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1 Introduction

Let (yi, x
′
i)
n
i=1 be i.i.d. copies of the random variables (y, x′) from a linear regression model:

y = x′β0 + u with E[u|x] = 0 almost surely in x. (1)

Let h(β) be our scalar parameter of interest with h0 := h(β0) its true value.

In principle, a semiparametric weighted least squares estimator of h(β) based on nonpara-

metric estimation of V (u|x) delivers semiparametric efficiency; see Carroll [1982], Robinson

[1987], etc. However, it is rare to see such estimation in practice because nonparametric esti-

mation of V (u|x) generally requires very large sample size for the asymptotic properties of the

semiparametric weighted least squares estimator to be good approximation of its finite-sample

properties. Parametric weighted least squares, where V (u|x) is estimated based on some user-

specified parametric model, is also not an attractive solution because its precision can be even

less than that of ordinary least squares (OLS) if the user-specified parametric model is incorrect.

Starting with the paper “Resurrecting weighted least squares” by Romano and Wolf [2017],

the recent literature has come up with various interesting proposals to mitigate this twin prob-

lems with semiparametric and parametric weighted least squares; see, e.g., DiCiccio, Romano,

and Wolf [2019], Spady and Stouli [2019], Lu and Wooldridge [2020], etc. Taking as given a user-

specified and possibly incorrect parametric model ω2(x; γ), known up to a finite dimensional

parameter γ ∈ Γ ⊆ Rdγ , for V (u|x) this literature proposes parametric estimators that improve

upon OLS and parametric weighted least squares (WLS) estimators in terms of precision.

Our paper follows this recent literature and shows that we can obtain further substantial

improvement in precision by an “optimal” treatment of γ in the parametric model ω2(x; γ).1

We classify the recently proposed estimators of h(β) into three categories and consider their

infeasible (with respect to γ) versions as functions of γ, i.e., we take the estimators without

plugging in the values of γ that were proposed in the literature. Our proposed estimator of h(β)

under each category then plugs in an estimator of that γ that minimizes the asymptotic variance

of that category’s infeasible estimator of h(β). By construction, the asymptotic variance of our

proposed estimators of h(β) cannot exceed that of any estimator of h(β) in their respective

categories. Simulations under the designs of these recent papers demonstrate that the gain in

precision due to our proposal can be substantial without much cost even in small samples.

1Nonparametric estimators with“fixed” tuning parameters — e.g. series estimators with the number of terms in
the series fixed — can be viewed as parametric estimators since the quality of their approximation of V (u|x) does not
get better with the increase in n. Although not considered explicitly, such estimators are covered by our discussion.
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Our proposed estimators build on Cragg [1992]’s idea of minimizing the trace or determinant

of the asymptotic variance of a similar infeasible version of the WLS estimator of β (denote it

by β̂n(γ)) with respect to γ. While Cragg [1992] does not discuss it, such minimization leads

respectively the well-known notions of A and D optimality; see Elfving [1952], Chernoff [1953]

and, respectively, Wald [1943]. These notions of optimality (and others, e.g., the E-optimality

of Ehrenfeld [1956]; the L-optimality due to Karlin and Studden [1966] and Federov [1971];

Kiefer [1974]’s general optimality, etc.) would be compromises for the fact that unless ω2(x; γ)

correctly specifies V (u|x), there is no guarantee of existence of a minimized (with respect to

γ) asymptotic variance matrix of β̂n(γ). Without that existence, for some of the regression

coefficients, the standard errors of estimators from using Cragg [1992] may exceed that from

using WLS, and it is evident in hindsight that similar notions of optimality are not attractive

in empirical work.2 This concern of nonexistence is not just academic; we found ample evidence

of its adverse effect resulting in Cragg’s method having much larger than WLS standard error.

We bypass this critical issue of existence of the minimized matrix by reducing the problem

to minimization of a scalar function, the asymptotic variance of an estimator of h(β). Then,

continuity of this function with respect to γ ∈ Γ and compactness of Γ in Rdγ ensure the

existence of the minimized variance and its minimizer by the extreme value theorem.

Of course, if ω2(x; γ) correctly specifies V (u|x) then the “optimal” γ exists for β itself and

hence works for all h(β)’s, e.g., elements of β. Then WLS (also OLS if V (u|x) is constant),

the recently proposed estimators, and our proposed estimators are all asymptotically equivalent

and deliver semiparametric efficiency. Otherwise, our proposed estimators under each category

deliver the “second-best” solution while WLS and others cannot, and OLS does not even try.

We conclude the introduction by noting that other literatures — see e.g. Cao, Tsiatis, and

Davidian [2009] for doubly-robust estimation, Noack, Olma, and Rothe [2021] for regression

discontinuity design, etc. — have also gainfully used ideas similar to that in our paper.

Our paper proceeds as follows. Section 2 begins with a discussion of the recently proposed

estimators to motivate the construction of the infeasible (with respect to γ) estimators. Then it

presents the algorithm for implementation of our proposed estimators based on minimizing with

respect to γ the estimated asymptotic variance of these infeasible estimators. Finally, it presents

the asymptotic properties of the proposed estimators and inference based on them. Section 3

demonstrates the superior finite-sample precision (without much cost otherwise) of the proposed

2This perhaps led to Cragg [1992]’s method being unfortunately overlooked in the empirical and theoretical
literature. Even among the recent papers on this topic of improvement in precision over OLS and WLS, the only
mention of Cragg [1992] is rather cursory — Romano and Wolf [2017] mention in their footnote 2 : “For some even
earlier related work, see Cragg (1983, 1992), though he is mainly interested in estimation as opposed to inference.”
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estimators using the simulation designs and empirical examples from Romano and Wolf [2017]

and Lu and Wooldridge [2020]. (Additional simulation results are available from us.) Section 4

concludes. Technical discussions and proofs of results are collected in the appendix.

2 Motivation, Implementation and Asymptotic properties

We will call the user’s chosen parametric model ω2(x; γ) correctly specified for V (u|x) if:

there exists γ0 ∈ Γ ⊆ Rdγ such that ω2(x; γ0) ∝ V (u|x). (2)

We will not maintain (2), but will only consider it as an unlikely special case. On the other hand,

following the related literature and resembling common empirical practice, we will maintain that

the user’s parametric model ω2(x; γ0) can accommodate for conditional homoskedasticity of u,

i.e.,

there exists γ̄ ∈ Γ such that ω2(x; γ̄) ∝ 1. (3)

2.1 Motivation behind the proposed estimators:

It will be useful at the outset to define the following building blocks to fix ideas and streamline

the discussion. For any γ ∈ Γ we define an infeasible weighted-by-ω2(x; γ) estimator of h(β) as:

ĥ(γ) := h(β̂(γ)) where β̂(γ) =

(
n∑
i=1

xix
′
i

ω2(xi; γ)

)−1 n∑
i=1

xiyi
ω2(xi; γ)

. (4)

To relate ĥ(γ) with the classical estimators, do note from (4) that the OLS and WLS es-

timators of h(β) are ĥOLS ≡ ĥ(γ̄) and ĥWLS = ĥ(γ̂WLS) since that of β are, respectively,

β̂OLS ≡ β̂(γ̄) and β̂WLS = β̂(γ̂WLS) where γ̂WLS
p−→ γWLS := arg minγ∈ΓE

[(
u2 − ω2(x; γ)

)2]
.

For a heuristic discussion of the motivation here, with the precise statements postponed to

Section 2.3, it will help to define the following components of the sandwich variance matrices:

B1 := E[xx′], B2(γ) := E

[
xx′

ω2(x; γ)

]
, B(γ) := [B1(γ), B2(γ)], and

C(γ) :=

 C11 := E[V (u|x)xx′] C12(γ) := E
[
V (u|x)xx′

ω2(x;γ)

]
C12(γ) C22(γ) := E

[
V (u|x)xx′

(ω2(x;γ))2

]
 . (5)

Now, consider any estimator γ̂
p−→ γ for some given γ ∈ Γ. It is well known that E[u|x] = 0

(see (1)) gives E
[

xu
ω2(x;γ)

∂
∂γ′ω

2(x; γ)
]

= 0 if ∂
∂γ′ω

2(x; γ) exists (almost surely in x). Therefore,
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under standard conditions with H := H(β0) finite where H(β) := ∂h(β0)/∂β′, we have:

√
n
(
ĥ(γ̂)− h0

)
=
√
n
(
ĥ(γ)− h0

)
+ op(1)

= HB−1
2 (γ)

1√
n

n∑
i=1

xiui
ω2(xi; γ)

+ op(1)

d−→ N
(
0, σ2(γ) := HB−1

2 (γ)C22(γ)B−1
2 (γ)H ′

)
.

(6)

Moreover, generalizing (6) using similar steps gives the joint distribution:

√
n

 ĥOLS − h0

ĥ(γ̂)− h0

 =
√
n

 ĥOLS − h0

ĥ(γ)− h0

+ op(1)

=

 HB−1
1 0

0 HB−1
2 (γ)

 1√
n

n∑
i=1

 xiui

xiui
ω2(xi;γ)

+ op(1) (7)

d−→ N

0,Σ(γ) :=

 HB−1
1 0

0 HB−1
2 (γ)

C(γ)

 HB−1
1 0

0 HB−1
2 (γ)

′
 .

With this background in place, we will divide the recently proposed estimators that improve

upon OLS and WLS into three categories that all contain OLS and WLS as special cases.

� Category 1: Estimators of the form φnĥ(γ̂) + (1−φn)ĥOLS for: (i) some φn
p−→ 1 or φn

p−→ 0

and (ii) some γ̂
p−→ γ for some γ ∈ Γ. Therefore, under standard conditions, such estimators

are asymptotically equivalent to either ĥ(γ) or ĥOLS depending on whether φn
p−→ 1 or φn

p−→ 0.

Hence its asymptotic variance cannot be smaller than min{σ2(γ), σ2(γ̄)}; see, (6) and (3).

Romano and Wolf [2017]’s ALS estimator takes: (i) φn = 1 if a consistent test cannot reject

the null of homoskedasticity at some level α (e.g. 10%) and φn = 0 otherwise; and (ii)

γ̂ = γ̂WLS . DiCiccio, Romano, and Wolf [2019]’s MIN estimator takes: (i) φn = 1 if ĥWLS

has smaller standard error than ĥOLS and φn = 0 otherwise; and (ii) γ̂ = γ̂WLS . Spady and

Stouli [2019]’s estimator under E[u|x] = 0 takes: (i) φn ≡ 1 for all n ≥ 1, and (ii) γ̂
p−→ γSS

where γSS solves E
[
∂
∂γω(X; γSS)V (u|x)−ω2(X;γSS)

ω2(X;γSS)

]
= 0; see their equation (3.9), Corollary 2.

� Category 2: Estimators of the form λ̂(γ̂)ĥ(γ̂) + (1 − λ̂(γ̂))ĥOLS for some γ̂
p−→ γ for some

γ ∈ Γ, and where λ̂(γ̂)
p−→ λ(γ) := arg minλ∈[0,1] Avar

(
λĥ(γ̂) + (1− λ)ĥOLS

)
, i.e.,

λ(γ) =
Avar(ĥOLS)−Acov(ĥOLS , ĥ(γ))

Avar(ĥOLS) + Avar(ĥ(γ))− 2Acov(ĥOLS , ĥ(γ))
(8)

with Avar and Acov denoting asymptotic variance and covariance respectively. Under stan-
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dard conditions, we know from (7) that such estimators are asymptotically normal, asymp-

totically unbiased, and have asymptotic variance equal to:

σ2
cat2(γ) :=

 1− λ(γ)

λ(γ)

′ Σ(γ)

 1− λ(γ)

λ(γ)

 . (9)

DiCiccio, Romano, and Wolf [2019]’s convex combination (CC) estimator takes γ̂ = γ̂WLS .

� Category 3: Estimators of the form h(β̂MC(γ̂)) where β̂MC(γ̂) is a moment combination

(MC) estimator, specifically the efficient GMM estimator:

arg min
β

 1

n

n∑
i=1

 xi(yi − x′iβ)

1
ω2(xi;γ̂)xi(yi − x

′
iβ)


′

Ĉ+(γ̂)

 1

n

n∑
i=1

 xi(yi − x′iβ)

1
ω2(xi;γ̂)xi(yi − x

′
iβ)


(10)

for some γ̂
p−→ γ for some γ ∈ Γ, and Ĉ+(γ̂)

p−→ C+(γ) with the superscript + denoting the

Moore-Penrose (MP) inverse. For any γ ∈ Γ, if we write the four dβ×dβ (dβ being dimension

of β) blocks of Ĉ+(γ) as Ĉ+
ij (γ) for i, j = 1, 2 then we obtain the closed-form expression:

β̂MC(γ) = δ̂(γ)β̂(γ) + (Idβ − δ̂(γ))β̂OLS (11)

where δ̂(γ) :=
(
B̂(γ)Ĉ+(γ)B̂′(γ)

)−1 (
B̂1Ĉ

+
12(γ) + B̂2(γ)Ĉ+

22(γ)
)
B̂2(γ) with the B̂’s and Ĉ’s

denoting the sample analogs of the B’ and C’s (and defined precisely in Section 2.2). Under

standard conditions and the conditions for convergence in probability of sample MP inverse

to its population counterpart (see, e.g., Puri, Russell, and Mathew [1984]):

√
n
(
h(β̂MC(γ̂))− h0

)
=
√
n
(
h(β̂MC(γ))− h0

)
+ op(1)

= H
(
B(γ)C+(γ)B′(γ)

)−1
[B1, B2(γ)]C+(γ)

1√
n

n∑
i=1

 xiui

1
ω2(xi;γ̂)xiui

+ op(1)

d−→ N
(

0, σ2
cat3(γ) := H

(
B(γ)C+(γ)B′(γ)

)−1
H ′
)
. (12)

(Full row-rank of the Jacobian via, e.g., a nonsingular B1 is maintained throughout; see, e.g.,

Bonhomme and Weidner [2021].) One can take γ̂ = γ̂WLS . Alternatively, Lu and Wooldridge

[2020]’s estimator uses the Gamma/Exponential quasi maximum likelihood estimator (QMLE)

for γ̂, and the standard inverse in place of the MP inverse.3 QMLE or any converging (in

3The standard inverse does not exist in the limit (population) if u is conditionally homoskedastic because then
the asymptotic variance of the moment vector at the truth is rank-deficient and of rank equal to the dimension of β.
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probability to some γ ∈ Γ) estimator γ̂ is also a valid option for all three categories.

The above description of the categories directly provides the motivation behind our proposed

estimator. Building on Cragg [1992], for each category, we will use an estimator γ̂
p−→ γ∗ for

some γ∗ that leads to the smallest asymptotic variance for that category. More precisely:

� Category 1: We will take φn ≡ 1 for n ≥ 1 and γ̂ = γ̂cat1 for some estimator γ̂cat1
p−→

γ∗cat1 := arg minγ∈Γ σ
2(γ); see (6). This leads to the proposed estimator being ĥ(γ̂cat1) with

asymptotic variance σ∗
2

cat1 := minγ∈Γ σ
2(γ).

� Category 2: We will take γ̂ = γ̂cat2 for some estimator γ̂cat2
p−→ γ∗cat2 := arg minγ∈Γ σ

2
cat2(γ),

see, (9). This leads to the proposed estimator being λ̂(γ̂cat2)ĥ(γ̂cat2) + (1 − λ̂(γ̂cat2))ĥOLS

with asymptotic variance σ∗
2

cat2 := minγ∈Γ σ
2
cat2(γ).

� Category 3: We will take γ̂ = γ̂cat3 for some estimator γ̂cat3
p−→ γ∗cat3 := arg minγ∈Γ σ

2
cat3(γ),

see, (12). This leads to the proposed estimator being h(β̂MC(γ̂cat3)) with asymptotic variance

σ∗
2

cat3 := minγ∈Γ σ
2
cat3(γ).

Remarks: Three remarks are in order. First, while σ∗
2

cat1 ≥ σ∗
2

cat2, in a given application the

standard error of λ̂(γ̂cat2)ĥ(γ̂cat2) + (1 − λ̂(γ̂cat2))ĥOLS may exceed that of ĥ(γ̂cat1). This is

because in each category the optimal γ is obtained minimizing a sample variance based on some

preliminary estimator (ĥOLS , in effect, β̂OLS) while, following convention, the standard error is

computed based on that category’s final/proposed estimator of h(β); see Section 2.2 for details.

Second, Category 3 does not generalize Category 1 or holds equivalence with Category 2

unless β is a scalar like h(β). The non-equivalence between Categories 2 and 3 is evident from

comparing λ̂(γ)ĥ(γ) + (1 − λ̂(γ))ĥOLS in Category 2 with h(β̂MC(γ)) (see (11)) in Category

3 even if h(β) is linear in β. Since our focus is on h(β) and not β, this non-equivalence does

not contradict Chen, Jacho-Chavez, and Linton [2016]. Their result — the optimal linear

combination of estimators of β that are obtained by solving their respective just-identifying-for-

β moment restrictions is the same as the efficient GMM estimator of β obtained by optimally

combining all those just-identifying moment restrictions for β — is for β and not h(β).

Third, while our proposal can in principle be extended to accommodate for a weighted

version of Papadopoulosa and Tsionas [2021], it will require a separate treatment of the matter.

Extension to nonlinear regressions as in Lin and Chou [2018] is more immediate. We do not

pursue these interesting extensions to focus on our main message and keep the exposition simple.
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2.2 Implementation of the proposed estimators:

Informed by (6), (9) and (12), we define the key sample quantities for implementation by category

as follows. For g ∈ Rdγ and b, b1, b2 ∈ Rdβ where dβ is the dimension of β, we define:

σ̂2
cat1(b, g) := H(b)B̂−1

2 (g)Ĉ22(b, g)B̂−1
2 (g)H ′(b),

σ̂2
cat2(b1, b2, g) :=

[
1− λ̂(b1, b2, g), λ̂(b1, b2, g)

]
Σ̂(b1, b2, g)

[
1− λ̂(b1, b2, g), λ̂(b1, b2, g)

]′
,

σ̂2
cat3(b, g) := H(b)

(
B̂(g)Ĉ+(b, g)B̂′(g)

)−1

H ′(b),

where, resembling their population analogs in (5), (7) and (8), we have defined the components:

B̂1 :=
1

n

n∑
i=1

xix
′
i, B̂2(g) :=

1

n

n∑
i=1

xix
′
i

ω2(xi; g)
, B̂(g) :=

[
B̂1, B̂2(g)

]
,

Ĉ(b1, b2, g) :=


Ĉ11(b1) :=

1

n

n∑
i=1

(yi − x′ib1)2xix
′
i Ĉ12(b1, b2, g) :=

1

n

n∑
i=1

(yi − x′ib1)(yi − x′ib2)xix
′
i

ω2(xi; g)

Ĉ12(b1, b2, g) Ĉ22(b2, g) :=
1

n

n∑
i=1

(yi − x′ib2)2xix
′
i

(ω2(xi; g))2

 ,

Σ̂(b1, b2, g) :=

 Σ̂11(b1, g) := H(b1)B̂−1
1 Ĉ11(b1)B̂−1

1 H ′(b1) Σ̂12(b1, b2, g) := H(b1)B̂−1
1 Ĉ12(b1, b2, g)B̂−1

2 (g)H ′(b2)

Σ̂12(b1, b2, g) Σ̂22(b2, g) : H(b2)B̂−1
2 (g)Ĉ22(b2, g)B̂−1

2 (g)H ′(b2)

 ,
λ̂(b1, b2, g) :=

Σ̂11(b1, g)− Σ̂12(b1, b2, g)

Σ̂11(b1, g) + Σ̂22(b2, g)− 2Σ̂12(b1, b2, g)
.

The proposed algorithm involves three steps for each category. Step 1 constructs the suitable

sample objective function for γ. Step 2 estimates the optimal γ by minimizing that sample

objective function. Step 3 uses the estimated optimal γ to obtain the proposed estimator of

h(β) and thereafter its standard error. To streamline notation, we only use ĥOLS (in effect,

β̂OLS) to obtain the objective function in Step 1, while we use the estimated proposed estimator

(and the associated estimator for β) to compute the standard error of the proposed estimator.

Steps for the proposed estimator under Category 1:

1. Using the OLS estimator β̂OLS obtain σ̂2
cat1(β̂OLS , γ) as a function of γ.

2. Obtain the minimizer γ̂cat1 := arg minγ∈Γ σ̂
2
cat1(β̂OLS , γ).

3. Obtain ĥcat1 := ĥ(γ̂cat1) as in (4) and its standard error secat1,n :=

√
σ̂2
cat1(β̂(γ̂cat1), γ̂cat1)

/
n.

Steps for the proposed estimator under Category 2:

1. Using the OLS estimator β̂OLS obtain σ̂2
cat2(β̂OLS , β̂OLS , γ) as a function of γ.
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2. Obtain the minimizer γ̂cat2 := arg minγ∈Γ σ̂
2
cat2(β̂OLS , β̂OLS , γ).

3. Obtain ĥcat2 := λ̂(γ̂cat2)ĥ(γ̂cat2) + (1 − λ̂(γ̂cat2))ĥOLS and its standard error secat2,n :=√
σ̂2
cat2(β̂OLS , β̂(γ̂cat2), γ̂cat2)

/
n.

Steps for the proposed estimator under Category 3:

1. Using the OLS estimator β̂OLS obtain σ̂2
cat3(β̂OLS , γ) as a function of γ.

2. Obtain the minimizer γ̂cat3 := arg minγ∈Γ σ̂
2
cat3(β̂OLS , γ).

3. Obtain ĥcat3 := h(β̂MC(γ̂cat3)) as in (10)/(11) and its standard error secat3,n :=

√
σ̂2
cat3(β̂MC(γ̂cat3), γ̂cat3)

/
n.

More refined implementation — e.g., iteration of steps or joint estimation of h(β) and γ, and

(in cases of concern with bias) even cross-fitting — is also possible. If so preferred, one could

use the so-called HC3-robust standard errors (specifically, the HC3 version of Ĉ(.)) at least in

step 3, or use bootstrap for inference; see, e.g., Romano and Wolf [2017] and DiCiccio, Romano,

and Wolf [2019] respectively.4 Nevertheless, we recommended the simple implementation above

because our experience so far with simulations under the designs of the related papers suggests

that it works well even in small samples under the simple framework of those papers and ours.

2.3 Asymptotic properties of the proposed estimators:

Assumptions:

A1. γ∗j = arg infγ∈Γ σ
2
j (γ) exists for j = cat1, cat2, cat3.

A2. For any δ > 0 and j = cat1, cat2, cat3 there exists ε(δ) > 0 such that: infγ∈Γ:‖γ−γ∗j ‖>δ |σ
2
j (γ)−

σ2
j (γ∗j )| ≥ ε(δ).

A3. For any δn ↓ 0 and all γ ∈ Γ : ‖γ−γ∗j ‖ ≤ δn and j = cat1, cat2, cat3 there exists a constant

M > 0 such that: |σ2
j (γ)− σ2

j (γ∗j )| ≥M‖γ − γ∗j ‖.

A4. H(β) := ∂h(β)/∂β exists in an open ball around β0 and is continuous at β0.

A5. B̂(γ) := [B̂1, B̂2(γ)]
p−→ B(γ) := [B1, B2(γ)], [B̂−1

1 , B̂−1
2 (γ)]

p−→ [B−1
1 , B−1

2 (γ)], Ĉ(b1, b2, γ)
p−→

C(γ) and Ĉ+(b1, b2, γ)
p−→ C+(γ) uniformly in γ ∈ Γ for any b̂1, b̂2

p−→ β0.

4HC3 version is straightforward for the proposed estimator in Category 1; but is more challenging in Categories 2
and 3. In fact, due to the covariance terms, the HC3 version may not even be positive (semi) definite in small samples
for Category 2. Also, a development similar to Lin and Chou [2018] does not guarantee positive (semi) definite HC3
version in small samples for Category 3. Nevertheless, the asymptotic results in the next subsection will remain
unchanged due to the asymptotic equivalence of the various HC-robust standard errors; see, e.g., Theorem 7.6 in
Hansen [2020] whose proof works in our case with minor and obvious modifications; while finite-sample inference will
possibly improve due to reduced over-rejection of the truth unless the non-positive-definiteness affects the standard
ordering HC1 ≥ HC2 ≥ HC3. The theory for validity of pairs and wild bootstrap can similarly be developed
following DiCiccio, Romano, and Wolf [2019]. However, the real justification behind HC3 or bootstrap, i.e., the proof
of asymptotic refinement (if any) due to them is, as usual, quite complicated and beyond the scope of our paper.
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A6. Ĉ(b1, b2, γ) − C(γ) = Op(n
−1/2), Ĉ+(b1, b2, γ) − C+(γ) = Op(n

−1/2) and (as implied by

A5) [B̂1, B̂2(γ)] − [B1, B2(γ)] = op(1), [B̂−1
1 , B̂−1

2 (γ)] − [B−1
1 , B−1

2 (γ)] = op(1) uniformly

in γ ∈ Γ : ‖γ − γ∗j ‖ ≤ δn for j = cat1, cat2, cat3, for any δn ↓ 0, and any b̂1, b̂2
p−→ β0.

A7. 1√
n

∑n
i=1

[
xiui, xiui/ω

2(xi; γ
∗
j )
] d−→ N (0, C(γj)) for j = cat1, cat2, cat3.

A8. There exist a 1× dγ vector ∆1,j(x) and a ∆2,j(x) ≥ 0 with E‖xu∆2,j(x)‖ ≤ ∞ such that

for j = cat1, cat2, cat3, the following holds with probability one for large n and some δ > 0:

supγ∈Γ:‖γ−γ∗j ‖≤δ
{∣∣1/ω2(x; γ)− 1/ω2(x; γ∗j )−∆1,j(x)(γ − γ∗j )

∣∣− 1
2∆2,j(x)|‖γ − γ∗j ‖2

}
≤ 0.

Remarks: The existence condition in A1 can be ensured, e.g., by assuming σ2
j (γ) for j =

cat1, cat2, cat3 is continuous in γ ∈ Γ and Γ is compact in Rdγ where dγ is finite. It is typically

difficult to provide primitive conditions for the global identification condition of the optimal γ

in A2. The local identification condition of the optimal γ in A3 can be satisfied in various ways,

e.g., σ2
j (γ) for j = cat1, cat2, cat3 is differentiable with non-zero derivative at γ = γ∗j . A4 is a

standard assumption enabling the use of the delta-method, and also in conjunction with A5 and

A6 leading to the consistency of the σ̂2
j (.)’s for the σ2

j (.)’s. A5 is a standard uniform convergence

assumption and under our setup can be satisfied if, e.g., in addition to pointwise convergence of

the concerned quantities (via, e.g., continuity and existence of moments), ω2(x; γ) is bounded

away from 0 for γ ∈ Γ with probability one. A6 strengthens A5 locally by imposing a rate

condition that leads to the rate of convergence of γ̂j to γ∗j for j = cat1, cat2, cat3. A7 is a

standard asymptotic joint distribution assumption that follows from conventional conditions for

the central limit theorem. A8 imposes standard smoothness conditions on 1/ω2(x; γ) locally.

Our main results below are based on A1-A8 and the various definitions heretofore.

Lemma 1

(a) Let assumptions A1, A2, A4 and A5 hold. Then γ̂j
p−→ γ∗j for j = cat1, cat2, cat3.

(b) Let γ̂j
p−→ γ∗j for j = cat1, cat2, cat3 and assumptions A1, A3, A4 and A6 hold. Then

γ̂j − γ∗j = Op(n
−1/2) for j = cat1, cat2, cat3.

Remark: The result of Lemma 1(b) is stronger than required since, as is well known in similar

contexts, γ̂j − γ∗j = op(n
−1/4) for j = cat1, cat2, cat3 could have been made sufficient for our

purpose. However, the n−1/2 rate follows naturally since the γ̂j ’s are parametric estimators.

Using these properties of γ̂j for j = cat1, cat2, cat3 we will now establish the asymptotic

properties of the proposed estimators and the standard Wald-inference based on them.

Theorem 1 Let γ̂j − γ∗j = Op(n
−1/2) for j = cat1, cat2, cat3. Let assumptions A4, A7, A8,

and A6 (allowing a weaker form that replaces the Op(n
−1/2) rates by op(1)) hold. Then:
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(a)
√
n(ĥj − h0)

d−→ N(0, σ∗
2

j ) for j = cat1, cat2, cat3;

(b) the test that rejects the null Knull : h(β) = hnull against the alternative Kalt : h(β) 6= hnull

if |(ĥj −hnull)/sej,n| > z1−α/2 has asymptotic power Φ(zα/2 +µ/σ∗j ) + Φ(zα/2−µ/σ∗j ) for

j = cat1, cat2, cat3 and h0 = hnull + µ/
√
n where zc satisfies Φ(zc) = c ∈ (0, 1);

(c) the confidence interval
[
ĥj − z1−α/2sej,n, ĥj + z1−α/2sej,n

]
for h(β) has asymptotic cov-

erage 1− α for j = cat1, cat2, cat3.

Remark: The proposed estimators and standard Wald inference based on them have the desired

asymptotic properties. One-sided inference can be done similarly. First-order asymptotically,

the proposed estimators cannot perform worse than the estimators in their respective categories.

3 Simulation evidence and Empirical illustrations

We will explore the small-sample performance of the proposed estimators under all three cate-

gories using simulation experiments based on 10000 Monte Carlo trials. The estimators:

� OLS and WLS, that belong in all three categories, are put under the label classical estimators;

� ALS, MIN and the proposed estimator, named modified WLS (MWLS), under Category 1

� CC and the proposed estimator, named modified CC (MCC), under Category 2

� MC using WLS and QML, denoted respectively as MCls and MCqm, and the proposed

estimator, named modified MC (MMC) under Category 3,

will be included in the study.5 We do not include the estimator from the working paper Spady

and Stouli [2019] since its stated purpose is different from that of the ones above. We will use

the simulation designs in Romano and Wolf [2017] and Lu and Wooldridge [2020]; the design in

DiCiccio, Romano, and Wolf [2019] is similar to that in Romano and Wolf [2017].6 We will also

revisit the empirical illustrations in Romano and Wolf [2017] and Lu and Wooldridge [2020].

The main message of the numerical results here is that if the user’s model ω2(x; γ) for V (u|x)

allows for improvement in precision over the existing estimators then the proposed estimators

achieve it. Like Romano and Wolf [2017], we report the improvement in the empirical mean

squared error (MSE), and find that its reduction by the proposed estimators can be huge by

any conceivable standard. Under all cases there does not seem to be any major cost, in terms

5We got helpful suggestions for more informative names of the proposed estimators, e.g., “targeted” or “minimax”
WLS, CC, MC, etc. that may have other connotations. We opted for the generic name “modified” to avoid controversy.

6The extensive simulation study here, of which only a subset of results is presented while the rest are available
from us, complements Rilstone [1991]’s early simulations that focused on OLS, WLS and its semiparametric versions.
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of empirical bias, size, etc., to using the proposed estimators. Comparison among the proposed

estimators across categories does not however give a clear winner. Based on these observations

and the simplicity of the estimators we recommend all three proposed estimators in practice.

3.1 Simulations under the design in Romano and Wolf [2017]:

Romano and Wolf [2017] take y = x(1)β1 + x(2)β2 + u in (1), with x(1) = 1, x(2) ∼ U(1, 4),

x = (x(1), x(2))
′; β = (β1, β2)′, β0 = (0, 0)′; u = s(x)z where z ∼ N(0, 1) is independent of x(2)

and thus E[u|x] = 0 and V (u|x) = s2(x). They consider 10 cases for the skedastic function:

Case 1: (a) s2(x) = 1; (b) s2(x) = x(2); (c) s2(x) = x2
(2); (d) s2(x) = x4

(2).

Case 2: (a) s2(x) =
(
log(x(2))

)2
; (b) s2(x) =

(
log(x(2))

)4
.

Case 3: (a) s2(x) = exp
(
.1(x(2) + x2

(2))
)

; (b) s2(x) = exp
(
.15(x(2) + x2

(2))
)

.

Case 4: (a) s2(x) =


1 if x(2) < 2

2 if 2 ≤ x(2) < 3

3 if x(2) ≥ 3

; (b) s2(x) =


1 if x(2) < 2

22 if 2 ≤ x(2) < 3

32 if x(2) ≥ 3

.

To emphasize the gain in precision, we will add a Case 2(c) with s2(x) =
(
log(x(2))

)6
.

Romano and Wolf [2017] consider two parametric models ω2(x; γ) — Model 1: ω2(x; γ) :=

exp(γ1 + γ2 log(x(2))) and Model 2: ω2(x; γ) := exp(γ1 + γ2x(2)) — and like them our results

here are also very similar for both models. However, since there is slightly more action in terms

of improved precision in case of estimators based on Model 2, for brevity we report here the

results based on Model 2 only (the unreported results are available from us).7

Romano and Wolf [2017] report for β2 the empirical MSE’s (their ratios) of estimators,

empirical coverage probability of 95% confidence intervals (1 - empirical size of 5% t tests) and

ratios of the average length of these intervals. We will do the same while considering sample

sizes n = 50, 100, 200, 400. We take the parameter of interest h(β) as β1 and β2 respectively.

Tables 1 and 2 present, respectively for β1 and β2, the ratio of the empirical MSE of each

estimator with respect to that of OLS. Besides Case 1(a) (conditional homoskedasticity), the

other estimators lead to smaller, sometimes much smaller, MSE. (To compare any two non-OLS

estimators, say A with respect to B, divide the ratio under A with that under B.) Importantly,

the proposed estimator under each category either performs very similar to the other estimators

in the category or leads to really big gain in precision as in Cases 2 (a), (b) and (c).

7Model 1 is correct for V (u|x) in the sense of (2) under Cases 1(a)-1(d) with γ0
2 = 0, 1, 2, 4 respectively. Model

2 is correct for V (u|x) only under Case 1(a) with γ0
2 = 0. So, all estimators are asymptotically efficient under Case

1(a), and all estimators other than OLS are asymptotically efficient under Cases 1(b)-1(d) when using Model 1.
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Tables 3 and 4 present, respectively for β1 and β2, the empirical size (empirical rejection

probability of the truth) of 5% Wald tests based on each estimator. The results look reasonable

except in the case of the MC estimators with small samples. This happens because being

true to Lu and Wooldridge [2020] we use HC0 standard error for the MC, i.e., Category 3,

estimators and, as is well-known, that does have an adverse effect in small samples. While the

size-corrected empirical power is not reported here for brevity (but is available from us), we

note that the proposed estimator in each category always has either the same or substantially

greater (in Cases 2) empirical size-corrected power than its competitors.

Tables 5 and 6 present, respectively for β1 and β2, the average length of each of the non-OLS

confidence intervals with respect that of the OLS intervals. For brevity we report this for Case 2

only where, as noted above, the benefit of the proposed estimators’ precision is most prominently

evident. These are indeed big gains in precision of confidence intervals by any standard.

3.2 Simulations under the design in Lu and Wooldridge [2020]:

Lu and Wooldridge [2020] take y = x(1)β1 + x(2)β2 + x(3)β3 + x(3)β4 + u in (1), with x(1) =

1, x(2) ∼ N(1, 1), x(3) = .8 + .2x(2) + e1, x(4) = 1(x(5) > x(3)), u = s(x)e3 where e1, e2, e3 are

independent N(0, 1), and x(5) = .3 + .1x(2) + .1x(3) + e2. They take x = (x(1), x(2), x(3), x(4))
′,

e3 as independent of x (giving E[u|x] = 0 and V (u|x) = s2(x)), and β = (β1, β2, β3, β4)′ with

β0 = (.5, 1, 1, 1)′. They consider 4 cases for the skedastic function:

Case 1: s2(x) = (β1+β2x(2)+β3x(3)−3β4x(4)+.1x(2)(x(3)+x(4))−.1x(3)x(4)−.05x2
(2)+.05x2

(3)))
2

Case 2: s2(x) = (β1 + β2|x(2)|+ β3x
2
(3) + β4x(4))

2.

Case 3: s2(x) = exp(β1 + β2|x(2)|+ β4x(4)).

Case 4: s2(x) = exp(β1 + β2x(2) + β3x(3) + β4x(4)).

They consider the parametric model ω2(x; γ) = exp(x′γ), which is correct for V (u|x) in the

sense of (2) with γ0 = β0 in Case 4.

We take h(β) = β1, β2, β3, β4 respectively and sample size n = 1000, 5000. Lu and Wooldridge

[2020] take n = 1000, 10000 and report Monte Carlo mean and standard deviations in their Table

1. In this case, the large sample size largely mitigates concerns with inference and, therefore,

similar to Lu and Wooldridge [2020] we focus and report results here only for estimation.

Table 7 presents the ratio of the empirical MSE of each estimator with respect to that of

OLS.8 It is of interest to note that in our implementation of Cases 1 and 2, WLS based on

8Our results for WLS are not the same as Lu and Wooldridge [2020]’s because they use Gamma QMLE for γ in
WLS whereas we use the conventional WLS. Our results for MCqm should have been the same as their GMM results
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an incorrect model ω2(x; γ) can be much less precise than OLS, which is a possibility that

DiCiccio, Romano, and Wolf [2019] (p.2, paragraph 7) noted as motivation to their MIN and

CC estimators but conjectured as “rare”. ALS also suffers from the same problem in this case

since ALS and WLS are very similar here because of high level of heteroskedasticity of u.

On the other hand, the MIN, CC and MCC estimators deliver big gains in precision over OLS.

Additionally, when the parametric model ω2(x; γ) is far from correct for V (u|x), i.e., Cases 1 and

2, we see that our proposed estimators deliver further substantial gains in precision. However,

when ω2(x; γ) is correct for V (u|x), i.e., in Case 4, there is no room for improvement since all

non-OLS estimators are then asymptotically efficient (not considering the information that β’s

appear in both E[y|x] and V (y|x)). Then our proposed estimators are less precise than their

non-OLS competitors. This problem however diminishes with larger sample size n = 5000.

3.3 Empirically relevant simulations in Romano and Wolf [2017]:

Romano and Wolf [2017]’s simulation based on a real-life example revisits the well-known cross-

sectional data set from 1970 containing n = 506 observations from communities in the Boston

area (see, Wooldridge [2012]). They consider a linear regression as in (1) with:

E[y|x] = x′β = x(1)β1 + x(2)β2 + x(3)β3 + x(4)β4 + x(5)β5

where y is the log of the median housing price in a community, x(1) = 1, x(2) is the log of

nitrogen oxide in the air (in parts per million), x(3) is the log of weighted distance from five

employment centers (in miles), x(4) is the average number of rooms per house, and x(5) is the

average student–teacher ratio in the community’s schools.

To mimic the true conditional heteroskedasticity in this data, Romano and Wolf [2017]:

(i) obtain êi = (yi − x′β̂OLS)/
√

1− qi,i for i = 1, . . . , n where qi,i = x′i(
∑
j xjx

′
j)
−1xi is i-th

diagonal element of the hat-matrix; (ii) generate artificial data (y∗i , x
∗
i ) for i = 1, . . . , n where

x∗i = xi and y∗i = x′iβ̂OLS + êivi where vi ∼ N(0, 1) independently of the system. Thus, the true

β in this artificial data is β̂OLS . Romano and Wolf [2017] then report for each element of β the

empirical MSE’s (their ratios) of estimators, empirical coverage probability of 95% confidence

intervals (1 - empirical size of 5% t tests) and ratios of the average length of these intervals.

We will do the same, and since the improvement shown by Romano and Wolf [2017] is

noticeably better with their Model 1, i.e., ω2(x; γ) = exp(γ1 +
∑5
k=2 log(x(k))), we will for

because both use Gamma QMLE for γ. The results were not close. To avoid a negative representation of Lu and
Wooldridge [2020]’s estimator due to possible computational error on our part, we will not report MCqm hereafter.
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brevity only report the further improvement provided by our proposed estimators based on

Model 1. These are reported in Tables 8, 9 and 10 respectively for the ratio of the empirical

MSE’s with respect to OLS, the empirical size of 5% Wald test, and the ratio of the average

length of confidence intervals based on other estimators to that based on OLS. As is clearly

evident, the proposed estimators deliver noticeably big further gains over its competitors.

3.4 Empirical illustration in Lu and Wooldridge [2020]:

Lu and Wooldridge [2020] use a subset of the well-known cross-sectional individual-level data

set ‘ 401ksubs’ (see Wooldridge [2012]) to estimate a linear regression as in (1) with:

E[y|x] = x′β =

10∑
k=1

x(k)βk

where y is net total financial assets (in $ 1000) and is denoted by “nettfa”; x(1) = 1 and is denoted

by “constant”; x(2) is annual income (in $1000) in excess of population (data) average and is

denoted by “inc0”; x(3) = x2
(2) and is denoted by “inc2

0”; x(4) is age in excess of population (data)

average and is denoted by “age0”; x(5) = x2
(4) and is denoted by “age2

0”; x(6) = x(2) × x(4) and

is denoted by “inc0.age0”; x(7) is a dummy variable for eligibility for a 401k plan and is denoted

by “e401k”; x(8) is a dummy variable for male and is denoted by “male”; x(9) = x(7) × x(2) and

is denoted by “e401k.inc0”; and x(10) = x(7) × x(4) and is denoted by “e401k.age0”.

We use the same data set, matching the descriptive statistics and OLS coefficients in Lu and

Wooldridge [2020]’s Table 2 and 3 respectively; the OLS standard errors don’t match because

we report the HC3 version. We report in Table 11 the various estimates and standard errors

(in parentheses) for the coefficients of this regression model. We use Lu and Wooldridge [2020]

parametric model ω2(x; γ) = exp(x′γ). Lu and Wooldridge [2020] showed big gains in precision

by WLS over OLS, and then further improvement over WLS by their GMM estimator. Our

results in Table 11 of course confirm these findings of Lu and Wooldridge [2020]. Additionally,

our results also demonstrate that even further gains, and often substantial ones, in precision

over all those estimators can be obtained by our proposed estimators.

4 Conclusion

Inspired by Romano and Wolf [2017], our paper followed the recent literature that tries to

improve upon the OLS and (parametric) WLS estimators. This literature takes the user’s

parametric model ω2(x; γ) for V (u|x) as given, without assuming that it is correct, and focuses
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on estimating the coefficients in a regression model given by y = E[y|x] +u where E[y|x] = x′β.

We showed that an old idea from Cragg [1992] can be suitably adapted to improve not only

upon OLS and WLS, but also upon the recently proposed estimators in this literature.

Compared to Cragg [1983], that takes a more nonparametric approach to estimating V (u|x)

and coincides with the explosion of nonparametric estimation in theoretical econometrics, Cragg

[1992] seemed to have been largely overlooked. This might have been because the optimization

program of minimizing the determinant or trace of the asymptotic variance of the estimators of

the regression coefficients often delivers poor (individually sub-optimal) standard errors for the

individual coefficients that are typically of interest in applied research. (They may be optimal in

other sense, e.g., minimized volume of the Wald joint-confidence set for all regression coefficients,

an attractive criterion in the early design of experiments.) While Cragg [1992] does not discuss

the motivation behind his specific optimization-proposals, the issue is that such optimizations

are compromises for the fact that a minimizer of the asymptotic variance matrix itself (in a

matrix sense) may not exist unless ω2(x; γ) is a correct model for V (u|x). Our adaptation

of Cragg [1992] bypassed the issue of existence by instead focusing on scalar functions of the

regression coefficients, e.g., the individual coefficients, their sums, differences, etc., that are

typically the focus in applied research. We showed how this adaptation led to our proposed

estimators that are conceptually very simple and based on elementary econometric theory. We

also demonstrated, using a variety of simulation experiments from the recent literature, the

substantial improvements that our proposed estimators can provide over the existing estimators.
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True Sample Classical Category 1 Category 2 Category 3
V (u|x) size WLS ALS MIN MWLS CC MCC MCls MCqm MMC

50 1.0348 1.0348 1.0217 1.0592 1.0184 1.0818 1.0788 1.0787 1.1093
Case 100 1.0201 1.0201 1.0124 1.0409 1.0108 1.0635 1.0572 1.0569 1.0763
(1a) 200 1.0116 1.0116 1.0070 1.0201 1.0063 1.0331 1.0276 1.0273 1.0341

400 1.0072 1.0072 1.0036 1.0082 1.0028 1.0183 1.0148 1.0148 1.0193

50 .9302 .9518 .9325 .9391 .9286 1.0099 .9606 .9466 .9753
Case 100 .9162 .9242 .9260 .9307 .9207 .9964 .9459 .9357 .9551
(1b) 200 .9075 .9082 .9088 .9130 .9099 .9425 .9175 .9153 .9271

400 .8884 .8885 .8887 .8864 .8892 .9000 .8909 .8891 .8985

50 .6765 .6853 .6812 .6763 .6791 .7092 .7205 .6828 .7078
Case 100 .6674 .6677 .6688 .6718 .6714 .7051 .7006 .6781 .6885
(1c) 200 .6608 .6608 .6608 .6621 .6623 .6679 .6742 .6692 .6721

400 .6330 .6330 .6330 .6298 .6330 .6296 .6403 .6362 .6328

50 .2677 .2677 .2677 .2736 .2683 .2437 .3752 .3651 .2867
Case 100 .2494 .2494 .2494 .2534 .2500 .2360 .3227 .3394 .2557
(1d) 200 .2426 .2426 .2426 .2428 .2427 .2304 .2958 .3109 .2382

400 .2230 .2230 .2230 .2207 .2223 .2126 .2506 .2798 .2126

50 .4139 .4139 .4139 .3585 .4128 .2527 .3611 .4530 .3015
Case 100 .4251 .4251 .4251 .3547 .4247 .2385 .3608 .4892 .2566
(2a) 200 .4136 .4136 .4136 .3623 .4137 .2424 .3707 .5034 .2274

400 .3864 .3864 .3864 .3339 .3862 .2321 .3421 .4777 .2039

50 .2082 .2082 .2082 .1975 .2091 .1237 .2083 .3122 .1764
Case 100 .1864 .1864 .1864 .1558 .1870 .0908 .1806 .3331 .1324
(2b) 200 .1772 .1772 .1772 .1333 .1778 .0800 .1751 .3416 .1027

400 .1591 .1591 .1591 .1079 .1590 .0756 .1540 .3153 .0780

50 .1374 .1374 .1374 .1243 .1381 .0280 .1343 .2340 .1211
Case 100 .1008 .1008 .1008 .0823 .1010 .0200 .0957 .2348 .0801
(2c) 200 .0881 .0881 .0881 .0529 .0882 .0177 .0772 .2508 .0519

400 .0753 .0753 .0753 .0359 .0754 .0169 .0619 .2128 .0342

50 .8628 .8954 .8738 .8736 .8675 .9553 .9129 .8851 .9377
Case 100 .8457 .8547 .8596 .8595 .8532 .9270 .8887 .8693 .9097
(3a) 200 .8371 .8377 .8382 .8433 .8402 .8633 .8541 .8463 .8631

400 .8100 .8100 .8102 .8101 .8109 .8161 .8174 .8116 .8231

50 .6717 .6841 .6813 .6803 .6780 .7326 .7468 .6863 .7379
Case 100 .6547 .6553 .6602 .6643 .6610 .7048 .7278 .6688 .7047
(3b) 200 .6474 .6474 .6472 .6518 .6496 .6606 .6934 .6517 .6671

400 .6135 .6135 .6135 .6135 .6142 .6164 .6509 .6113 .6193

50 .9444 .9541 .9491 .9517 .9416 1.0404 .9782 .9625 .9999
Case 100 .9264 .9269 .9383 .9386 .9296 1.0112 .9611 .9473 .9636
(4a) 200 .9150 .9150 .9218 .9206 .9171 .9445 .9295 .9239 .9318

400 .8960 .8960 .8983 .8960 .8956 .9055 .9039 .8988 .9030

50 .7208 .7382 .7323 .7226 .7202 .7865 .7641 .7216 .7472
Case 100 .6992 .7006 .7069 .7035 .6998 .7506 .7288 .6990 .7182
(4b) 200 .6858 .6858 .6862 .6866 .6842 .6981 .6946 .6816 .6959

400 .6606 .6606 .6609 .6561 .6557 .6607 .6587 .6500 .6543

Table 1: Ratio of MSE of estimators with respect to MSE of OLS estimator of h(β) := β1 based
on 10000 Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.
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True Sample Classical Category 1 Category 2 Category 3
V (u|x) size WLS ALS MIN MWLS CC MCC MCls MCqm MMC

50 1.0400 1.0400 1.0239 1.0492 1.0206 1.0731 1.0737 1.0732 1.0937
Case 100 1.0238 1.0238 1.0164 1.0385 1.0137 1.0620 1.0572 1.0570 1.0703
(1a) 200 1.0137 1.0137 1.0081 1.0199 1.0073 1.0347 1.0289 1.0287 1.0344

400 1.0088 1.0088 1.0047 1.0091 1.0037 1.0188 1.0162 1.0161 1.0192

50 .9472 .9683 .9542 .9497 .9437 .9869 .9692 .9655 .9856
Case 100 .9326 .9402 .9435 .9424 .9368 .9772 .9564 .9546 .9648
(1b) 200 .9226 .9232 .9270 .9267 .9249 .9388 .9320 .9333 .9424

400 .9069 .9069 .9084 .9050 .9067 .9104 .9091 .9099 .9154

50 .7556 .7624 .7665 .7592 .7578 .7613 .7769 .7736 .7921
Case 100 .7382 .7383 .7439 .7432 .7425 .7495 .7574 .7559 .7648
(1c) 200 .7289 .7289 .7291 .7316 .7307 .7291 .7351 .7420 .7419

400 .7062 .7062 .7062 .7042 .7048 .7005 .7084 .7115 .7049
50 .4289 .4289 .4298 .4378 .4327 .4095 .5454 .5356 .4540

Case 100 .3812 .3812 .3813 .3859 .3829 .3679 .4839 .4768 .3890
(1d) 200 .3658 .3658 .3658 .3684 .3659 .3531 .4619 .4392 .3604

400 .3436 .3436 .3436 .3434 .3410 .3306 .4173 .4025 .3293

50 .6218 .6218 .6250 .6289 .6234 .5451 .6153 .6870 .5790
Case 100 .6035 .6035 .6037 .5967 .6046 .4942 .5775 .6781 .4969
(2a) 200 .5980 .5980 .5980 .5963 .5983 .4851 .5782 .6797 .4572

400 .5716 .5716 .5716 .5662 .5682 .4622 .5442 .6491 .4258

50 .4149 .4149 .4160 .4236 .4221 .3269 .4290 .5452 .3775
Case 100 .3562 .3562 .3563 .3374 .3599 .2441 .3570 .5199 .2814
(2b) 200 .3384 .3384 .3384 .3080 .3403 .2057 .3406 .5128 .2292

400 .3151 .3151 .3151 .2730 .3138 .1983 .3107 .4801 .1943

50 .2743 .2743 .2744 .2267 .2777 .0774 .2533 .4050 .2233
Case 100 .1989 .1989 .1989 .1468 .1998 .0547 .1790 .3716 .1454
(2c) 200 .1728 .1728 .1728 .1021 .1730 .0457 .1518 .3730 .0995

400 .1539 .1539 .1539 .0784 .1540 .0451 .1305 .3297 .0735

50 .8617 .8953 .8742 .8638 .8662 .9015 .8939 .8832 .9118
Case 100 .8450 .8540 .8575 .8514 .8521 .8807 .8738 .8670 .8895
(3a) 200 .8344 .8349 .8359 .8364 .8375 .8459 .8471 .8441 .8572

400 .8109 .8109 .8111 .8084 .8114 .8118 .8140 .8118 .8187

50 .6925 .7036 .7014 .6921 .6990 .7082 .7339 .7074 .7369
Case 100 .6728 .6733 .6776 .6745 .6783 .6880 .7220 .6845 .7062
(3b) 200 .6615 .6615 .6615 .6611 .6637 .6655 .6939 .6654 .6770

400 .6318 .6318 .6318 .6290 .6322 .6309 .6598 .6284 .6335

50 .9658 .9750 .9738 .9691 .9589 1.0097 .9904 .9839 1.0041
Case 100 .9467 .9473 .9624 .9551 .9480 .9918 .9732 .9675 .9751
(4a) 200 .9332 .9332 .9420 .9362 .9333 .9486 .9454 .9425 .9505

400 .9181 .9181 .9215 .9154 .9152 .9203 .9226 .9196 .9230

50 .8132 .8256 .8387 .8217 .8096 .8331 .8345 .8190 .8370
Case 100 .7821 .7831 .7973 .7851 .7785 .7987 .7960 .7824 .7982
(4b) 200 .7642 .7642 .7665 .7623 .7583 .7657 .7662 .7587 .7709

400 .7446 .7446 .7450 .7347 .7322 .7356 .7359 .7292 .7311

Table 2: Ratio of MSE of estimators with respect to MSE of OLS estimator of h(β) := β2 based
on 10000 Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.
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True Sample Classical Category 1 Category 2 Category 3
V (u|x) size OLS WLS ALS MIN MWLS CC MCC MCls MCqm MMC

50 5.42 6.06 6.06 6.11 7.13 6.04 8.22 9.57 9.66 11.82
Case 100 4.70 4.93 4.93 4.93 5.60 4.96 6.29 6.91 6.83 7.66
(1a) 200 4.88 5.03 5.03 5.06 5.11 5.03 5.60 5.65 5.65 5.99

400 4.83 4.92 4.92 4.89 4.99 4.90 5.13 5.29 5.28 5.45

50 5.03 5.96 6.19 6.11 7.00 6.11 9.24 9.75 9.10 11.22
Case 100 4.58 5.14 5.19 5.26 5.78 5.25 7.77 7.04 6.67 7.58
(1b) 200 4.79 5.09 5.10 5.12 5.40 5.17 6.29 6.01 5.85 6.39

400 4.87 4.96 4.96 4.97 4.99 4.94 5.29 5.29 5.40 5.56

50 4.46 5.52 5.66 5.56 6.34 5.64 8.61 11.73 8.33 10.44
Case 100 4.68 5.18 5.19 5.18 5.74 5.25 7.43 8.82 6.68 7.93
(1c) 200 4.82 4.93 4.93 4.93 5.33 5.10 5.99 6.66 5.80 6.71

400 4.90 4.98 4.98 4.98 5.06 5.05 5.40 5.88 5.38 5.79

50 4.64 5.04 5.04 5.04 5.77 5.22 6.60 14.06 6.44 10.29
Case 100 4.95 4.96 4.96 4.96 5.35 5.07 6.31 11.80 6.05 8.95
(1d) 200 5.01 5.10 5.10 5.10 5.34 5.30 5.59 8.08 5.53 7.05

400 4.75 4.90 4.90 4.90 5.10 5.04 5.14 6.07 5.14 5.85

50 4.04 4.31 4.31 4.31 4.86 4.38 5.40 7.19 6.79 9.65
Case 100 4.72 4.99 4.99 4.99 4.78 5.00 4.90 6.28 6.29 8.03
(2a) 200 4.96 5.20 5.20 5.20 5.21 5.17 4.46 5.83 5.75 6.21

400 4.92 5.06 5.06 5.06 4.74 5.06 4.73 5.21 5.30 5.36

50 4.44 5.01 5.01 5.01 5.80 5.10 8.35 8.99 8.00 10.13
Case 100 5.13 5.10 5.10 5.10 5.33 5.21 5.93 7.37 6.70 8.33
(2b) 200 4.93 5.05 5.05 5.05 4.97 5.19 4.82 6.10 5.97 7.03

400 4.73 4.95 4.95 4.95 4.62 4.95 5.06 5.47 5.54 6.18

50 4.86 5.29 5.29 5.29 6.27 5.44 5.80 11.87 8.46 11.16
Case 100 5.41 5.20 5.20 5.20 5.96 5.21 4.57 9.78 6.89 9.21
(2c) 200 4.99 5.19 5.19 5.19 5.26 5.19 4.39 6.91 5.99 7.17

400 4.88 5.06 5.06 5.06 4.76 5.05 4.88 5.92 5.32 6.63

50 4.92 6.01 6.32 6.21 6.93 6.27 9.21 10.57 8.97 12.67
Case 100 4.65 5.07 5.19 5.21 5.82 5.34 7.37 7.52 6.84 8.51
(3a) 200 4.82 5.04 5.06 5.10 5.40 5.29 5.84 6.22 5.82 6.60

400 4.92 4.83 4.83 4.83 5.10 4.90 5.22 5.50 5.48 5.74

50 4.57 5.87 6.05 5.96 6.66 6.06 8.88 12.10 8.53 12.33
Case 100 4.81 5.12 5.12 5.18 5.85 5.43 7.09 8.68 7.00 8.79
(3b) 200 4.80 5.06 5.06 5.05 5.40 5.14 5.66 6.47 5.79 6.48

400 4.87 5.01 5.01 5.01 5.09 5.08 5.26 5.72 5.43 5.70

50 4.98 5.91 5.96 6.13 6.85 6.19 9.16 9.62 9.01 11.18
Case 100 4.65 5.04 5.04 5.27 5.75 5.25 7.36 7.06 6.82 7.63
(4a) 200 4.75 5.13 5.13 5.23 5.44 5.30 6.03 6.00 5.80 6.31

400 4.80 4.87 4.87 4.91 5.04 4.95 5.17 5.32 5.30 5.40

50 4.53 5.76 5.95 5.91 6.24 6.14 8.72 10.79 8.57 10.29
Case 100 4.55 5.34 5.36 5.47 5.74 5.56 7.21 7.98 6.69 7.62
(4b) 200 4.85 5.00 5.00 5.01 5.18 5.21 5.49 6.08 5.83 6.19

400 4.83 5.01 5.01 5.01 5.11 5.08 5.33 5.69 5.44 5.72

Table 3: Empirical size (in %) of 5% Wald test for h(β) := β1 based on 10000 Monte Carlo trials
under the simulation design of Romano and Wolf [2017] and using their Model 2.
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True Sample Classical Category 1 Category 2 Category 3
V (u|x) size OLS WLS ALS MIN MWLS CC MCC MCls MCqm MMC

50 5.15 5.64 5.64 5.75 6.35 5.70 7.09 8.65 8.62 9.93
Case 100 4.75 5.12 5.12 5.15 5.69 5.14 6.16 6.76 6.75 7.41
(1a) 200 4.87 5.01 5.01 5.04 5.21 5.03 5.52 5.80 5.76 6.05

400 5.00 5.12 5.12 5.15 5.22 5.13 5.35 5.56 5.52 5.61

50 4.78 5.14 5.41 5.44 5.74 5.31 7.25 8.35 8.06 9.19
Case 100 4.70 5.12 5.19 5.23 5.59 5.20 6.53 6.88 6.71 7.34
(1b) 200 4.82 4.90 4.89 4.98 5.25 5.08 5.61 5.97 5.85 6.26

400 4.84 5.03 5.03 5.04 4.95 5.02 5.25 5.32 5.45 5.65

50 4.86 5.09 5.18 5.25 5.71 5.34 6.57 8.29 7.95 8.79
Case 100 4.92 4.98 4.99 5.07 5.38 5.27 6.15 7.08 6.89 7.37
(1c) 200 5.02 5.03 5.03 5.04 5.31 5.19 5.66 5.94 5.86 6.45

400 4.94 5.19 5.19 5.19 5.13 5.15 5.35 5.65 5.39 5.66

50 5.28 5.22 5.22 5.25 5.83 5.60 6.39 8.98 6.82 9.04
Case 100 5.25 5.06 5.06 5.06 5.35 5.21 5.97 8.29 6.04 7.49
(1d) 200 5.06 5.15 5.15 5.15 5.12 5.23 5.44 6.47 5.65 6.33

400 4.86 5.01 5.01 5.01 5.10 5.13 5.07 5.54 5.27 5.64

50 4.98 4.98 4.98 5.04 5.43 5.34 6.29 7.81 7.90 8.62
Case 100 4.99 5.03 5.03 5.03 5.43 5.17 5.62 6.61 6.83 7.02
(2a) 200 4.89 5.17 5.17 5.17 5.24 5.27 5.16 5.89 5.74 5.78

400 4.89 5.02 5.02 5.02 5.05 5.06 4.80 5.36 5.40 5.03

50 5.26 5.09 5.09 5.11 6.33 5.48 8.41 8.74 8.45 9.78
Case 100 5.27 5.05 5.05 5.05 5.65 5.24 6.33 6.98 6.97 7.62
(2b) 200 5.03 5.08 5.08 5.08 5.18 5.23 4.99 5.88 5.92 6.54

400 4.87 5.02 5.02 5.02 4.76 4.98 5.18 5.38 5.45 5.63

50 5.32 5.49 5.49 5.49 6.41 5.61 6.22 10.35 8.54 10.60
Case 100 5.46 5.25 5.25 5.25 5.73 5.32 5.04 8.29 6.97 8.56
(2c) 200 5.00 5.16 5.16 5.16 5.10 5.20 4.66 6.28 6.04 6.89

400 4.91 5.01 5.01 5.01 4.73 5.02 4.81 5.53 5.26 6.23

50 4.81 5.30 5.64 5.54 5.80 5.53 6.97 8.68 8.15 9.92
Case 100 4.80 5.06 5.12 5.28 5.59 5.21 6.23 7.02 6.85 7.70
(3a) 200 4.95 5.06 5.08 5.09 5.34 5.09 5.45 6.01 6.01 6.51

400 4.86 5.08 5.08 5.08 5.01 5.05 5.15 5.40 5.39 5.48

50 4.96 5.17 5.37 5.35 5.76 5.54 6.61 8.76 7.94 9.65
Case 100 4.94 4.95 4.96 5.01 5.53 5.18 5.93 7.21 6.79 7.83
(3b) 200 5.05 5.20 5.20 5.21 5.38 5.24 5.50 5.89 6.00 6.25

400 4.84 5.14 5.14 5.14 5.14 5.16 5.15 5.56 5.34 5.56

50 4.83 5.26 5.31 5.59 5.76 5.47 7.23 8.42 8.15 9.15
Case 100 4.76 5.15 5.15 5.45 5.53 5.34 6.30 6.79 6.81 7.17
(4a) 200 4.87 4.90 4.90 5.05 5.27 5.03 5.59 5.95 6.01 6.23

400 4.82 5.05 5.05 5.09 4.92 5.01 5.15 5.30 5.34 5.51

50 4.95 5.00 5.21 5.49 5.71 5.40 6.81 8.46 8.17 8.91
Case 100 4.96 4.98 4.99 5.20 5.48 5.24 6.11 7.02 6.72 7.47
(4b) 200 5.03 5.08 5.08 5.12 5.31 5.26 5.50 5.94 5.89 6.12

400 4.80 5.11 5.11 5.12 5.25 5.17 5.37 5.57 5.37 5.50

Table 4: Empirical size (in %) of 5% Wald test for h(β) := β2 based on 10000 Monte Carlo trials
under the simulation design of Romano and Wolf [2017] and using their Model 2.
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True Sample Classical Category 1 Category 2 Category 3
V (u|x) size WLS ALS MIN MWLS CC MCC MCls MCqm MMC

50 .6128 .6128 .5676 .6114 .4864 .5221 .5983 .4353
Case 100 .6285 .6285 .5730 .6281 .4792 .5535 .6522 .4286
(2a) 200 .6309 same .6309 .5914 .6306 .4925 .5828 .6790 .4396

400 .6224 .6224 .5794 .6223 .4844 .5798 .6817 .4376

50 .4317 .4317 .4023 .4287 .3118 .3775 .4871 .3233
Case 100 .4155 .4155 .3679 .4143 .2855 .3778 .5306 .2948
(2b) 200 .4132 as .4132 .3565 .4123 .2805 .3954 .5560 .2824

400 .3974 .3974 .3322 .3970 .2736 .3837 .5480 .2624

50 .3415 .3415 .2917 .3407 .1627 .2676 .4163 .2452
Case 100 .3007 .3007 .2415 .3005 .1413 .2442 .4436 .2127
(2c) 200 .2891 WLS .2891 .2092 .2891 .1336 .2501 .4723 .1881

400 .2715 .2715 .1813 .2715 .1298 .2367 .4488 .1638

Table 5: Ratio of the average length of confidence intervals of h(β) := β1 using each estimators
with respect to the average length of confidence intervals using OLS. Results are based on 10000
Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.

True Sample Classical Category 1 Category 2 Category 3
V (u|x) size WLS ALS MIN MWLS CC MCC MCls MCqm MMC

50 .7705 .7700 .7554 .7607 .6973 .6928 .7311 .6538
Case 100 .7605 .7605 .7475 .7557 .6779 .7057 .7619 .6395
(2a) 200 .7639 same .7639 .7573 .7596 .6870 .7294 .7861 .6469

400 .7526 .7526 .7469 .7499 .6762 .7253 .7877 .6405

50 .6292 .6291 .6044 .6210 .5058 .5666 .6459 .5039
Case 100 .5858 .5858 .5560 .5819 .4634 .5483 .6648 .4620
(2b) 200 .5754 as .5754 .5426 .5722 .4461 .5574 .6821 .4412

400 .5569 .5569 .5215 .5548 .4403 .5446 .6741 .4233

50 .4985 .4985 .4237 .4969 .2676 .4044 .5557 .3581
Case 100 .4306 .4306 .3488 .4302 .2326 .3633 .5628 .3087
(2c) 200 .4078 WLS .4078 .3038 .4077 .2141 .3627 .5800 .2741

400 .3875 .3875 .2727 .3874 .2110 .3479 .5582 .2479

Table 6: Ratio of the average length of confidence intervals of h(β) := β2 using each estimators
with respect to the average length of confidence intervals using OLS. Results are based on 10000
Monte Carlo trials under the design of Romano and Wolf [2017] and using their Model 2.
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True h(β) Classical Category 1 Category 2 Category 3
V (u|x) WLS ALS MIN MWLS CC MCC MCls MCqm MMC

β1 .8316 .8285 .7995 .5318 .7893 .5164 .6330 .7003 .4490
Case β2 1.0231 1.0416 .9488 .7593 .9039 .8829 .8509 .8464 .6861
(1) β3 .9011 .8935 .8361 .6249 .8289 .6845 .7263 .7149 .5598

β4 1.6956 1.6735 .9817 .8987 1.0012 .9871 .8498 .8384 .7813

β1 1.4923 1.4483 .8719 .5154 .7906 .5781 .4181 .5391 .3868
Case β2 1.4674 1.5110 .9761 .7178 .8530 .7431 .8093 .7541 .7708
(2) β3 2.4286 2.3621 .9205 .5298 .8066 .6043 .4395 .5139 .4139

β4 1.4274 1.4204 .8926 .6629 .7923 .6654 .6217 .6199 .5544

β1 .8672 .8521 .8536 .8623 .8666 .8714 .8267 .8078 .8041
Case β2 .7987 .8403 .8376 .7617 .7894 .7902 .7622 .7567 .6957
(3) β3 .8095 .8104 .8112 .8002 .8075 .8518 .7933 .7839 .8336

β4 .9655 .9497 .9462 .9502 .9603 .9625 .8731 .8604 .8047

β1 .1684 .1616 .1616 .1847 .1686 .1798 .1777 .3412 .1960
Case β2 .0716 .0721 .0721 .1080 .0717 .0941 .0887 .2116 .1145
(4) β3 .0723 .0724 .0724 .1091 .0724 .0973 .0897 .2249 .1157

β4 .1183 .1158 .1158 .1435 .1185 .1392 .1331 .2843 .1470

β1 .8134 .8230 .8213 .5985 .7858 .5652 .6388 .6947 .4741
Case β2 1.0198 1.0440 .9885 .7960 .9204 .7784 .8854 .8974 .6408
(1) β3 .9035 .9248 .9079 .6720 .8437 .6695 .7704 .6801 .5349

β4 1.7835 1.7916 1.0158 .9002 1.0001 .9989 .8567 .8461 .7641

β1 1.7941 1.6708 1.0041 .5623 .8552 .5869 .4394 .5470 .4094
Case β2 1.5993 1.6056 .9950 .7316 .8892 .7303 .8642 .8219 .7458
(2) β3 3.2366 3.0016 1.0293 .5868 .8905 .6093 .4464 .5266 .4033

β4 1.7205 1.5769 .9730 .6868 .8436 .6885 .6373 .6346 .5654

β1 .8745 .8658 .8659 .8704 .8737 .8741 .8346 .8249 .7828
Case β2 .7985 .8184 .8184 .7865 .7974 .7878 .7886 .7862 .6314
(3) β3 .8081 .8167 .8168 .8025 .8074 .8030 .8011 .8036 .7949

β4 .9597 .9387 .9386 .9552 .9577 .9564 .8774 .8527 .7954

β1 .1568 .1529 .1529 .1621 .1568 .1596 .1596 .3289 .1627
Case β2 .0615 .0609 .0609 .0785 .0616 .0719 .0691 .2447 .0805
(4) β3 .0662 .0654 .0654 .0805 .0662 .0760 .0732 .2569 .0829

β4 .1114 .1094 .1094 .1192 .1115 .1164 .1161 .3015 .1191

Table 7: Ratio of MSE of estimators with respect to MSE of OLS estimator of various h(β)’s based
on 10000 Monte Carlo trials under the design of Lu and Wooldridge [2020]. The top panel (above
the horizontal line) corresponds to sample size n = 1000, and the bottom panel to n = 5000. The
parametric model ω2(x; γ) is correctly specified for V (u|x) in the sense of (2) under Case 4.
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h(β) Classical Category 1 Category 2 Category 3
WLS ALS MIN MWLS CC MCC MCls MMC

β1 .6063 .6064 .4910 .6064 .5018 .5452 .4732
β2 .6681 same .6687 .5553 .6675 .5524 .5982 .4844
β3 .5055 as .5056 .3422 .5056 .3403 .4141 .3329
β4 .4963 WLS .4963 .3396 .4963 .3521 .3936 .3155
β5 .9330 .9228 .8893 .9118 .9063 .8250 .7762

Table 8: Ratio of MSE of estimators with respect to MSE of OLS estimator of coefficients based on
10000 Monte Carlo trials under the empirical design of Romano and Wolf [2017] [c.f. their Table
C7] and using their Model 1 that, in their Table C7, performed noticeably better than Model 2.

h(β) Classical Category 1 Category 2 Category 3
OLS WLS ALS MIN MWLS CC MCC MCls MMC

β1 4.65 5.09 5.09 6.60 5.09 7.28 5.76 7.50
β2 4.70 4.79 same 4.82 5.77 4.82 5.91 5.49 6.27
β3 4.99 4.90 as 4.90 6.27 4.91 6.38 5.70 6.95
β4 4.17 4.74 WLS 4.74 7.18 4.74 8.51 6.02 7.94
β5 4.80 5.22 5.37 5.48 5.39 5.84 5.94 6.43

Table 9: Empirical size (in %) of 5% Wald test for coefficients based on 10000 Monte Carlo trials
under the empirical design of Romano and Wolf [2017] [c.f. their Table C8] and using their Model
1 that, in their Table C8, performed noticeably better than Model 2.

h(β) Classical Category 1 Category 2 Category 3
WLS ALS MIN MWLS CC MCC MCls MMC

β1 .7781 .7781 .6626 .7781 .6542 .7170 .6318
β2 .8132 same .8129 .7230 .8124 .7199 .7523 .6562
β3 .7132 as .7132 .5664 .7131 .5633 .6320 .5443
β4 .7067 WLS .7067 .5470 .7067 .5340 .6080 .5129
β5 .9522 .9434 .9218 .9385 .9272 .8701 .8242

Table 10: Ratio of the average length of confidence interval for each h(β) using each estimators
with respect to the average length of confidence interval of that h(β) using OLS. Results based on
10000 Monte Carlo trials under the empirical design of Romano and Wolf [2017][c.f. their Table
C8] and using their Model 1 that, in their Table C8, performed noticeably better than Model 2.
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h(β) Classical Category 1 Category 2 Category 3
OLS WLS ALS MIN MWLS CC MCC MCls MMC

constant 5.905 6.394 6.214 6.352 6.074 6.619 6.196
(2.115) (.977) (.912) (.961) (.910) (.906) (.867)

inc0 .633 .464 .478 .482 .473 .499 .457
(.152) (.063) (.056) (.061) (.055) (.054) (.048)

inc2
0 .000 .003 .001 .003 .002 .002 .002

(.005) (.002) (.002) (.002) (.002) (.002) (.002)
age0 .704 .605 .597 .608 .581 .677 .626

(.141) (.087) (.076) (.087) (.076) (.074) (.071)
age2

0 .031 .011 .007 .012 .006 .013 .009
(.014) (.005) same (.004) (.005) (.004) (.004) (.003)

inc0.age0 .044 .026 .029 .027 .028 .031 .029
(.013) (.006) as (.005) (.006) (.005) (.005) (.005)

e401k 6.346 6.760 6.451 6.641 5.174 7.477 4.362
(2.022) (1.842) WLS (1.442) (1.806) (1.518) (1.510) (1.124)

male 1.799 1.505 1.511 1.517 1.579 1.662 1.486
(1.959) (.757) (.537) (.753) (.523) (.719) (.504)

e401k.inc0 .307 .258 .232 .265 .226 .317 .204
(.216) (.128) (.101) (.125) (.087) (.107) (.090)

e401k.age0 .154 .160 .118 .159 .228 .162 .190
(.262) (.120) (.105) (.118) (.102) (.112) (.100)

Table 11: Estimates and standard errors (in parentheses) of regression coefficients in the financial
wealth equation in Lu and Wooldridge [2020]’s empirical application [c.f. their Table 3]. Standard
errors of the proposed estimators are highlighted with blue color.
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A Appendix A: Proofs

Proof of Lemma 1: (1) and assumption A5 imply that β̂OLS
p−→ β0.

(a) Using this and assumptions A4 and A5 we obtain that σ̂2
cat1(β̂OLS , γ) − σ2

cat1(γ)
p−→ 0,

σ̂2
cat2(β̂OLS , β̂OLS , γ)− σ2

cat2(γ)
p−→ 0 and σ̂2

cat3(β̂OLS , γ)− σ2
cat3(γ)

p−→ 0 uniformly in γ ∈ Γ. We

show the proof for Category 2; the proof for the other two categories follows in the same way.

Take any δ > 0 and note that assumption A2 implies that P (‖γ̂cat2 − γ∗cat2‖ > δ) ≤

P
(
|σ2
cat2(γ̂cat2)− σ2

cat2(γ∗cat2)| ≥ ε(δ)
)

for some ε(δ) > 0. As usual, we will prove the result

by showing as follows that the probability on the righthand side goes to zero as n→∞:

0 ≤ σ2
cat2(γ̂cat2)− σ2

cat2(γ∗cat2)

= σ2
cat2(γ̂cat2)− σ̂2

cat2(β̂OLS , β̂OLS , γ̂cat2) + σ̂2
cat2(β̂OLS , β̂OLS , γ̂cat2)− σ2

cat2(γ∗cat2)

≤ σ2
cat2(γ̂cat2)− σ̂2

cat2(β̂OLS , β̂OLS , γ̂cat2) + σ̂2
cat2(β̂OLS , β̂OLS , γ

∗
cat2)− σ2

cat2(γ∗cat2)

where the first line follows by the definition of γ∗cat2, the second line is simply adding and

subtracting the same thing, and the third line follows by the definition of γ̂cat2. Therefore,

P
(
|σ2
cat2(γ̂cat2)− σ2

cat2(γ∗cat2)| ≥ ε(δ)
)
≤ P

(
sup
γ∈Γ
|σ2
cat2(γ)− σ̂2

cat2(β̂OLS , β̂OLS , γ)| ≥ ε(δ)

2

)
→ 0

using that σ̂2
cat2(β̂OLS , β̂OLS , γ)− σ2

cat2(γ)
p−→ 0 uniformly in γ ∈ Γ.

(b) As in (a), we can use β̂OLS
p−→ β0, and assumptions A4 and A6 to obtain that σ̂2

cat1(β̂OLS , γ)−

σ2
cat1(γ) = Op(n

−1/2), σ̂2
cat2(β̂OLS , β̂OLS , γ)−σ2

cat2(γ) = Op(n
−1/2) and σ̂2

cat3(β̂OLS , γ)−σ2
cat3(γ) =

Op(n
−1/2) uniformly in {γ ∈ Γ : ‖γ − γ∗j ‖ ≤ δn} for any δn ↓ 0 and where j = cat1, cat2, cat3.

The result in (a) implies that for each j = cat1, cat2, cat3 we have P (‖γ̂∗j − γ∗j ‖ ≤ δn) → 1

for any δn ↓ 0 as n → ∞. So, as in (a), but now conditioning on the event {‖γ̂∗j − γ∗j ‖ ≤ δn},

we can obtain that:

0 ≤ σ2
cat2(γ̂cat2)− σ2

cat2(γ∗cat2)

≤ σ2
cat2(γ̂cat2)− σ̂2

cat2(β̂OLS , β̂OLS , γ̂cat2) + σ̂2
cat2(β̂OLS , β̂OLS , γ

∗
cat2)− σ2

cat2(γ∗cat2)

≤ 2 sup
γ∈Γ:‖γ−γ∗j ‖≤δn

|σ2
cat2(γ)− σ̂2

cat2(β̂OLS , β̂OLS , γ)‖ = Op(n
−1/2)

by the local uniform convergence established above. Therefore, |σ2
cat2(γ̂cat2) − σ2

cat2(γ∗cat2)| =

Op(n
−1/2). Hence, assumption A3 now gives: ‖γ̂cat2−γ∗cat2‖ ≤ |σ2

cat2(γ̂cat2)−σ2
cat2(γ∗cat2)|/M =

Op(n
−1/2). Proofs for Categories 1 and 3 follow similarly.
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Proof of Theorem 1: (a) The proof is very standard, so we simply provide the two key steps

here. For any γ̂j
p−→ γ∗j for j = cat1, cat2, cat3:

1√
n

n∑
i=1

xiui
ω2(xi; γ̂j)

=
1√
n

n∑
i=1

xiui
ω2(xi; γ∗j )

+ E [xu∆1,j(x)]
√
n(γ̂j − γ∗j ) +R1,n +R2,n

=
1√
n

n∑
i=1

xiui
ω2(xi; γ∗j )

+ op(1) (13)

since E [xu∆1,j(x)] = 0 by (1); R1,n :=
[

1
n

∑n
i=1 (xiui∆1,j(xi)− E [xu∆1,j(x)])

]√
n(γ̂j − γ∗j ) =

op(1) by the weak law of large numbers because E [xu∆1,j(x)] = 0; and:

|R2,n| :=

∣∣∣∣∣ 1√
n

n∑
i=1

xiui

[
1

ω2(xi; γ̂j)
− 1

ω2(xi; γ∗j )
−∆1,j(xi)(γ̂j − γ∗j )

]∣∣∣∣∣
≤ 1√

n

n∑
i=1

‖xiui‖ ×

∣∣∣∣∣ 1

ω2(xi; γ̂j)
− 1

ω2(xi; γ∗j )
−∆1,j(xi)(γ̂j − γ∗j )

∣∣∣∣∣
≤ 1

2
√
n

n∑
i=1

‖xiui‖ × |∆2,j | × ‖γ̂j − γ2
j ‖2

≤

(
1

2n

n∑
i=1

‖xiui∆2,j‖

)(
n1/4‖γ̂j − γ∗j ‖

)2

= op(1),

where the first inequality follows by the Cauchy-Schwartz inequality, the second and third in-

equalities by assumption A8, and the last equality follows by assumption A8 and Lemma 1(b).

(13) along with assumptions A4, A5 and A7 directly gives the results for Categories 1 and

3. The result for Category 2 follows once we additionally note that for any b1, b2
p−→ β0 we have

: (i) λ̂(b1, b2, γ̂cat2)
p−→ λ(γcat2) by assumption A6 and Lemma 1(a) (see also the expressions for

λ̂(b1, b2, γ̂cat2) and λ(γ) in Section 2.2 and equation (8) respectively); and hence (ii)

√
n
[
λ̂(b1, b2, γ̂cat2)ĥ(γ̂cat2) + (1− λ̂(b1, b2, γ̂cat2))ĥOLS − h0

]
=
√
n
[
λ(γcat2)ĥ(γ̂cat2) + (1− λ(γcat2))ĥOLS − h0

]
+
(
λ̂(b1, b2, γ̂cat2)− λ(γcat2)

) [√
n(ĥ(γ̂cat2)− h0)−

√
n(ĥOLS − h0)

]
=
√
n
[
λ(γcat2)ĥ(γ̂cat2) + (1− λ(γcat2))ĥOLS − h0

]
+ op(1)

where the first equality follows by adding and subtracting off the same terms, and the second

equality by (i) and the joint asymptotic normality of
√
n(ĥ(γ̂cat2)− h0) and

√
n(ĥOLS − h0).

(b) Follows by assumptions A4 and A6, Lemma 1(a) and Theorem 1(a), that jointly with

Slutsky’s lemma give the asymptotic normality of the test statistic in each of the three categories.

(c) Follows by Theorem 1 (a) and (b) and by definition.
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