60 | 5.65 5.65 5.99
400 4.83 492 | 492 489 4.99 490 5.13 | 5.29 5.28 5.45
50 5.03 596 | 6.19 6.11 7.00 6.11 9.24 | 9.75 9.10 11.22
Case 100 458 5.14 | 519 5.26 5.78 5.25 77 | 7.04 6.67 7.58
(1b) 200 4.79 5.09 | 510 5.12 5.40 5.17  6.29 | 6.01 5.85 6.39
400 4.87 496 | 496 4.97 4.99 494 529 | 5.29 5.40 5.56
50 4.46 5.52 | 5.66 5.56 6.34 5.64 8.61 | 11.73 8.33 10.44
Case 100 4.68 5.18 | 5.19 5.18 5.74 5.25 743 | 8.82 6.68 7.93
(1e) 200 4.82 493 | 493 4.93 5.33 5.10 599 | 6.66 5.80 6.71
400 490 498 | 498 4.98 5.06 5.06 540 | 5.88 5.38 5.79
50 4.64 5.04 | 5.04 5.04 5.77 5.22  6.60 | 14.06 6.44 10.29
Case 100 4.95 496 | 496 4.96 5.35 5.07  6.31 | 11.80 6.05 8.95
(1d) 200 5.01 5.10 | 5.10 5.10 5.34 5.30  5.59 | 8.08 5.53 7.05
400 4.75 490 | 490 4.90 5.10 5.04 5.14 | 6.07 5.14 5.85
50 4.04 431 | 431 4.31 4.86 438 540 | 7.19 6.79 9.65
Case 100 4.72 499 | 499 4.99 4.78 5.00 4.90 | 6.28 6.29 8.03
(2a) 200 496 5.20 | 520 5.20 5.21 5.17 4.46 | 5.83 5.75 6.21
400 492 5.06 | 5.06 5.06 4.74 5.06 4.73 | 5.21 5.30 5.36
50 4.44 5.01 | 5.01 5.01 5.80 510 8.35 | 8.99 8.00 10.13
Case 100 513 5.10 | 5.10 5.10 5.33 521 593 | 7.37 6.70 8.33
(2b) 200 493 5.05 | 5.05 5.05 4.97 5.19 4.82 | 6.10 5.97 7.03
400 4.73 495 | 495 4.95 4.62 495 506 | 5.47 5.54 6.18
50 4.86 5.29 | 529 5.29 6.27 544 5.80 | 11.87 8.46 11.16
Case 100 541 520 | 5.20 5.20 5.96 5.21 4.57 | 9.78 6.89 9.21
(2¢) 200 499 519 | 519 5.19 5.26 519 439 | 6.91 5.99 7.17
400 4.88 5.06 | 5.06 5.06 4.76 5.0 4.88 | 5.92 5.32 6.63
50 492 6.01 | 632 6.21 6.93 6.27 9.21 | 10.57 8.97 12.67
Case 100 4.65 5.07 | 519 5.21 5.82 534 737 | 7.52 6.84 8.51
(3a) 200 4.82 5.04 | 5.06 5.10 5.40 529 5.84 | 6.22 5.82 6.60
400 4.92 483 | 483 4.83 5.10 490 522 | 5.50 5.48 5.74
50 4.57 5.87 | 6.05 5.96 6.66 6.06 8.88 | 12.10 8.53 12.33
Case 100 4.81 512 | 512 5.18 5.85 543 7.09 | 8.68 7.00 8.79
(3b) 200 4.80 5.06 | 5.06 5.05 5.40 514 5.66 | 6.47 5.79 6.48
400 4.87 5.01 | 5.01 5.01 5.09 5.08 526 | 5.72 5.43 5.70
50 498 591 | 596 6.13 6.85 6.19 9.16 | 9.62 9.01 11.18
Case 100 4.65 5.04 | 5.04 5.27 5.75 525 7.36 | 7.06 6.82 7.63
(4a) 200 4.75 513 | 5.13 5.23 5.44 530 6.03 | 6.00 5.80 6.31
400 4.80 4.87 | 487 491 5.04 495 517 | 5.32 5.30 5.40
50 453 5.76 | 595 591 6.24 6.14 872 | 10.79 8.57 10.29
Case 100 4.55 5.34 | 5.36 547 5.74 5.56 7.21 7.98 6.69 7.62
(4b) 200 4.85 5.00 | 5.00 5.01 5.18 521 549 | 6.08 5.83 6.19
400 4.83 5.01 | 5.01 5.01 5.11 5.08 5.33 | 5.69 5.44 5.72
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Table 3: Empirical size (in %) of 5% Wald test for h(8) := 1 based on 10000 Monte Carlo trials
under the simulation design of Romano and Wolf [2017] and using their Model 2.



True | Sample Classical Category 1 Category 2 Category 3
V(ulx) size OLS WLS | ALS MIN MWLS | CC MCC | MCls MCgm MMC
50 515 5.64 | 5.64 5.75 6.35 570 7.09 | 8.65 8.62 9.93
Case 100 4.75 512 | 5.12 5.15 5.69 5.14 6.16 | 6.76 6.75 7.41
(la) 200 4.87 5.01 | 5.01 5.04 5.21 5.03 5.52 | 5.80 5.76 6.05
400 5.00 5.12 | 512 5.15 5.22 5.13 535 | 5.56 5.52 5.61

50 4.78 514 | 541 5.44 5.74 531 T7.25 | 835 8.06 9.19
Case 100 4.70 512 | 519 5.23 5.59 520 6.3 | 6.88 6.71 7.34
(1b) 200 4.82 490 | 489 4.98 5.25 5.08 5.61 5.97 5.85 6.26
400 4.84 5.03 | 5.03 5.04 4.95 5.02 525 | 5.32 5.45 5.65

50 4.86 5.09 | 5.18 5.2 5.71 5.34 6.57 | 8.29 7.95 8.79
Case 100 492 498 | 499 5.07 5.38 5.27 6.15 | 7.08 6.89 7.37
(1c) 200 5.02  5.03 | 5.03 5.04 5.31 519 5.66 | 5.94 5.86 6.45
400 494 519 | 519 5.19 5.13 9.15 535 | 5.65 5.39 5.66

50 5.28 522 | 522 5.25 5.83 5.60 6.39 | 8.98 6.82 9.04
Case 100 5.25 5.06 | 5.06 5.06 5.35 521 597 | 8.29 6.04 7.49
(1d) 200 5.06 5.15 | 5.15 5.15 5.12 5.23 544 | 647 5.65 6.33
400 4.86 5.01 | 5.01 5.01 5.10 5.13 5.07 | 5.54 5.27 5.64

50 498 498 | 498 5.04 5.43 534 629 | 781 7.90 8.62
Case 100 499 5.03 | 5.03 5.03 5.43 5.17 5.62 | 6.61 6.83 7.02
(2a) 200 4.89 517 | 517 5.17 5.24 5.27 5.16 | 5.89 5.74 5.78
400 4.89 5.02 | 5.02 5.02 5.05 5.06 4.80 | 5.36 5.40 5.03

50 5.26  5.09 | 5.09 5.11 6.33 5.48  8.41 8.74 8.45 9.78
Case 100 5.27 5.05 | 5.06 5.05 5.65 524 633 | 6.98 6.97 7.62
(2b) 200 5.03 5.08 | 5.08 5.08 5.18 5.23 499 | 5.88 5.92 6.54
400 4.87 5.02 | 5.02 5.02 4.76 498 518 | 5.38 5.45 5.63

50 5.32 549 | 549 549 6.41 5.61 6.22 | 10.35 8.54 10.60
Case 100 546 525 | 5.25 5.25 5.73 5.32  5.04 | 8.29 6.97 8.56
(2¢) 200 5.00 5.16 | 5.16 5.16 5.10 5.20 4.66 6.28 6.04 6.89
400 491 5.01 | 5.01 5.01 4.73 5.02 481 5.53 5.26 6.23

50 4.81 530 | 5.64 5.54 5.80 5.53 6.97 | 8.68 8.15 9.92
Case 100 4.80 5.06 | 5.12 5.28 5.59 521  6.23 | 7.02 6.85 7.70
(3a) 200 495 5.06 | 5.08 5.09 5.34 5.09 545 | 6.01 6.01 6.51
400 4.86 5.08 | 5.08 5.08 5.01 5.05 5.15 | 540 5.39 5.48

50 496 5.17 | 537 5.35 5.76 59.54  6.61 8.76 7.94 9.65
Case 100 494 495 | 496 5.01 5.53 5.18 5.93 7.21 6.79 7.83
(3b) 200 5.06 520 | 520 5.21 5.38 5.24  5.50 5.89 6.00 6.25
400 484 514 | 5.14 5.14 5.14 5.16 5.15 5.56 5.34 5.56

50 4.83 526 | 531 5.59 5.76 0.47  7.23 8.42 8.15 9.15
Case 100 4.76  5.15 | 5.15 5.45 5.53 5.34  6.30 6.79 6.81 7.17
(4a) 200 4.87 490 | 490 5.05 5.27 5.03  5.59 5.95 6.01 6.23
400 4.82 5.05 | 5.05 5.09 4.92 5.01 5.15 5.30 5.34 5.51

50 495 5.00 | 521 5.49 5.71 5.40 6.81 8.46 8.17 8.91
Case 100 496 498 | 499 5.20 5.48 5.24 6.11 7.02 6.72 7.47
(4b) 200 5.03 5.08 | 5.08 5.12 5.31 9.26  5.50 5.94 5.89 6.12
400 4.80 5.11 | 5.11 5.12 5.25 5.17  5.37 5.57 5.37 5.50
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Table 4: Empirical size (in %) of 5% Wald test for h(3) := B2 based on 10000 Monte Carlo trials
under the simulation design of Romano and Wolf [2017] and using their Model 2.




True | Sample | Classical Category 1 Category 2 Category 3
V(u|x) size WLS ALS MIN MWLS | CC MCC | MCls MCqm MMC
50 6128 6128 5676 | .6114 .4864 | .5221  .5983 = .4353
Case 100 6285 6285  .5730 | .6281 4792 | 5535  .6522 4286
(2a) 200 .6309 same .6309  .5914 | .6306 .4925 | .5828  .6790 = .4396
400 .6224 6224 5794 | 6223 4844 | .5798  .6817 4376
50 4317 4317 4023 | 4287 3118 | 3775 4871 3233
Case 100 4155 4155 3679 | 4143 2855 | 3778  .5306  .2948
(2b) 200 4132 as 4132 3565 | 4123 2805 | .3954  .5560 .2824
400 3974 3974 3322 | 3970 2736 | .3837  .5480  .2624
50 3415 3415 2917 | .3407  .1627 | .2676  .4163 .2452
Case 100 .3007 3007 .2415 | 3005 1413 | 2442 4436 2127
(2¢) 200 2891 WLS .2891  .2092 | .2891 .1336 | .2501  .4723 .1881
400 2715 2715 1813 | 2715 1298 | 2367 @ .4488 .1638

Table 5: Ratio of the average length of confidence intervals of h(f) := (1 using each estimators

with respect to the average length of confidence intervals using OLS. Results are based on 10000
Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.

True | Sample | Classical Category 1 Category 2 Category 3
V(ulz) | size WLS | ALS MIN MWLS | CC_ MCC | MCls  MCqm MMC
20 7705 700 7554 | 7607 6973 | 6928 L7311 .6538
Case 100 .7605 7605 7475 | .7BST 6779 | .T057  .7619 .6395
(2a) 200 7639 same .7639  .7573 | .7596 .6870 | .7294  .7861 .6469
400 7526 7526 7469 | 7499 6762 | .7253  .7877  .6405
50 .6292 6291  .6044 | .6210 .5058 | .5666  .6459 .5039
Case 100 .5858 .b858  .5560 | 5819 .4634 | .5b483  .6648 4620
(2b) 200 .b754 as D754 5426 | 5722 4461 | 5574  .6821 4412
400 .5569 .b569  .5215 | .5H48 4403 | .5b446  .6741 4233
50 4985 4985 4237 | 4969 2676 | .4044 5557  .3581
Case 100 4306 4306 3488 | 4302 .2326 | .3633  .5628 .3087
(2¢) 200 4078 WLS .4078  .3038 | .4077 .2141 | .3627  .5800 2741
400 .3875 3875 2727 | 3874 2110 | .3479 5582 .2479

Table 6: Ratio of the average length of confidence intervals of h(3) := P2 using each estimators

with respect to the average length of confidence intervals using OLS. Results are based on 10000
Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.

23



True | h(B) | Classical Category 1 Category 2 Category 3

V (ulz) WLS | ALS MIN MWLS | CC  MCC | MCls MCqm MMC
By 8316 | 8285 .7995  .5318 | .7893 .5164 | .6330  .7003  .4490

Case | B, | 1.0231 | 1.0416 .9488  .7593 | .9039 .8829 | .8509  .8464  .6861
(1) Bs | 9011 | .8935  .8361  .6249 | .8289 .6845 | .7263 7149  .5598

Ba 1.6956 1.6735  .9817 .8987 | 1.0012 9871 | .8498  .8384  .7813

b1 1.4923 | 1.4483 .8719 5154 7906 5781 | 4181  .5391 .3868
Case Ba 1.4674 | 1.5110 .9761 7178 8530 7431 | .8093  .7541 7708

(2) B3 24286 | 2.3621  .9205 .5298 8066  .6043 | 4395 5139 4139
B4 1.4274 | 1.4204  .8926 .6629 7923 .6654 | .6217  .6199  .5544

B1 .8672 .8521 .8536 .8623 8666  .8714 | .8267  .8078  .8041

Case B2 7987 .8403  .8376 7617 7894 7902 | 7622 7567  .6957
(3) B3 .8095 8104 .8112 .8002 8075 8518 | .7933  .7839  .8336
Ba 9655 9497 9462 .9502 9603 9625 | .8731  .8604  .8047

51 .1684 1616  .1616 1847 1686 1798 | 1777 3412 .1960

Case B2 0716 0721 0721 .1080 0717 .0941 | .0887  .2116  .1145
(4) B3 0723 0724 0724 1091 0724 0973 | .0897  .2249 1157
B4 1183 1158 1158 .1435 1185 1392 | 1331 2843 .1470

B1 .8134 8230  .8213 .5985 7858  .b652 | .6388  .6947 4741

Case Ba 1.0198 1.0440  .9885 .7960 9204 7784 | 8854  .8974  .6408
(1) B3 9035 9248 .9079 .6720 8437 .6695 | .7704  .6801 5349

Ba 1.7835 | 1.7916 1.0158  .9002 | 1.0001 .9989 | .8567  .8461  .7641

b1 1.7941 1.6708 1.0041  .5623 8552 .B86Y | 4394 5470  .4094
Case Ba 1.5993 1.6056  .9950 7316 8892 7303 | .8642  .8219  .7458

(2) B3 3.2366 | 3.0016 1.0293  .5868 8905  .6093 | 4464  .5266  .4033
Ba 1.7205 | 1.5769  .9730 .6868 8436  .6885 | .6373  .6346  .5654

b1 8745 .8658  .8659 .8704 8737 8741 | .8346  .8249  .7828
Case Ba 7985 8184  .8184 .7865 7974 7878 | 7886  .7862  .6314
(3) B3 .8081 8167  .8168 .8025 8074  .8030 | .8011  .8036  .7949
Ba 9597 9387  .9386 .9552 9577 9564 | 8774 .8527  .7954
b1 .1568 1529 1529 1621 1568 1596 | .1596  .3289 = .1627
Case Ba .0615 .0609  .0609 .0785 0616  .0719 | .0691  .2447  .0805
(4) Bs .0662 0654  .0654 .0805 0662  .0760 | .0732  .2569  .0829
B4 1114 1094 11094 1192 1115 1164 | (1161 3015 1191

Table 7: Ratio of MSE of estimators with respect to MSE of OLS estimator of various h(/3)’s based
on 10000 Monte Carlo trials under the design of Lu and Wooldridge [2020]. The top panel (above
the horizontal line) corresponds to sample size n = 1000, and the bottom panel to n = 5000. The
parametric model w?(z;+) is correctly specified for V(u|x) in the sense of (2) under Case 4.
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h(pB) | Classical Category 1 Category 2 Category 3
WLS ALS MIN MWLS | CC MCC | MCls MMC
b1 .6063 6064 4910 | .6064 .5018 | .5452  .4732
Ba .6681 same .6687  .5553 | .6675 .5524 | .5982  .4844
Bs .5055 as 5056 3422 | .5056 .3403 | .4141  .3329
B4 .4963 WLS  .4963 .3396 4963 .3521 | 3936  .3155
55 .9330 .9228 .8893 9118 .9063 | .8250  .7762

Table 8: Ratio of MSE of estimators with respect to MSE of OLS estimator of coefficients based on
10000 Monte Carlo trials under the empirical design of Romano and Wolf [2017] [c.f. their Table
C7] and using their Model 1 that, in their Table C7, performed noticeably better than Model 2.

h(B) Classical Category 1 Category 2 Category 3
OLS WLS | ALS MIN MWLS | CC MCC | MCls MMC
51 4.65 5.09 5.09 6.60 5.09 7.28 5.76 7.50

Ba 4.70 479 | same 4.82 5.77 4.82 591 5.49 6.27
B3 4.99 4.90 as 4.90 6.27 491 6.38 5.70 6.95
Ba 4.17 4.74 | WLS 4.74 7.18 4.74 851 6.02 7.94
Bs 4.80 5.22 5.37 5.48 539 584 | 5.94 6.43

Table 9: Empirical size (in %) of 5% Wald test for coefficients based on 10000 Monte Carlo trials
under the empirical design of Romano and Wolf [2017] [c.f. their Table C8] and using their Model
1 that, in their Table C8, performed noticeably better than Model 2.

h(5) | Classical Category 1 Category 2 Category 3
WLS ALS MIN MWLS | CC MCC | MCls MMC
51 7781 7781 .6626 7781 6542 | 7170 6318
B2 .8132 same .8129 7230 8124 7199 | .7523  .6562
B3 7132 as 7132 .5664 7131 .5633 | .6320 .5443
B4 7067 WLS .7067  .5470 | .7067 .5340 | .6080 .5129
Bs .9522 .9434 19218 9385  .9272 | .8701  .8242

Table 10: Ratio of the average length of confidence interval for each h(f) using each estimators
with respect to the average length of confidence interval of that h(3) using OLS. Results based on
10000 Monte Carlo trials under the empirical design of Romano and Wolf [2017][c.f. their Table
C8] and using their Model 1 that, in their Table C8, performed noticeably better than Model 2.
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h(5) Classical Category 1 Category 2 Category 3

OLS WLS | ALS MIN MWLS CcC MCC MCls MMC

constant 5.905 6.394 6.214 6.352 6.074 6.619 6.196
(2.115)  (.977) (.912) | (.961)  (.910) | (.906)  (.867)

incq .633 .464 AT8 482 A73 .499 457
(.152)  (.063) (.056) | (.061)  (.055) | (.054)  (.048)

inc% .000 .003 .001 .003 .002 .002 .002
(.005)  (.002) (.002) | (.002) (.002) | (.002)  (.002)

ageq 704 .605 .597 .608 .581 677 .626
(.141)  (.087) (.076) | (.087)  (.076) | (.074)  (.071)

age% .031 .011 .007 .012 .006 .013 .009
(.014)  (.005) same (.004) | (.005)  (.004) | (.004)  (.003)

incg.ageg .044 .026 .029 .027 .028 .031 .029
(.013)  (.006) as (.005) | (.006)  (.005) | (.005)  (.005)

ed401k 6.346 6.760 6.451 6.641 5.174 7.477 4.362
(2.022)  (1.842) WLS (1.442) | (1.806) (1.518) | (1.510) (1.124)

male 1.799 1.505 1.511 1.517 1.579 1.662 1.486
(1.959)  (.757) (.537) | (.753)  (.523) | (.719)  (.504)

e401k.incq 307 .258 .232 .265 .226 317 .204
(216)  (.128) (101) | (.125)  (.087) | (.107)  (.090)

ed01k.ageq .154 .160 118 .159 .228 .162 .190
(262)  (.120) (105) | (.118)  (.102) | (.112)  (.100)

Table 11: Estimates and standard errors (in parentheses) of regression coefficients in the financial
wealth equation in Lu and Wooldridge [2020]’s empirical application [c.f. their Table 3|. Standard
errors of the proposed estimators are highlighted with blue color.
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A Appendix A: Proofs

Proof of Lemma 1: (1) and assumption A5 imply that B\OLS 2y 0.

(a) Using this and assumptions A4 and A5 we obtain that 52, (Bors,v) — 02 (7) 2 0,
33at2(30Ls, Bors, ) = 02u2(7) £ 0 and 33%3(30&% ) = 02u3(7) 0 uniformly in v € T'. We
show the proof for Category 2; the proof for the other two categories follows in the same way.

Take any 6 > 0 and note that assumption A2 implies that P(||Jeat2 — Vg2l > 6) <
P (102,05 (Feat2) — 02442(Viara)| = €(8)) for some €(8) > 0. As usual, we will prove the result

by showing as follows that the probability on the righthand side goes to zero as n — co:

0 S o—gatZ (’/y\cat2) - UZatQ (’y:atZ)

= UgatQ (&2(12&2) - 83@2 (BOLSa 60LS? acat2) + 82(11&2 (5OLSa BOLS? ﬁcat2) - Ugatg (’Y:atz)

IN

O—gatQ (ﬁcaﬂ) - 5—3(1152 (501/37 6OL57 ﬁcat2) + 83(1152 (ﬁOLSa 6OL37 7:at2) - O—zatQ (V:atZ)

where the first line follows by the definition of ~,,,, the second line is simply adding and
subtracting the same thing, and the third line follows by the definition of 7.q:2. Therefore,

2 n 2 * 2 ~2 7 2 €(d)

P ([02a12(Veat2) = Ocarz(Vear2)| = €(8)) < P Slelli? 0eat2(7) — Tlar2(Bors: Bors, V)| = - 0
v

using that 52, (Bows, Bors, ) — 02,:0(7) 2 0 uniformly in v € T.

(b) Asin (a), we can use Bors % °, and assumptions A4 and A6 to obtain that 2.1 (BOLS, ¥)—
Tlat1 () = Op(”_l/z)a Tear2(Bors: Bors, V) =Teara(v) = Op(n™/2) and 52443 (Bors: 7)—02u3(7) =
O, (n~'/2) uniformly in {y € T : ||y — Yj |l < 6} for any d,, | 0 and where j = catl, cat2, cat3.

The result in (a) implies that for each j = catl, cat2, cat3 we have P(|[7; — 7}l < 6n) — 1

for any &, | 0 as n — oo. So, as in (a), but now conditioning on the event {||[7; — ;| < dn},

we can obtain that:

o
IN

03@2 (Yeat2) — 0 gatQ (Year2)

< 020(Feat2) — Oourn(Bors, Bors, Yeat2) + Oogio(Bors, BOLSs Viat2) — Tcata(Viat2)

IN

2 sup 0202 (7) = 6202 (Bors, Bors, V)| = Op(n™/?)
YED: Iy =7} [I1<dn

by the local uniform convergence established above. Therefore, |02 ,5(Veat2) — 0210 (Viare)| =
Op(n~1/%). Hence, assumption A3 now gives: [[Jeara = Vigeall < |0earo(Year2) = 02ara (Vi) /M =

O,(n~1/2). Proofs for Categories 1 and 3 follow similarly. m
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Proof of Theorem 1: (a) The proof is very standard, so we simply provide the two key steps

here. For any 7; % v; for j = catl, cat2, cat3:

fZ s " fZ T el (2)] VG, —2) + Ri o+ R

mza'Y] zza'YJ

- waf“” +o,(1) (13)

ml? ’YJ

since E [zul ()] = 0 by (1); Ripn = [+ 0 (wudy j(2:) — E [zuldy ()] vV —7;) =

op(1) by the weak law of large numbers because E [zuA; ;(z)] = 0; and:

1 & 1 1
— Tl — — = — Aqi(x) (5 —
\/ﬁ; 1 Wy [W2($i27j> Wz(xﬂ’yj') ]( z)( ])‘|‘
1 1 1
< [|@ius]| x ~— - = — Auj() (@ —7)
\/ﬁ; w(@;7;)  w(@i575) ! !
< 2WZ lazsul| X |Ag ;| x 77 = 27112
1 ¢ 1/4 )2
< 5 X eyl | (0415 = 51) = 0p(1);
=1

where the first inequality follows by the Cauchy-Schwartz inequality, the second and third in-
equalities by assumption A8, and the last equality follows by assumption A8 and Lemma 1(b).

(13) along with assumptions A4, A5 and A7 directly gives the results for Categories 1 and
3. The result for Category 2 follows once we additionally note that for any by, by 2 5° we have
: (1) X(bl, b2, Yeat2) 2, A(Yeat2) by assumption A6 and Lemma 1(a) (see also the expressions for

//\\(bl, b2, Yeat2) and A(y) in Section 2.2 and equation (8) respectively); and hence (ii)

Vit (b1 b2, Fear2)Fear2) + (1 = by, b Fearz)hors — |
vn :)\(%aw)flﬁcaﬂ) + (1 = AYeat2)hoLs — ho}

+ (A1 ba: Feat) = Meare) ) [Vi(B(Fear2) = h°) = Vi(hors = h°)]
r

7 [ AOcar2)h Featz) + (1= A(earz)Vhors = h°] + 0y(1)

where the first equality follows by adding and subtracting off the same terms, and the second

equality by (i) and the joint asymptotic normality of v/n(h(Fear2) — h°) and v/n(hors — hP).
(b) Follows by assumptions A4 and A6, Lemma 1(a) and Theorem 1(a), that jointly with

Slutsky’s lemma give the asymptotic normality of the test statistic in each of the three categories.

(c) Follows by Theorem 1 (a) and (b) and by definition. m
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