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Abstract

We discuss the econometric underpinnings of Barro [2006]’s defense of the rare disaster
model as a way to bring back an asset pricing model “into the right ballpark for explain-
ing the equity-premium and related asset-market puzzles”. Arbitrarily low-probability
economic disasters can restore the validity of model-implied moment conditions only if
the amplitude of disasters may be arbitrary large in due proportion. We prove an impos-
sibility theorem that in case of potentially unbounded disasters, there is no such thing
as a population empirical likelihood (EL)-based model-implied probability distribution.
That is, one cannot identify some belief distortions for which the EL-based implied prob-
abilities in sample, as computed by Julliard and Ghosh [2012], could be a consistent
estimator. This may lead to consider alternative statistical discrepancy measures to avoid
the problem with EL. Indeed, we prove that, under sufficient integrability conditions,
power divergence Cressie-Read measures with positive power coefficients properly define
a unique population model-implied probability measure. However, when this computation
is useful because the reference asset pricing model is misspecified, each power divergence
will deliver a different model-implied beliefs distortion. One way to provide economic
underpinnings to the choice of a particular belief distortion is to see it as the endogenous
result of investor’s choice when optimizing a recursive multiple-priors utility à la Chen and
Epstein [2002]. Jeong, Kim, and Park [2015]’s econometric study confirms that this way
of accommodating ambiguity aversion may help to address the Equity Premium puzzle.

*We thank the coeditor Simon Lee, an anonymous referee, Alastair Hall, Lars Peter Hansen and Essie
Maasoumi for their very helpful comments.

�Department of Economics, McGill University, Canada. Email: saraswata.chaudhuri@mcgill.ca.
�Corresponding author. Department of Economics, University of Warwick, United Kingdom. Email:

Eric.Renault@warwick.ac.uk.
§Department of Economics, Brown University, United States. Email: oscar wahlstrom@brown.edu.

1



1 Introduction

The absence of arbitrage opportunities implies the existence of a stochastic discount factor

(SDF), such that the equilibrium price of a traded security can be represented as the

conditional expectation of the future payoff discounted by the SDF. Thus, a typical asset

pricing equation is:

E[SR− en |I] = 0

where R denotes an n-dimensional vector of gross returns corresponding to payoffs on

financial assets over some investment horizon, S denotes the corresponding SDF for this

horizon, and I stands for the information set of the representative investor. en is a n-

dimensional vector of ones.

Hereafter, the interval [t, t+ 1] is the period of the investment between date t (today)

and date (t+ 1) where gross returns, denoted by Rt+1, are observed. Besides the horizon

time (t+ 1), the SDF St+1 may depend on unknown parameters θ, giving rise to the set

of conditional moment restrictions:

E[g (Xt+1, θ) |I(t)] = 0, θ ∈ Θ ⊂ Rp (1)

where the function g (Xt+1, θ) = St+1 (θ)Rt+1− en captures the parameter dependence of

the SDF St+1 (θ) along with random variables Xt+1 observed by the econometrician and

used to construct the payoffs, prices, and the SDF.

The unknown parameters θ typically describe the preferences of the representative

investor and are identified by the fact that for a true unknown value θ0 of the parameters,

g
(
Xt+1, θ

0
)

should be a martingale difference sequence. However, standard asset pricing

models lead to the so-called equity premium puzzle (EPP, see Mehra and Prescott [1985]),

that is the failure of the representative agent model to fit historical averages of the equity

premium and the risk free rate.

An alternative view put forward in our current paper is that part of the premium can

be accommodated only by considering in (1) a distortion of the expectation operator that
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reflects the lack of investor confidence in the assignment of probabilities to future events.

We set the focus on models that capture this departure from rational expectations by one

of the two following channels: distorted subjective beliefs or ambiguity aversion.

As clearly discussed by Chen and Epstein [2002] (see their Section 1.2.), there is

some observational equivalence between models with aversion for ambiguity captured by

a multiple-priors recursive utility (and a minimax type of value function) and models of

belief distortion which only relax the rational expectations hypothesis that the agent knows

the true probability distribution. As a matter of fact, with the recursive multiple-priors

utility, the investor’s optimization ultimately delivers a distorted probability measure

selected endogenously from the agent’s set of priors.

This latter remark suggests an econometric procedure to look for a distorted probabil-

ity distribution that is minimally distorted with respect to the Data Generating Process

(DGP) while bringing a plausible solution to the EPP. This econometric issue has been

addressed by Jeong, Kim, and Park [2015] for the ambiguity aversion approach and by

Ghosh, Otsu, and Roussellet [2021] for the distorted subjective beliefs. In both cases the

goal is to state the asymptotic theory of a minimum distance approach to estimate both

preference parameters and distorted beliefs.

Before developing the econometric methodology, it is worth understanding why we

expect that these estimation procedures will deliver estimators of preference parameters

and belief distortions that will improve upon the solution of the EPP.

In the case of a model of ambiguity aversion (the so-called κ-Ignorance model of Chen

and Epstein [2002], Jeong, Kim, and Park [2015] end up with a three factor CAPM. The

risk premium of a given asset is determined not only by the covariance of its return with

consumption growth and with aggregate wealth (as in Epstein and Zin [1989]’s recursive

utility model) but also by covariance with the density generator that defines the multiple-

priors recursive utility model. The latter covariance adds some significant ambiguity

compensation to the traditional risk premium, allowing the risk premium to be consistent

with more realistic levels of relative risk aversion.

As far as the subjective beliefs distortion is concerned, Barro [2006] has revisited Rietz
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[1988]’s original way to address the EPP by bringing in low-probability economic disasters.

According to Barro [2006], “the major reason for scepticism about Rietz’s argument is

the belief that it depends on counterfactually high probabilities and sizes of economic

disasters”. This has been the main motivation of Barro [2006]’s empirical analysis focused

on “the measurement of the frequency and size of economic disasters that occurred during

the twentieth century”. The goal is to “calibrate the model using the observed probability

distribution for economic disasters in the twentieth century” and the conclusion is that

“the model’s solution gets into the right ballpark for explaining the equity-premium and

related asset market puzzles”. Following this observation, Julliard and Ghosh [2012] have

promoted an information theoretic empirical strategy that could reconcile a given asset

pricing model with the observed data, and the asymptotic theory of this strategy has been

settled by Ghosh, Otsu, and Roussellet [2021].

In light of the above discussion, the contribution of our current paper is threefold.

First, we provide some mathematical arguments to confirm the rather general validity

of Julliard and Ghosh [2012]’s empirical observation that the estimated belief distortion

makes economic sense because “a priori, we would expect that the rare events distribution

needed to rationalize the EPP assigns relatively higher weights to a few particular bad

states of the economy (..) this is exactly what the estimated (probabilities) do”.

Second, besides economic sense, we ask whether the estimated belief distortion also

makes statistical sense because it may consistently estimate a well-defined population

probability distribution. Since “higher weights to a few particular bad states”seems to give

some support to the disaster risk theory as advocated by Barro [2006] (“counterfactually

high probabilities and sizes of economic disasters”), one would expect to see positive

probabilities assigned to unbounded disaster events. Unfortunately, we point out that

when one does not maintain the rather restrictive assumption that the possible disasters

are of bounded amplitude, a population distorted belief defined by minimization of a

population statistical divergence function may not exist. In particular, we show that with

a natural scheme of unbounded disasters, the population distorted beliefs do not exist when

estimated by maximum empirical likelihood, as in Julliard and Ghosh [2012]. Of course,
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the non-existence issue is at stake only when there is a need to distort subjective beliefs

because the historical probability distribution does not satisfy the moment conditions (1).

Finally, we prove that sufficient conditions for existence of distorted subjective popula-

tion beliefs fulfilling moment restrictions (1) are given either by assuming that all possible

disasters are of bounded amplitude, or by using a discrepancy function that, by contrast

with empirical likelihood, is an increasing convex function.

1.1 Relation to the existing literature

There is a vast literature on disaster risk and its implications for empirical asset pricing

(see Tsai and Wachter [2015] and the references therein). In terms of link to the data,

the current paper is particularly focused on the empirical results of Julliard and Ghosh

[2012]. Our goal is not to add to this important empirical evidence but rather to discuss

its methodological underpinnings. As explained above, although we are able to confirm

mathematically the main intuition of these authors that the subjective empirical beliefs

deliver a rare events distribution that assigns relatively higher weights to a few partic-

ular bad states, we question the statistical meaning of this observation by proving an

impossibility theorem.

This theorem which puts forward rather realistic circumstances in which the possibility

of disasters of unbounded amplitude precludes the existence of population distorted beliefs

is a minor extension of a result first proved by Chen, Hansen, and Hansen [2021]. It

confirms the problematic asymptotic behaviour of the empirical likelihood estimator in

the presence of misspecification as documented by Schennach [2007]. The latter paper

shows that, even when postulating the existence of a pseudo-true value, there does not

exist a root-T consistent estimator of it. Our impossibility theorem even stresses that a

unique pseudo-true value may not exist.

By contrast, we apply Csiszar [1995]’s “generalized projections for non-negative func-

tions”to provide sufficient conditions for the existence of a population distorted belief

solution of minimization of a general φ-divergence function. While boundedness of disas-

ters amplitude is a sufficient condition (under standard regularity conditions), the bound-
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edness assumption can be relaxed if we consider only increasing φ-divergence functions.

Recent work by Cerreia-Vioglio, Hansen, Maccheroni, and Marinacci [2021] provides a

first step to extend the min-max analysis under model ambiguity by also considering φ-

divergence functions to acknowledge that the model used in decision-making is a simplified

approximation. Both our impossibility theorem and our existence theorems set the focus

on unconditional mean restrictions obtained by integrating out the conditional moment

restrictions (1). This is conformable to the empirical strategy of Julliard and Ghosh [2012]

and not restrictive as explained by Hansen and Jagannathan [1997] through the concept

of actively managed portfolios (see Section 2.1. below). An alternative approach would

be to refer to Komunjer and Ragusa [2016]’s “conditional density projections” to define

directly conditional distorted subjective beliefs.

The extant literature also suggests some interesting connections to make between the

ambiguity approach as developed by Jeong, Kim, and Park [2015] and asset pricing under

disaster risk as discussed above. First we note that, similarly to disasters of bounded

amplitude, the multiple-priors recursive utility model with κ-ignorance only considers a

bounded set of possible scenarios (κ is an upper bound for the density generator of different

priors). The model identifies the true unknown value of the parameters by imposing the

martingale condition for pricing error. As noted by Jeong, Kim, and Park [2015], “the

spirit of the methodology is therefore somewhat similar to the GMM estimation for the

nonlinear Euler equation models”, or more generally to the minimization of φ-divergence

subject to the conditional moment restrictions (1).

In Jeong, Kim, and Park [2015], the main trick for estimation, following the general

method of “Martingales Regressions for Conditional Mean Models”developed by Park

[2021], is based on the theorem of Dambis, Dubins and Schwarz, that allows to convert (by

a well-suited time change) any continuous martingale into Brownian motion. The actual

martingale estimator is defined as a minimum distance estimator based on the discrepancy

between the empirical distributions of normalized pricing errors after time change and the

standard normal distribution. The boundedness assumption on the conditional mean

in the κ-ignorance model makes easy the application of the martingale regression for
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estimation of the ambiguity model similarly to the estimation of population subjective

beliefs in the case of bounded disasters. There is an obvious analogy between considering

only disasters of bounded amplitude and only bounded worst case scenarios in the κ-

ignorance model of ambiguity.

This connection between asset pricing with disaster risk and ambiguity aversion, as

captured by multiple-priors recursive utility, paves the way for a potentially unified frame-

work. For instance, it would be worth checking that, as in the distorted beliefs framework

of Julliard and Ghosh [2012], the min-max approach to multiple priors also leads to dis-

torted beliefs that make economic sense because “the rare events distribution (. . . ) assigns

relatively higher weights to a few particular bad states of the economy”.

1.2 Outline of the paper

Section 2 defines the so-called model-implied probabilities, that are empirical probabilities

computed by the minimization of a φ-divergence with respect to the empirical distribu-

tion, as characterizing our empirical distorted subjective beliefs. We briefly discuss the

choice of a specific φ-divergence function. While Chaudhuri and Renault [2020] had shown

an asymptotic equivalence result between implied probability distributions corresponding

to different φ-divergence functions in case of a well-specified asset pricing model (1), we

show that it cannot be the case when the asset pricing model is misspecified. Therefore, it

is only in the case of misspecified models that it is worth considering distorted subjective

beliefs. For two of the most popular φ-divergence functions, Empirical Likelihood (EL)

and Euclidean Empirical Likelihood (EEL), we show that, if we assume that the distorted

subjective beliefs converge in distribution towards a population distribution, then this dis-

tribution should confirm the main intuition of the rare event hypothesis, namely that “the

rare events distribution needed to rationalize the EPP assigns relatively higher weights to

a few particular bad states of the economy”.

In Section 3, we argue that in the case of possibly unbounded risk, the model-implied

empirical probability distribution cannot be safely interpreted as estimator of a meaningful

population probability distribution because such a model-implied probability distribution
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may not exist if the asset pricing model is misspecified. The non-existence of a model-

implied population probability distribution is caused by the conjunction of two effects:

(i) Unbounded vector g (Xt+1, θ) of pricing errors,

(ii) Decreasing divergence function φ.

We then conclude that the researcher is faced with the following vicious circle:

(i) Either the asset pricing model is well-specified, and then the model-implied popu-

lation probability distribution coincides with the naive historical distribution.

(ii) Or the asset pricing model is misspecified, and then the model-implied population

probability distribution depends on the choice of a φ-divergence function. Since, following

Chen, Hansen, and Hansen [2021]’s terminology, empirical likelihood is a problematic

φ-divergence function (the associated model-implied population probability distribution

may not exist), there is no such thing as a natural choice to replace the naive historical

distribution by a well-suited population distribution of distorted subjective beliefs.

We prove in Section 4 two theorems of existence based on the assumption that either

(i) or (ii) above does not hold, i.e. based respectively on the assumption of bounded

pricing errors g (Xt+1, θ) or on the assumption of increasing divergence function φ.

Section 5 concludes and discusses possible alternative strategies because the results

of the current paper lead us to share with Chen, Hansen, and Hansen [2021] the opinion

that “we do not see why the subjective beliefs of market participants must appear to the

econometrician to have minimal divergence relative to rational expectations”.

2 Why Model-Implied Probabilities may confirm

the Rare Events Hypothesis?

We want to allow for the beliefs that are revealed by the market to differ from the rational

expectations beliefs (the historical distribution) implied by infinite histories of the data,

assuming that the observed process Xt, t = 1, 2, ..., is strictly stationary and ergodic for the

historical distribution. We will do so for any given possible value θ ∈ Θ of the parameters.
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2.1 Model-implied Empirical Probabilities

The information theoretic approaches to inference in moment condition models have be-

come popular in econometrics since the seminal paper of Imbens, Spady, and Johnson

[1998], by applying Corcoran [1998]’s minimum contrast inference strategy to the Cressie-

Read family of power divergences. For a given observed sample Xt+1, t = 1, 2, ..., T , and a

divergence function φ, we follow Corcoran [1998] by considering the minimization program

over T -dimensional vectors πT = (πt,T )1≤t≤T :

min
πT∈RT

T∑
t=1

φ (Tπt,T ) (2)

subject to:
T∑
t=1

πt,T = 1,
T∑
t=1

πt,T g (Xt+1, θ) = 0 (3)

where the function φ is a given strictly convex function for which φ (1) = 0. The strict

convexity of the function φ allows us to apply Jensen’s inequality to conclude that:

1

T

T∑
t=1

φ (Tπt,T ) ≥ φ

[
T∑
t=1

1

T
Tπt,T

]
= φ (1) = 0

with a strict inequality except if πt,T is independent of t, that is if and only if:

πt,T =
1

T
,∀t = 1, ..., T. (4)

Therefore, the solution π̂T (θ) = (π̂t,T (θ))1≤t≤T of (2)/(3)) is given by:

π̂t,T (θ) =
1

T
,∀t = 1, ..., T (5)

if and only if the moment restrictions are fulfilled in sample:

1

T

T∑
t=1

g (Xt+1, θ) = 0.

More generally, the vector π̂T (θ) = (π̂t,T (θ))1≤t≤T can be interpreted as a distorted
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empirical probability distribution which, by construction, ensures the validity of the mo-

ment restrictions:
T∑
t=1

π̂t,T (θ) g (Xt+1, θ) = 0 (6)

while being the closest possible (in the sense of the divergence function φ) to the empirical

distribution (4). Note that we interpret as an expectation operator denoted Êφ [.] the

operator which associates to any numerical function ψ(.) the real number

Êθ,φT [ψ (Xt+1)] =

T∑
t=1

π̂t,T (θ)ψ (Xt+1) .

This interpretation may actually be an abuse of notation since no non-negativity con-

straint for π̂t,T (θ) is maintained in the minimization program (2)/(3). This abuse of

notation will be at stake throughout the paper without explicit mention of it.

The bottom line is that the T numbers π̂t,T (θ) , t = 1, ..., T are model-implied empirical

probabilities which ensure in sample the validity of the asset pricing equation (1) for a

given value θ of the parameters:

Êθ,φT [g (Xt+1, θ)] = 0. (7)

Several remarks are in order:

First, empirical expectation (7) takes into account conditional moment restrictions (1)

only through its unconditional implication:

E0 [g (Xt+1, θ)] = 0 (8)

where E0 [] stands for the expectation operator of the true (historical) unknown distribu-

tion of the stationary process (Xt).

We have known since Hansen and Jagannathan [1997] that this is not restrictive since

the vector Rt+1 of gross returns can include not only some primitive assets but also actively

managed portfolio returns built on these primitive assets. Since the shares of investment
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in primitive assets to define the actively managed portfolios can include any function of the

conditioning information set I(t), the unconditional moment conditions (8) may arguably

summarize all the conditional information provided by the asset pricing model of interest

and observation of asset returns.

Second, having conditional moment restrictions (1) in the background, we do not con-

sider the possibility to pre-average the consecutive values g (Xt+h, θ) for h = ±1, 2, ...,HT

with a convenient bandwidth HT to take care of serial dependence in moment functions

(see, e.g., Kitamura and Stutzer [1997]). While (1) tells us that g
(
Xt+1, θ

0
)

is a martin-

gale difference sequence for the true unknown value θ0 of θ (if it exists), it is not the case

for other values of θ ∈ Θ and then, pre-averaging may be relevant. However, as explained

later, it would not change the substance of our empirical discussions.

Third, it is precisely because π̂t,T (θ) may differ from the sample distribution (5) that

some belief distortions are at stake. Revisiting the analysis of Julliard and Ghosh [2012]

we will discuss later how these distortions can be interpreted.

Fourth, when the asset pricing model (1) is well-specified and θ = θ0, the true value

of the parameters, we expect that even the distorted empirical distribution converges

weakly towards the true unknown probability distribution, meaning that for any bounded

function ψ (Xt), we have:

plim
T→∞

Êθ,φT [ψ (Xt+1)] = plim
T→∞

[
1

T

T∑
t=1

ψ (Xt+1)

]
= E0 [ψ (Xt+1)] .

Fifth, when the moment conditions (8) are not fulfilled for the given value θ, we may

hope that the model-implied empirical probabilities π̂t,T (θ) still define asymptotically a

population distribution, but it will be a distribution of distorted subjective beliefs, that

will differ from the true one. We will write:

plim
T→∞

Êθ,φT [ψ (Xt+1)] = Ẽθ,φ [ψ (Xt+1)] (9)

where Ẽθφ is an expectation operator different from E0. The discussion of existence and

properties of these population distorted beliefs conformable to (9) is one of the main
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focuses of interest of this paper. We first discuss in the next subsection what would be a

population analog of the minimization program (2)/(3).

2.2 Model-Implied Population Probability Distribution

We consider throughout this subsection a given value θ of the parameters and, taking ad-

vantage of the stationarity of the historical distribution of Xt+1, we simplify the notations

by writing for any function ξ such that ξ [g (Xt+1, θ)] is integrable:

E0 [ξ [g (Xt+1, θ)]] = E0 [ξ [Y (θ)]] .

The population analog of the minimization program (2)/(3) is written as:

min
M

E0 [φ (M [Y (θ)])] (10)

subject to:

E0 [M [Y (θ)]] = 1, E0 [M(Y (θ))Y (θ)] = 0. (11)

In particular, if the historical distribution of Y (θ) is characterized by a probability

density function fY (. |θ) with respect to some σ-finite measure λ, then:

E0 [M (Y (θ))Y (θ)] = EM [Y (θ)] =

∫
yfMY (y |θ )dλ(y)

where the distorted probability density function fMY (y |θ ) of Y (θ) is defined by its Radon-

Nikodym derivative M (y) with respect to the historical distribution:

fMY (y |θ ) = M(y)fY (y |θ ).

The rationale for this minimization is an obvious implication of Jensen’s inequality

(jointly with φ(1) = 0), telling us that on the one hand:

E0 [M [Y (θ)]] = 1 =⇒ E0 [φ(M [Y (θ)])] ≥ 0
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and on the other hand when not only E0 [M [Y (θ)]] = 1 but also E0 [M(Y (θ))Y (θ)] = 0,

then:

E0 [φ(M)] = 0⇐⇒ E0 [Y (θ)] = 0.

In particular, the value of the minimization programm (10)/(11) is zero if and only if

E0 [Y (θ)] = 0, that is when the pricing model (1) is well-specified and θ is a true value of

the parameters. In this case, the minimum is reached at only one (up to an almost sure

equality) change of measure M [Y (θ)] which is identical to the constant 1.

Otherwise, if it exists, a solution M θ
φ [Y (θ)] is a non-degenerate random variable, and

when the historical probability distribution is defined by a density function fY (y |θ ), a

density function for distorted beliefs is given by:

f
Mθ
φ

Y (y |θ ) = M θ
φ (y) f0Y (y |θ ).

In any case, when it exists, the change of measure given by M θ
φ [Y (θ)] defines distorted

expectations of bounded functions ξ [Y (θ)]:

Eθ,φ [ξ [Y (θ)]] = E0

[
M θ
φ [Y (θ)] ξ [Y (θ)]

]
.

In particular, a maintained assumption is that distorted beliefs are absolutely contin-

uous with respect to historical ones. They cannot assign positive probabilities to events

that would almost surely not happen historically.

Obviously, since (10)/(11) is the population analog of (2)/(3) we expect that the

solutions of the programs, when existing, should be related asymptotically. More precisely,

we expect that for any bounded function ξ [g (Xt+1, θ)]:

plim
T→∞

Êθ,φT [ξ [g (Xt+1, θ)]] = Ẽθ,φ [ξ [g (Xt+1, θ)]] = Eθ,φ [ξ [g (Xt+1, θ)]] . (12)

However, it is worth keeping in mind that while the finite sample solution Êθ,φT [ξ [g (Xt+1, θ)]]

always exists, while its limit Ẽθ,φ [ξ [g (Xt+1, θ)]] may exist under convenient regularity

conditions, we do not know yet whether the population solution Eθ,φ [ξ [g (Xt+1, θ)]] may
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exist. As already announced, we will present in Sections 3 and 4 respectively, situations

where it does not (resp. it does) exist.

2.3 The Cases of Empirical Likelihood

Empirical Likelihood (EL) is a φ-divergence corresponding to:

φL(m) = − log (m) .

Owen [2001] has dubbed Euclidean Empirical Likelihood (EEL) the quadratic approx-

imation of EL in the neighborhood of m = 1 :

φQ(m) =
m2 − 1

2
.

This approach is underpinned by the fact that with EEL, one is led to minimize

E0 [φQ(m)], which is nothing but the first term in the Taylor series expansion of E0 [φL(m)]

in the neighborhood of m = 1. The fact that φQ(m) is a quadratic function allows us to

see the program (2)/(3) as a quadratic program subject to linear restrictions so that we

get a solution in closed form that can be written (see, e.g., Chaudhuri and Renault [2020])

as a function of the first two empirical moments:

π̂Qt,T (θ) =
1

T
− ȲT (θ)′ [VT (Yt (θ))]−1

1

T

[
Yt (θ)− ȲT (θ)

]
(13)

where:

Yt (θ) = g (Xt+1, θ) , ȲT (θ) =
1

T

T∑
t=1

Yt (θ) ,

VT (Yt (θ)) =
1

T

T∑
t=1

Yt (θ)
[
Yt (θ)− ȲT (θ)

]′
.

Even though no closed form formula is available in the case of genuine EL, Chaudhuri

and Renault [2020] have shown that an equation formally similar to (13) is available for
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the solution of the EL program:

π̂Lt,T (θ) =
1

T
− ȲT (θ)′

[
V θ,L
T (Yt (θ))

]−1
π̂Lt,T (θ)Yt (θ) (14)

where:

V θ,L
T (Yt (θ)) =

T∑
t=1

π̂Lt,T (θ)Yt (θ)Yt (θ)′ . (15)

Obviously, (15) can be interpreted as an empirical variance but where the sample

distribution (4) has been replaced by the model-implied probabilities π̂Lt,T (θ). It is worth

noting that in spite of the similarities of formulas, (14) does not deliver, by contrast

with (13) for EEL implied probabilities, closed form formulas for EL implied probabilities

π̂Lt,T (θ). Not only the implied probability π̂Lt,T (θ) is explicitly on the RHS of (14 ), but

even solving for it would not give it in closed form since all the implied probabilities

π̂Lτ,T (θ) , τ = 1, 2, ..., T, are hidden within the matrix
[
V L
T (Yt (θ))

]
.

The distorted subjective belief distributions obtained by maximization of EL and min-

imization of quadratic divergence EEL respectively are equivalently defined by associated

expectation operators for any bounded function ξ [Yt (θ)]:

Êθ,AT [ξ [Yt (θ)]] =

T∑
t=1

π̂At,T (θ)ξ [Yt (θ)] , A ∈ {Q,L} .

We deduce from (13) and (14) that:

Êθ,QT [ξ [Yt (θ)]] =
1

T

T∑
t=1

ξ [Yt (θ)]− ȲT (θ)′ [VT [Yt (θ)]]−1CovT [Yt (θ) , ξ [Yt (θ)]] (16)

and:

Êθ,LT [ξ [Yt (θ)]] =
1

T

T∑
t=1

ξ [Yt (θ)]− ȲT (θ)′
[
V θ,L
T [Yt (θ)]

]−1
Covθ,LT [Yt (θ) , ξ [Yt (θ)]] (17)
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where:

CovT [Yt (θ) , ξ [Yt (θ)]] =
1

T

T∑
t=1

Yt (θ) ξ [Yt (θ)]′ − ȲT (θ)

(
1

T

T∑
t=1

ξ [Yt (θ)]

)′

Covθ,LT [Yt (θ) , ξ [Yt (θ)]] =

T∑
t=1

π̂Lt,T (θ)Yt (θ) ξ [Yt (θ)]′ .

Note that the last formula for covariance is justified by the fact that, by definition:

Eθ,LT [Yt (θ)] = 0.

Assuming at this stage, for sake of simplified interpretation, that all the quantities

considered in (12) exist for both φ-divergences φQ and φL, we are led to the definition of

population probability distributions for which the expectation operators are defined (with

obvious notations) as:

Eθ,Q [ξ (Yt (θ))] = E [ξ (Yt (θ))]− E [Yt (θ)]′ [V ar [Yt (θ)]]−1Cov [Yt (θ) , ξ [Yt (θ)]] (18)

and:

Eθ,L [ξ (Yt (θ))] = E [ξ (Yt (θ))]− E [Yt (θ)]′
[
V arθ,L [Yt (θ)]

]−1
Covθ,L [Yt (θ) , ξ [Yt (θ)]]

(19)

where:

V arθ,L [Yt (θ)] = Eθ,L
[
Yt (θ)Yt (θ)′

]
Covθ,L [Yt (θ) , ξ [Yt (θ)]] = Eθ,L

[
Yt (θ) ξ [Yt (θ)]′

]
.

Note that by contrast with (18), (19) does not give an explicit definition of a probability

distribution. The operator Eθ,L [.] is defined as implicit solution of the equation (19),

while it shows up not only on the LHS but also twice on the RHS (for the definition of

V arθ,L and Covθ,L). Assuming that both the historical, the EEL and the EEL probability

distributions are absolutely continuous with respect to the same measure on Rn, we deduce
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from (18) and (19) that their respective density functions fY (. |θ ), fθ,QY (. |θ ) and fθ,LY (. |θ)

are related as follows:

fθ,QY (y |θ ) = fY (y |θ )− E [Y (θ)]′ [V ar [Y (θ)]]−1 [y − E [Y (θ)]] fY (y |θ ) (20)

and:

fθ,LY (y |θ ) = fY (y |θ )− E [Y (θ)]′
[
V arθ,L [Yt (θ)]

]−1
yfθ,LY (y |θ ). (21)

Note that (21) defines implicitly the density function fθ,LY (. |θ ) as solution of an equa-

tion that contains it once in the LHS and twice in the RHS (one of them to compute

V arθ,L).

2.4 The rare disaster interpretation

Both, the explicit formula (20) and the implicit formula (21) allow us to find some theo-

retical underpinnings for the common intuition that disaster risk may help to rationalize

the Equity Premium Puzzle. To follow the counterfactual analysis in Julliard and Ghosh

[2012] means: (i) fixing the risk aversion parameter or more generally our vector θ of pa-

rameters to a “reasonable” value (relative risk aversion parameter fixed to 10 in their case),

and (ii) then asking the EEL and EL “estimation procedures to identify the distribution

of the data that would solve the EPP in the historical sample”. According to Julliard and

Ghosh [2012], “the first question to ask is whether the implied state probabilities make

economic sense. A priori, we would expect that the rare events distribution needed to

rationalize the EPP assigns relatively higher weights to a few particular bad states of the

economy. Figure 4 suggests that this is exactly what the estimated” probabilities do.

To address this issue, we first note that:

E [Y (θ)] = Cov [S (θ) , R] + E [S (θ)]E[R]− en.

Therefore, if for instance, for the sake of expositional simplicity, we consider that the
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risk free asset is properly priced:

E [S (θ)] =
1

RF

where RF stands for the risk-free return in any unit period (interest rate risk is overlooked

for expositional simplicity), then we will have:

E [Y (θ)] = Cov [S (θ) , R] +
1

RF
EPR

where:

EPR = E[R]−RF en

is the equity premium vector for the vector of n risky assets under consideration. There-

fore, if the equity premium of a given asset Ri,t+1 is larger than the covariance with the

counterfactual SDF St+1 (θ) can explain, we will have:

E [Yi,t+1 (θ)] > 0.

Let us then consider a collection of asset returns Ri,t+1, i = 1, .., n, some of the assets

being exactly priced (E [Yi,t+1 (θ)] = 0) while the other ones displaying a risk premium

higher than the model prediction (E [Yi,t+1 (θ)] > 0). We assume in addition that the joint

precision matrix C(θ) = [V ar [Y (θ)]]−1 of the pricing errors Yi,t+1 (θ) , i = 1, .., n has only

non-negative coefficients cij (θ) , i, j = 1, ., n. Note that this is in particular true if the n

pricing errors Yi,t+1 (θ) , i = 1, .., n are pairwise non-correlated. By revisiting the popular

concept of multivariate total positivity of order 2 (see, e.g., Chapter 2, Joe [1997]), we

could say that we assume more generally a kind of multivariate total negativity of the

pricing errors (see Example 2.2 and Exercise 2.19, Joe [1997]). It turns out that without

this assumption, the comparison between the historical distribution density fY (y |θ ) and

the EEL distribution density fθ,QY (y |θ ) would be ambiguous. As shown in Example 1

below, positive dependence between different asset returns will give rise to more likely

disasters through contagion, even though their likelihood is not captured by a high value
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of fθ,QY (y |θ).

To figure out the comparison between fY (y |θ )and fθ,QY (y |θ ) in a bad state y of the

economy, we first deduce from (20) that:

fθ,QY (y |θ ) = fY (y |θ )−

 ∑
1≤i,j≤n

cij (θ)E [Yj,t+1 (θ)] {yi − E [Yi,t+1 (θ)]}

 fY (y |θ ).

This formula shows that if y = (yi)1≤i≤n is a “bad state” because:

yi < E [Yi,t+1 (θ)] , ∀i = 1, ..., n

then:

fθ,QY (y |θ ) > fY (y |θ ).

Let us consider a simple example to further illustrate the underlying ideas. For nota-

tional brevity, we will in general suppress in this example the dependence of the concerned

quantities on the given θ.

Example 1: Assume for sake of notational simplicity that n = 2 and let ρ stand for

the correlation between the two asset pricing errors with −1 < ρ < 1, so that the variance

matrix can be inverted. The analysis could be easily extended to more than two assets by

considering instead partial correlations between two pricing errors given the other ones.

Let us assume that the first asset is accurately priced while the second one displays some

overly high risk premium:

E(Y1) = 0, E(Y2) = µ2 > 0.

Then, recalling that C =
[
V ar (Y1, Y2)

′], with elements denoted by cij , is the joint

precision matrix of the pricing errors, we obtain that:

∑
1≤i,j≤2

cij (θ)E [Yj,t+1 (θ)] {yi − E [Yi,t+1 (θ)]}

= c12µ2y1 + c22µ2 (y2 − µ2)

=
µ2

(1− ρ2)V ar (Y2)

{
y2 − µ2 − ρ

[
V ar (Y2)

V ar (Y1)

]1/2
y1

}
.
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By abuse of notation, let us denote the affine regression of Y2 on Y1 as a conditional

expectation. It is correct in case of joint normality and all statements below remain valid

in case of affine regression. Then the above formula shows that the relative difference

between the historical density fY (y |θ ) and the EEL implied one fθ,QY (y |θ ) is:

fθ,QY (y |θ )− fY (y |θ )

fY (y |θ )
=

−µ2
(1− ρ2)V ar (Y2)

{y2 − E[Y2 |Y1 = y1 ]} . (22)

While c22 =
[(

1− ρ2
)
V ar(Y1)

]−1
is positive by definition, the sign of c12 = −ρ

(
1− ρ2

)−1
[V ar(Y1)V ar(Y2)]

−1/2 will be crucial to figure out the impact on implied probabilities of

a bad state, such that:

y1 < E(Y1) = 0, y2 < E(Y2) = µ2.

We see with (22) that the sign of the relative difference between densities is the opposite

of the sign of the conditional surprise on Y2:

v2 = y2 − E[Y2 |Y1 = y1] .

Then, if c12 ≥ 0, meaning that ρ ≤ 0 and v2 ≤ y2 − µ2 < 0 since:

E[Y2 |Y1 = y1] = µ2 + ρ

[
V ar (Y2)

V ar ((Y1)

]1/2
y1 ≥ µ2.

By contrast, if ρ > 0, then E[Y2 |Y1 = y1] < E(Y2) so that, even though (y1, y2) is a

bad state, it is still possible that v2 = y2 − E[Y2 |Y1 = y1] > 0 so that:

fθ,QY (y |θ ) < fY (y |θ ).

The contagion (or correlation) effect makes the conditionally pricing error E[Y2 |Y1 = y1]

worse than the unconditionally expected pricing error E(Y2), so that it may be that y2 is

not conditionally a bad state (it exceeds the conditional expectation given other assets).

Hence, while (y1, y2) had been defined unconditionally as a bad state, it is not true any-

more that the rare events distribution needed to rationalize the EPP assigns relatively
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higher weight to this state.

Overall, at least for EEL, it is true that, when precluding overly influential contagion

effects, “the rare events distribution needed to rationalize the EPP assigns relatively higher

weights to a few particular bad states of the economy”.

However, in their empirical study, Julliard and Ghosh [2012] do not use EEL but EL.

Formula (21) shows that EL should lead to the same kind of conclusion as EEL, at least

if we define “bad state” by:

yi < 0, ∀i = 1, ..., n

and the maintained assumption about implied precision matrix (assumption of non-

negative coefficients) is about the EL implied precision matrix
[
V arθ,L [Y (θ)]

]−1
.

3 Disaster Risk and Problematic Characteriza-

tion of Distorted Beliefs

3.1 Unidentified beliefs under disaster risk

We show in this subsection that when an excess of equity premium (or more generally

E [Y (θ)] 6= 0) not explained by the asset pricing model (under historical distribution) is

matched by a disaster risk, it may lead to the non-existence of a well defined model-implied

probability distribution.

To see that, we first introduce the notation Eλ(Z |B ) for any Borel set B such that

0 < λ(B) < +∞:

Eλ(Z |B) =
1

λ(B)

∫
B
zdλ(z).

In other words, Eλ(Z |B ) is the expectation of the probability distribution on Rn

defined by:

Pλ(A |B ) =
λ(A ∩B)

λ (B)
.

For instance, if λ is the Lebesgue measure on Rn, Pλ(. |B ) is the uniform probability
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distribution on B.

We maintain in this subsection the following assumption:

Assumption “Undetected Misfit” (mispricing matched by unbounded disaster

risk):

For a given θ ∈ Θ such that E [Y (θ)] 6= 0, there exists a sequence Bj of Borel sets of

Rn and a sequence αj of positive real numbers such that for all j = 1, 2, ..:

0 < λ (Bj) < +∞

Eλ(Z |Bj) = −αjE [Y (θ)] , lim
j→∞

αj = +∞

fY (y |θ ) > 0,∀y ∈ Bj .

For instance, if λ is the Lebesgue measure on Rn, Bj may be a ball with center

[−αjE [Y (θ)]]. We can then prove the following theorem:

Theorem 1: If φ is a decreasing function on R+, continuous at m = 1 (with φ(1) = 0),

under assumption “Undetected Misfit”, there exists a sequence of changes of measure

M (j)(y |θ ) such that for all j = 1, 2, ..:

E
[
M (j)(Y (θ) |θ )

]
= 1, E

[
M (j)(Y (θ) |θ )Y (θ)

]
= 0

and:

lim
j→∞

E
{
φ
[
M (j)(Y (θ) |θ )

]}
= 0.

The interpretation of Theorem 1 is clear. It proves that under assumption “Undetected

Misfit”, with a decreasing contrast function φ, the minimization problem (10) subject

to (11) does not admit a solution. We can find changes of measure M , fulfilling the

constraints (11) and making E [φ(M)] arbitrarily close to zero but the lower bound zero

cannot be reached since the pricing model is misspecified. This impossibility theorem is

important since it can be applied in particular to empirical likelihood that corresponds to
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a divergence function:

φL(M) = − log(M).

It means in particular that the empirical exercise performed by Julliard and Ghosh [2012],

as described in Section 2 above, may not be meaningful because there would be no such

thing as a model-implied population probability distribution fθ,LY (y |θ ) for which the em-

pirical model-implied distribution would be a consistent estimator.

It is worth looking at the proof of Theorem 1 to get convinced that, insofar as we

reckon the possibility of unbounded disasters, the case of impossibility put forward by

Theorem 1 is not unrealistic. This proof is a slight generalization of a proof first proposed

in Chen, Hansen, and Hansen [2021]. The trick is to define a sequence of changes of

measure as follows:

M (j)(Y (θ) |θ ) = 1− πj +
πj

λ (Bj)

1Bj [Y (θ)]

fY (Y (θ) |θ )
.

This variable is well-defined since by assumption “Undetected Misfit”:

Y (θ) ∈ Bj =⇒ fY (Y (θ) |θ ) > 0.

By construction:

E
[
M (j)(Y (θ) |θ )

]
= 1− πj +

πj
λ (Bj)

∫
Bj

dλ(y) = 1

while:

E
[
M (j)(Y (θ) |θ )Y (θ)

]
= (1− πj)E [Y (θ)] +

πj
λ (Bj)

∫
Bj

ydλ(y)

= (1− πj)E [Y (θ)] + πjEλ(Z |Bj)

= (1− πj)E [Y (θ)]− πjαjE [Y (θ)]

= 0⇐⇒ πj =
1

1 + αj
.

Thus, by applying assumption “Undetected Misfit”, we conclude that the moment
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matching implies that:

lim
j→θ

πj = 0.

In other words, it is precisely because the disaster risk is unbounded that we have been

able to match moments with a sequence of changes of measure that converge to the unit

constant, which implies since the divergence measure φ is decreasing:

0 ≤ E
{
φ
[
M (j)(Y (θ) |θ )

]}
≤ E {φ (1− πj)} = φ (1− πj)

which converges to zero since φ(1) = 0 and φ is continuous at m = 1. QED

3.2 About the choice of a φ-divergence

We will argue that this issue of the choice of a φ-divergence is dramatically different

depending on whether the asset pricing model is well-specified and studied at the true

unknown value θ0 of the parameters (or at a consistent estimator of θ0) or the asset

pricing model is misspecified (or studied at a calibrated value of the parameters that is

not a consistent estimator of the true one).

3.2.1 Case of a well-specified asset pricing model

We assume in this subsection that the asset pricing model is well specified and identified,

such that there is a unique true unknown value θ0 such that:

E
[
Yt
(
θ0
)]

= 0.

Moreover, we assume that Yt
(
θ0
)

is a stationary martingale difference sequence. This

allows us to apply the results of Chaudhuri and Renault [2020] and Antoine, Bonnal, and

Renault [2007]. Even though their results have been proved for i.i.d. data, we can be

sure that, as usual for inference based on moment conditions, procedures that are valid

for i.i.d. data remain valid when the vector of moments is, at the true unknown value of

the parameters, a stationary martingale difference sequence.
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For the choice of a φ-divergence, we set the focus on the family of power divergence

functions introduced by Cressie and Read [1984] that we define as follows for any given

real number γ:

φγ (m) =


1

γ(γ+1)

[
mγ+1 − 1

]
, γ < 0

1
γ(γ+1)

[
mγ+1 −m

]
, γ ≥ 0

 . (23)

Note that we adopt the trick of Chen, Hansen, and Hansen [2021] to modify the classical

definition of power divergence functions by replacing the term (−1) (used when γ < 0) by

(−m) (used when γ ≥ 0). This change is immaterial when minimizing E [φγ (M)] subject

to restriction E(M) = 1 but it helps to figure out the two limit cases γ → (−1) and γ → 0,

just by application of L’Hopital’s rule to obtain two special cases of interest:

lim
γ→(−1)

φγ (m) = − log (m) = φL (m)

lim
γ→0

φγ (m) = m log (m) = φE (m)

where we recognize the negative log-likelihood φL (.)and φE (.) is by definition the relative

entropy. For γ = 1, we get:

φ1 (m) =
m2 −m

2

which, as already mentioned, leads to the same minimization program as EEL:

φQ (m) =
m2 − 1

2
.

More generally, for any real number γ, φγ (.) is obviously a valid φ-divergence, that is

a strictly convex function such that φ (1) = 0.

Therefore, we can define model-implied empirical probabilities π̂
(γ)
T (θ) =

(
π̂
(γ)
t,T (θ)

)
1≤t≤T

,

γ ∈ R, as solution of the minimization program:

min
πT∈RT

T∑
t=1

φγ (Tπt,T )
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subject to:
T∑
t=1

πt,T = 1,

T∑
t=1

πt,T g (Xt+1, θ) = 0.

By doing so, we define a vast family of model-implied probabilities indexed by γ ∈ R,

with particular cases:

π̂
(1)
T (θ) = π̂QT (θ) , π̂

(−1)
T (θ) = π̂LT (θ) .

Chaudhuri and Renault [2020] prove that implied probabilities, irrespective of the

Cressie-Read divergence that one uses, are asymptotically equivalent at the convenient

order, meaning that for all t = 1, ..., T :

∣∣∣π̂(γ)t,T (θ0) − π̂Qt,T (θ0)
∣∣∣ = oP

(
1

T
√
T

)
, ∀γ ∈ R. (24)

Note that we dub “convenient” the order of magnitude in the upper bound (24) be-

cause, even though it is not uniform over t = 1, ..., T , it allows Chaudhuri and Renault

[2020] to prove that it makes immaterial the choice of a discrepancy measure for estimating

a population expectation. For any integrable real function ξ [Y (θ)]:

√
T

{
T∑
t=1

π̂
(γ)
t,T (θ0)ξ

(
Yt
(
θ0
))
−

T∑
t=1

π̂Qt,T (θ0)ξ
(
Yt
(
θ0
))}

= oP (1),∀γ 6= 0. (25)

As far as inference on the population expectation is concerned, (25) implies that we

have the same asymptotic normal distribution for any estimator (for all γ):

√
T

{
T∑
t=1

π̂
(γ)
t,T (θ0)ξ

(
Yt
(
θ0
))
− E

[
ξ
(
Yt
(
θ0
))]} d−→ ℵ

(
0,Σ0

)
Since inference is not the focus of interest of this paper, we let the reader to check

in Antoine, Bonnal, and Renault [2007] what is the value of the asymptotic variance Σ0

and how it must be modified when, for the purpose of feasible inference, we replace θ0 in∑T
t=1 π̂

(γ)
t,T (θ0)ξ

(
Yt
(
θ0
))

by an efficient GMM or any GEL estimator θ̂T . The key point

is that the information provided by the well-specified moment conditions allows to get

an asymptotic variance smaller than the one of the naive estimator based on the sample
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mean, i.e.,

V ar
[
ξ
(
Yt
(
θ0
))]
− Σ0 is positive semi-definite.

It is worth realizing that, since the moment conditions are well specified, the model-

implied empirical probabilities are asymptotically matching the sample distribution (same

weight (1/T ) for all observations t = 1, ..., T ), but we only have for t = 1, ...T :

∣∣∣∣π̂(γ)t,T (θ0) − 1

T

∣∣∣∣ = oP

(
1

T

)
,∀γ 6= 0. (26)

Obviously the upper bound in (26) is less tight than the one in (24), precisely because

model-implied empirical probabilities are not equivalent to the naive sample frequencies:

they provide asymptotically more accurate estimators of a population expectation than

the naive sample mean. However, we always have consistent estimators:

plim
T→θ

T∑
t=1

π̂
(γ)
t,T (θ0)ξ

(
Yt
(
θ0
))

= plim
T→θ

1

T

T∑
t=1

ξ
(
Yt
(
θ0
))

= E
[
ξ
(
Yt
(
θ0
))]

.

Hence there is no point for the purpose of economic interpretation to compute model-

implied probabilities π̂
(γ)
t,T (θ0) (or feasible counterparts π̂

(γ)
t,T (θ̂T )). Up to statistical accuracy

of estimators of population expectations, they do not provide any economically meaningful

economic information that is not carried by sample frequencies.

Finally, it is worth knowing that while positivity is not granted for some of the implied

probabilities, it is always possible to shrink the probabilities to preclude their possible

negativity. More precisely, following Antoine, Bonnal, and Renault [2007], we define

nonnegative shrunk probabilities as follows:

π̂
(γ),sh
t,T (θ̂T ) =

1

1 + ε
(γ)
t,T (θ̂T )

π̂
(γ)
t,T (θ̂T ) +

ε
(γ)
t,T (θ̂T )

1 + ε
(γ)
t,T (θ̂T )

1

T

where:

ε
(γ)
t,T (θ) = −T min

[
min

1≤t≤T
π̂
(γ)
t,T (θ), 0

]
.

By virtue of (26), min1≤t≤T π̂
(γ)
t,T (θ̂T ) is asymptotically nonnegative with probability
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one (ε
(γ)
t,T (θ̂T ) is asymptotically nil with probability one ) so that, as proved by Antoine,

Bonnal, and Renault [2007], there is no harm for the asymptotic efficiency of estimators

to shrink the model-implied empirical probabilities:

√
T

{
T∑
t=1

π̂
(γ),sh
t,T (θ0)ξ

(
Yt
(
θ0
))
−

T∑
t=1

π̂Qt,T (θ0)ξ
(
Yt
(
θ0
))}

= oP (1).

3.2.2 Case of a misspecified asset pricing model (or counterfactual anal-

ysis)

Let us now consider the case of counterfactual analysis based on a given parameter value

θ that is not local to the true unknown value (that may even not exist):

E [Yt (θ)] 6= 0. (27)

While we have argued that there is no point computing model-implied empirical prob-

abilities in the case of a well specified model with a consistent estimator of θ0 (since they

all estimate the same object as naive sample frequencies), it is obviously different in the

case of biased moments as (27). For instance following (18) and (19):

plim
T→∞

Êθ,QT [ξ (Yt (θ))] = E [ξ (Yt (θ))]− E [Yt (θ)]′ [V ar [Yt (θ)]]−1Cov [Yt (θ) , ξ [Yt (θ)]]

while, if the limit exists:

plim
T→∞

Êθ,LT [ξ (Yt (θ))] = E [ξ (Yt (θ))]−E [Yt (θ)]′
[
V arθ,L [Yt (θ)]

]−1
Covθ,L [Yt (θ) , ξ [Yt (θ)]] .

We deduce from the comparison of these two formulas that it is hard to believe that

there is something economically meaningful to learn from “allowing the probabilities of

the states of the economy to differ from their sample frequencies” (Julliard and Ghosh

[2012]).

First, there is no reason to believe that the Cressie-Read discrepancies will pick the

same “pseudo-true value” of population expectations provided asymptotically by implied
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probabilities π̂
(γ)
t,T (θ) and π̂

(γ∗)
t,T (θ), γ 6= γ∗. The almost closed form formulas (18) and

(19) clearly show the difference. Different probabilities will lead to compute modified

variance and covariance which in turn imply that probabilities are different. Of course,

this difference is present even asymptotically, precisely because we have (27).

Second the definite proof that implied probabilities depend (even asymptotically) on

the discrepancy measure has been given by the impossibility theorem of Section 3.1.

And the impossibility is precisely in the case of rare disasters whose potential impact is

unbounded, thereby causing the model-implied distribution to not exist for decreasing

φ-divergences, in particular for Cressie-Read power divergences φγ for negative powers γ

and in particular for the EL case.

The bottom line is that we have no clear argument to claim that the population

model-implied probability distribution associated to some particular power value γ has

a better economic interpretation than others. The deep reason why there is not much

economics in this discussion is that φ-divergences are purely statistical objects and there

is no compelling argument to relate them to investor’s preferences. For instance, Cressie

and Read [1984] have introduced power divergences for the purpose of goodness-of-fit

tests. In this respect, it makes sense to consider as target of estimation not the minimal

divergence beliefs (as in Ghosh, Otsu, and Roussellet [2021]) but rather a set of “plausible

beliefs and model parameters consistent with certain levels of divergence from rational

expectations (i.e. misspecification sets) and perform sensitivity analysis with respect to

the level of divergence” (see Chen, Hansen, and Hansen [2021]).

However, it must be acknowledged that even this coherent approach focused on set

identification rests upon the somewhat arbitrary choice of a φ-divergence, at least in the

set of those that are not “problematic”. This choice issue may arguably justify the ambi-

guity approach in which, as in Jeong, Kim, and Park [2015], the investor’s optimization

ultimately delivers a distorted probability measure selected endogenously from the in-

vestor’s set of priors. These distorted subjective beliefs are not the result of a statistical

artifact, but produced instead by investor’s concern for robustness. A similar comment

applies to robust control as promoted by Hansen and Sargent [2011]. Some additional

29



work may be still needed to relate these results to the economic literature on disaster

risk. The ultimate goal would be to reconcile “uncertainty outside and inside economic

models” (Hansen [2014]).

4 Sufficient Conditions for the Existence of Model-

Implied Population Probabilities

We have seen in Section 3 that non-existence of a model-implied population probability

distribution was caused by the conjunction of two effects:

(i) Unbounded vector Y (θ) of pricing errors;

(ii) Decreasing divergence function φ.

We prove in this section two results (resp. in Subsections 4.1 and 4.2) of existence

based on the assumption that either (i) or (ii) does not hold, i.e., based respectively on the

assumption of bounded pricing errors Y (θ) or on the assumption of increasing divergence

function φ.

4.1 The case of bounded variables

For a given value θ ∈ Θ, the boundedness of the n pricing errors Yi (θ) for i = 1, , n allows

us to consider 2n non-negative random variables ai:

ai (Y (θ)) = L− Yi(θ), ai+n (Y (θ)) = Yi (θ)− l, ∀ i = 1, ..., n

where it is assumed that we have with probability one, for all i = 1, .., n:

l ≤ Yi (θ) ≤ L.

Then, for any change of measure M(.), we can characterize the moment restrictions

30



{E [MY (θ)] = 0} by the following system of 2n inequalities:

∫
ai(y)M(y)dPθ(y) ≤ L,∀i = 1, ..., n (28)∫
ai(y)M(y)dPθ(y) ≤ −l,∀i = n+ 1, ..., 2n.

In order to apply the results of Csiszar [1995], we will maintain the following assump-

tion.

Assumption A1: The probability distribution Pθ of the random vector Y (θ) is absolutely

continuous with respect to some σ-finite measure λ:

dPθ
dλ

(y) = fY (y|θ )

and fY (y|θ ) > 0 λ−almost everywhere.

Note that, the strict positivity of fY (y |θ ) λ−almost everywhere is hardly restrictive

since by definition:

[fY (y |θ ) = 0, ∀ y ∈ B] =⇒ Pθ(B) = 0

and then, the dominating measure λ can always be chosen such that λ(B) = 0. In this

context, Csiszar [1995] studies the linear inverse problem (28) by looking for a probability

density function s(y) with respect to the measure λ solution of a minimization problem:

min
s

∫
fY (y |θ )G

(
s(y)

fY (y |θ )

)
dλ(y) (29)

subject to:

∫
ai(y)s(y)dλ(y) ≤ L, ∀ i = 1, ..., n, and

∫
ai(y)s(y)dλ(y) ≤ −l, ∀ i = n+ 1, ..., 2n

where G is a given differentiable strictly convex function on R+
∗ , satisfying:

G(1) = G′(1) = 0.
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The objective function of (29) is well-defined precisely because fY (y|θ ) > 0 λ−almost

everywhere. Note that, if we consider a differentiable divergence function φ then we get

a well-suited function G by considering:

G(u) = φ(u)− φ′(1) [u− 1]] .

We are then able to apply Theorem 3(i) in Csiszar [1995] by noting that with our

notation M(.) for the change of measure, the program (29) can be rewritten as:

min
M

∫
G [M(y)] dPθ(y)

subject to:

∫
ai(y)M(y)dPθ(y) ≤ L, ∀ i = 1, ..., n, and

∫
ai(y)M(y)dPθ(y) ≤ −l, ∀ i = n+ 1, ..., 2n,

which can be rewritten as:

min
M

E [G [M (Y (θ))]] subject to: E [M (Y (θ))Y (θ)] = 0.

Moreover, it is worth noting that:

E [G [M (Y (θ))]] = E [φ [M (Y (θ))]]− φ′(1) [E [M (Y (θ))]− 1] = E [φ [M (Y (θ))]]

since by definition:

E [M (Y (θ))] = 1.

In other words, the minimization problem (29) is nothing but the minimization problem

of interest with the change of variable M 7→ s.

Regarding the minimization problem (29), Theorem 3(i), p177, in Csiszar [1995] tells

us that, thanks to the non-negativity of the random variables ai(Yθ) for all i = 1, ..., 2n,

and to Assumption A1, a solution sθ to the problem (29) (the so-called D-projection
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problem in Csiszar’s terminology) always exists. Then, from the above discussion, we do

have a solution:

M(y |θ ) =
sθ(y)

fY (y |θ )
, λ− ae

to our problem of interest. The function sθ is the D-projection of fY (y |θ ) on the set of

functions s defined by inequalities (28) (with M(y) replaced by s(y)/fY (y |θ )).

4.2 How to deal with unbounded pricing errors?

To figure out why the unboundedness of moment conditions may be harmful for our

minimization problem and what conditions on contrast functions may provide a hedge, it

is worth looking at the first order conditions of our minimization program. The Lagrangian

function can be written as:

L =

∫
φ [M(y)] fY (y |θ )dλ(y)−a

{∫
M(y)fY (y |θ )dλ(y)− 1

}
−b′

{∫
M(y)yfY (y |θ )dλ(y)

}

where a ∈ R and b ∈ Rn are the Lagrange multipliers. Then, under very general conditions

with a differentiable contrast function, the first order conditions can be written (for λ−a.e.

value of y) after differentiation with respect to M(y):

φ′ [M(y)] fY (y |θ )− afY (y |θ )− b′yfY (y |θ) = 0. (30)

By right-multiplying by M(y) (resp. M(y)y′), integrating with respect to y, and using

the constraints of the program, we get 1 equation (resp. n equations) to determine the

Lagrange multipliers a and b respectively as:

a∗ = E [M(Y (θ))φ [M(Y (θ))]]

E
[
M(Y (θ))Y (θ)Y (θ)′

]
b∗ = E

[
M(Y (θ))Y (θ)φ′ [M(Y (θ))]

]
.

By plugging these values of a and b in (30), we get the optimal value of M(y) for all y (up

to λ−a.e. equality) by inverting the strictly increasing function φ′. Thanks to Assumption
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A1, we can deduce from (30) that:

φ′ [M(y)] = a∗ + b∗′y, λ− a.e.

In particular if a solution M (.|θ ) exists, we will have almost surely:

φ′ [M (Y (θ)|θ )] = a∗ + b∗′Y (θ) . (31)

The identity (31) displays clearly the challenge we are facing for the existence of M (.|θ ).

If the random variable Y (θ) is not bounded, the linear function [a∗ + b∗′Y (θ)] is not

bounded either. Since the function φ′ is strictly increasing, the divergence of Y (θ) must

be coupled with a divergence of the density function M (.|θ ) of the model-implied popula-

tion probabilities, leading to the divergence of φ′ [M (Y (θ) |θ )] thanks to the maintained

Assumption A2.

Assumption A2:

lim
m→∞

φ′(m) = +∞.

In the context of the Cressie-Read family (23) of contrasts:

φ′γ(m) =
mγ

γ
, ∀ γ 6= 0

φ′0(m) = log(m) + 1,

we note that Assumption A2 is fulfilled if and only if γ ≥ 0, while by contrast for all

EL-like contrasts (γ < 0):

lim
m→∞

φ′γ(m) = 0.

While Assumption A2 appears to be necessary for the existence of M (.|θ ) in case of

an unbounded variable Y (θ) (as confirmed by the pretty general construction in Section

3 of a counter-example for all decreasing power divergence functions), we can again use

Csiszar [1995] to show to what extent it is sufficient.

If we want to relax the boundedness assumption about Y (θ), we can simply consider
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the system (28) of inequalities with arbitrary values of numbers l and L (that are not

bounds anymore), for instance l = L = 0, and variables ai(Y ), j = 1, .., 2n, which are

not assumed anymore to be non-negative. As in the former subsection, we still note the

equivalence between Csiszar [1995]’s projection problem (29) and our problem of interest,

through the change of variable M 7→ s.

Regarding the minimization problem (29), Theorem 3(iii), p177, in Csiszar [1995] tells

us that, thanks to Assumptions A1 and A2, and in spite of the fact that the functions

ai(Y ), i = 1, .., 2n may take both positive and negative values, a solution sθ to the problem

(29) always exists as soon as:

∫
G∗
[
αa−i (y)

]
fY (y |θ )dλ(y) <∞,∀α > 0, ∀ i = 1, ..., 2n

where:

a−i (y) = max (0,−ai(y))

and G∗ denotes the convex conjugate of G:

G∗(v) = sup
u

[uv −G(u)] .

As reminded in Csiszar [1995] (see formula (3.3), p177), our Assumption A2 allows us

to characterize the convex conjugate of G(u) = φ(u)− φ′(1) [u− 1]] as follows:

G∗(v) =

∫ v

0
(G′)−1(z)dz =

∫ v

0
(φ′)−1

[
z + φ′(1)

]
dz.

With our definition:

ai(Y ) = −Yi (θ) , ai+n(Y ) = Yi (θ) , ∀ i = 1, ..., n,

we are then led to maintain the following assumption.
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Assumption A3: For all α > 0 and all i = 1, ..., n :

E
{
G∗
[
αY +

i (θ)
]}
<∞, E

{
G∗
[
αY −i (θ)

]}
<∞

where:

y+ = max (y, 0) , y− = max(−y, 0)

G∗(v) =

∫ v

0
(φ′)−1

[
z + φ′(1)

]
dz.

Then, from the above discussion, under Assumptions A1, A2 and A3, we do have a

solution:

M(y |θ ) =
sθ(y)

fY (y |θ )
, λ− ae

to our problem of interest.

This result ensures very generally the existence of the model-implied population prob-

abilities for any Cressie-Read power divergence φγ , with γ ≥ 0 (as in particular EEL,

γ = 1), since we can now show the following result in Lemma 1.

Lemma 1 Let us consider a Cressie-Read contrast function φγ with γ ≥ 0. Then a

necessary and sufficient condition for Assumption A3 with φ = φγ is:

For γ > 0, |Yi(θ)|
γ+1
γ is integrable for all j = 1, ..., n.

For γ = 0, Y (θ) has a finite Laplace transform E [exp (t′Y (θ))] for all t ∈ Rn.

Not surprisingly, the smaller the index γ, the more restrictive is the integrability

assumption about Y (θ) that is needed for the existence of the model-implied population

probabilities. The condition for γ = 0 is tantamount to assuming the integrability at any

order, which is as expected the limit case (when γ −→ 0) of the assumption needed in

the case γ > 0. However, it is worth noting that the necessary and sufficient condition

put forward by Lemma 1 is very natural. To see that, we first note that when using

the contrast function φγ , we work with changes of measure M ≥ 0 such that φγ(M) is

integrable, meaning (with standard notations) that M ∈ Lγ+1. Thus, we want that:
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M ∈ Lγ+1 =⇒ MYi(θ) ∈ L1, ∀ i = 1, .., n

in order to be able to impose the constraint E [MY (θ)] = 0. By virtue of the Holder-

inequality, this assumption will be fulfilled if:

Yi (θ) ∈ Lq, ∀ i = 1, .., n

such that:
1

q
+

1

γ + 1
= 1, that is q =

γ + 1

γ
,

and this is exactly the condition put forward for Lemma 1. For instance, with Euclidean

Empirical Likelihood (γ = 1), we need to use changes of measure M with finite variance

and the corresponding moment functions, i.e., the components of Y (θ), must have finite

variance as well.

5 Conclusion

In this paper, we address the issue of econometric analysis of a structural dynamic model

that is defined by a finite-dimensional set of unconditional moment restrictions. These

restrictions are misspecified under rational expectations but valid under agent’s subjective

beliefs. Our point of view is more general than misspecification of the asset pricing model.

It also may be motivated by the willingness to perform a counterfactual analysis for a value

of preference parameters that we impose on the basis of prior knowledge (like limited value

of risk aversion) while it does not match the rational expectation restrictions.

This empirical strategy has been pervasive in the extant literature on calibration of

disaster risk for the purpose of asset pricing. Julliard and Ghosh [2012] have provided ar-

guably the most appealing variant of this strategy by minimizing a φ-divergence between

the historical distribution and the set of candidate distortions of subjective beliefs. How-

ever, we conclude that the theoretical underpinnings of this appealing empirical strategy

are problematic for many reasons (see also Chen, Hansen, and Hansen [2021] for related

arguments):
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First, the minimally divergent belief may not even exist when disaster risk is un-

bounded, in particular in the case of an empirical likelihood approach, which is rather

worrying.

Second, even for φ-divergences for which a minimizer exists to get a well-defined subjec-

tive beliefs distortion, the approach is problematic since different choices of φ-divergences

will lead to different minimally divergent beliefs. Since maximization of empirical likeli-

hood does not work in general misspecified models, there is no such thing as a natural

choice of the φ-divergence.

Third, we stress that φ-divergences have been first introduced in statistics, in particular

for issues of goodness-of-fit testing but have arguably no economic interpretation. We

put forward the work of Chen and Epstein [2002] (and Jeong, Kim, and Park [2015]

for econometric implementation) to suggest an alternative way of eliciting a subjective

beliefs distortion as the endogenous result of the investor’s optimization among a set of

priors. Moreover, Chen and Epstein [2002] clearly explain why the model is such that

ambiguity will “not disappear eventually as the agent learns about her environment”.

By eliciting “conditional one-step-ahead beliefs that are independent of history of times”,

the κ-ignorance model solved by Jeong, Kim, and Park [2015] belongs to what Chen and

Epstein [2002] dub IID ambiguity.

Fourth, even though the underlying rational expectations model comes as a set of

conditional moment restrictions that ensures that pricing errors are martingale difference

sequences, this property is by definition violated in the case of counterfactual analysis.

Therefore, an efficient statistical approach should take into account serial dependence

in the sequence of pricing errors. That would at least lead to revise the model-implied

probabilities computed in the current paper, by replacing the stationary marginal variance

and covariances by long run quantities (with HAC estimators) taking account the likely

infinite order of moving average dynamics of pricing errors.

Fifth, as far as statistical efficiency is concerned, one should prefer to perform a con-

ditional density projection of the distribution of pricing errors on the set of distributions

characterized by the conditional moment restrictions that define the asset pricing model.

38



While the statistical characterization of these projections has been thoroughly tackled by

Komunjer and Ragusa [2016], this is arguably a statistical challenge without a compelling

economic interpretation.

Overall, it seems to us that, in spite of its statistical appeal, the concept of φ-divergence

may not be so appealing if one looks for an economically meaningful interpretation of the

investors’ beliefs regarding disaster risk. It may be more relevant to contemplate a direct

matching of the observed data to the data simulated according to an asset pricing model

including some concern for disaster risk. This would take an extension of Indirect Inference

to misspecified models as sketched in Dridi, Guay, and Renault [2007] and developed in

the case of disaster risk in the recent work of Sonksen and Grammig [2021]. By putting

forward a novel strategy to estimate and empirically assess pricing models that allow for

multi-period disaster risk, the latter paper is able to increase the likelihood of concern

for disaster risk because “the total contraction can pan out over subsequent quarters”,

avoiding to impose counterfactual severity of the disaster events.
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