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Abstract

Let the unknown true value of a dθ × 1 parameter θ be θ0. Let θ0 satisfy dg ≥ dθ moment restrictions. Consider a linear

null hypothesis H0 : Rθ0 = r0 where R is a fixed, full row-rank, dR × dθ known matrix and r0 is a dR × 1 known vector. The

conventional projection test rejects H0 at the level α if there does not exist any dθ × 1 value θ0 in a (1− α)-level confidence

set for θ0 such that the restriction Rθ0 = r0 holds. The probability with which this test rejects H0, when it is true, cannot

exceed α asymptotically if the asymptotic coverage for the confidence set for θ0 is no smaller than 1−α. However, this test

can be conservative and computationally inconvenient. We propose an improved projection method based on a function of

Neyman’s C-alpha statistic to address both problems. The test is less conservative than the conventional projection test,

but still allows to enforce a user-specified upper bound on its asymptotic rejection probability of the true H0 irrespective of

any identification failure of θ0. Indeed, under conditions ensuring the local optimality of the classical plug-in-based Wald,

likelihood ratio and score tests for H0 : Rθ0 = r0, the improved projection test is asymptotically equivalent to them. This

test also addresses the computational problem by requiring the projection from a smaller dimension dθ − dR instead of dθ.
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†Department of Economics, McGill University; and Cireq, Montreal, Canada. Email: saraswata.chaudhuri@mcgill.ca.
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1 Introduction

Consider a parameter θ ∈ Θ ⊂ Rdθ whose unknown true value θ0 satisfies the following moment restrictions:

E[g(Zt; θ
0)] = 0 (1)

where {Zt}Tt=1 are Rdz -valued random vectors, g(.; θ) : Rdz ×Θ 7→ Rdg is a known (up to θ) function, and dg ≥ dθ.

All expectations are taken with respect to the true joint distribution, call it FT , of {Zt}Tt=1. Limits are taken

by letting T → ∞. Note that (1) allows for identification failures of θ0 for a given T or asymptotically as in, e.g.,

Stock and Wright (2000), Kleibergen (2005), Antoine and Renault (2012), Andrews and Guggenberger (2014), etc.

Under this setup, to which we will subsequently impose certain standard restrictions on {FT : T ≥ 1} but not

identification of θ0, the goal of this paper is to improve the conventional projection test for the null hypothesis

H0 : Rθ0 = r0 against the alterative hypothesis H : Rθ0 ̸= r0 (2)

where R is a fixed, full row-rank, dR × dθ known matrix, and r0 is a dR × 1 known vector.1 The case for dR = dθ

does not require a non-trivial projection, and is not considered. Instead we maintain that dR < dθ and 2 ≤ dθ ≤ dg.

The conventional projection test rejects H0 at the level α if there does not exist any θ0 satisfying Rθ0 = r0

in a (1 − α)-level confidence set for θ0. Dufour (1997), Dufour and Jasiak (2001), Dufour et al. (2006), Dufour

and Taamouti (2005, 2007), Dufour et al. (2013), etc. extensively document its usefulness under identification

failure of θ0. Given a confidence set for θ0 with asymptotic coverage 1−α, the asymptotic size of the conventional

projection test for H0 in (2), based on this confidence set, cannot exceed α. Such confidence sets for θ0, even under

identification failure of θ0, can be obtained with varying degree of computational ease by inverting, e.g., the S-test

of Stock and Wright (2000), the K-test of Kleibergen (2005), the modifications of Moreira (2003)’s conditional

likelihood ratio (CLR) test as in Kleibergen (2005), Andrews and Guggenberger (2014, 2015), etc.2,3

However, it is known that the conventional projection test can often be very conservative, and indeed needlessly

so if there is no or mild (e.g., Hahn and Kuersteiner (2002), Caner (2010))) identification failure. Also, without a

convenient way of imposing H0, the test can in general be computationally inconvenient if dθ is not very small.

We address these two problems – conservativeness and computational inconvenience – in the context of testing

(2) by means of an improved projection (GMM-LM) test that is based on a function of Neyman (1959)’s C-alpha

statistic and that uses the conventional fixed (χ2) critical values.

The construction of the C-alpha statistic for testing H0 in (2) is important in its own right beyond the paradigm

1The slightly awkward representation of H0 is still in line with Section 9.1 of Newey and McFadden (1994). We use it to emphasize
that we consider the true θ, and hence Rθ, as fixed but let the hypothesized value r0 vary, possibly with sample size T , which is
what determines if H0 is true or false. Accordingly, the assumptions maintained in this paper focus on the fixed true θ0. Contiguity
arguments, when they appear, reflect local deviations of the null from the fixed truth. To avoid confusing the reader due to this, we do
not use the term “local alternatives”. We note that varying the r0 in practice also directly leads to inversion of the concerned test.

2Also see Staiger and Stock (1997), Dufour (1997), Kleibergen (2002, 2007), Dufour and Taamouti (2005, 2007), Guggenberger and
Smith (2005, 2008), Andrews et al. (2006), Otsu (2006), Mikusheva (2010), Beaulieu et al. (2013), among many others.

3On the other hand, for not to be over-sized, the conventional plug-in tests based on fixed critical values often crucially depend on
consistent estimation of θ, which is not necessarily guaranteed under identification failure. Thus, the easy to conduct plug-in tests such
as the Wald and score tests, and the computationally less easy plug-in quasi likelihood ratio test – see Newey and McFadden (1994)
for precise definitions – can be badly over-sized. See Nelson and Startz (1990), Dufour (1997), Staiger and Stock (1997), Zivot et al.
(1998), Stock and Wright (2000), Kleibergen (2002, 2004, 2005), Moreira (2003), Zivot et al. (2006), Guggenberger et al. (2012a), etc.
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of projection tests or identification failure. In the special case of R = [IdR
, 0], the construction of the C-alpha

statistic can be easily reconciled with the idea of the efficient score for the parameter β := [IdR
, 0]θ treating the

parameter γ := [0, Idθ−dR
]θ as unknown, where the efficient score is the residual of the population regression of

the score for β on the score for γ. To our knowledge, this reconciliation is not apparent from the literature on the

C-alpha statistic for the case of a general R, as in (2), and in the context of moment conditions models, as in (1).

Our paper pays special attention to this reconciliation. We work with a generalization of Neyman’s C-alpha

statistic that has been studied extensively by Smith (1987) and Dagenais and Dufour (1991) (in the likelihood

context), and then establish its numerical equivalence with the efficient score statistic in a re-parameterized model.

As a consequence, the improved projection test can be recast in the re-parameterized model as the test in Chaudhuri

and Zivot (2011) that was developed in Chaudhuri (2008) based on the original work of Robins (2004). (Also see

Zivot and Chaudhuri (2009), Chaudhuri et al. (2010), Chaudhuri and Renault (2011), etc.) Subsequently, we allow

for a very general structure for the identification failure of the elements of θ0 following Antoine and Renault (2012)

and Andrews and Guggenberger (2014), and study the asymptotic properties of the improved projection test.

The rest of the paper is organized as follows. In Section 2 we describe the improved projection test and the key

idea behind it, we establish its numerical equivalence with the statistic considered in Chaudhuri and Zivot (2011)

in a re-parameterized model, and provide an intuitive justification for its main asymptotic properties. We abstract

from any identification failure in this section to fix ideas. Section 3 states the precise technical assumptions that

are maintained in the paper. Section 3 also formally develops the asymptotic properties of the test and concludes

by discussing the closely related recent literature. Proofs of all the technical results are collected in the Appendix.4

2 The Improved Projection test: Motivation and Definition

2.1 The key idea

The idea behind the reduction of – (a) conservativeness and (b) computational inconvenience – is best explained

by maintaining the classical conditions from, e.g., Newey and McFadden (1994)’s Theorem 9.2 that, importantly,

rule out any identification failure of θ0. These conditions are referred to as the NM-9.2 conditions henceforth.

Under the NM-9.2 conditions, the efficient influence function for Rθ0 is -l(Zt; θ
0) (see Appendix A.1) where

l(Zt; θ) := R
(
G′(θ)V −1(θ)G(θ)

)−1
G′(θ)V −1(θ)g(Zt; θ),

G(θ) := ∂
∂θ′E [g(Zt; θ)], V (θ) := V ar (g(Zt; θ)). Therefore, defining ḡT (θ) :=

1
T

∑T
t=1 g(Zt; θ), the efficient GMM

estimator of Rθ0 has the asymptotically linear representation:
√
T (R̂θ0 −Rθ0) = −

√
T lT (θ

0) + op(1) where

lT (θ) :=
1

T

T∑
t=1

l(Zt; θ) = R
(
G′(θ)V −1(θ)G(θ)

)−1
G′(θ)V −1(θ)ḡT (θ).

4Given the numerical equivalence with the test statistic in Chaudhuri and Zivot (2011), for brevity we do not present any Monte
Carlo results in this paper. Instead, we refer to Chaudhuri (2008), Zivot and Chaudhuri (2009), Chaudhuri et al. (2010), Chaudhuri
and Zivot (2011) and Chaudhuri and Renault (2011) for extensive simulation evidence documenting the good finite-sample properties
of the improved projection test. Thanks to the results established in Section 2, all such evidence apply directly to the test in our paper.
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(a) The first part of the idea is that for local optimality, a test for H0 can be based on an estimator of lT (θ):

l̂T (θ) := R
(
Ĝ′

T (θ)V̂
−1
T (θ)ĜT (θ)

)−
Ĝ′

T (θ)V̂
−1
T (θ)ḡT (θ)

where ĜT (θ)
P−→ G(θ) and V̂T (θ)

P−→ V (θ) uniformly in θ, at least in an open neighborhood of θ0. (.)− stands for

the g-inverse. When dR > 1, the test has to be based on a quadratic form of the standardized l̂T (θ), i.e., on

LMT (θ) := T × l̂′T (θ)

(
R
(
Ĝ′

T (θ)V̂
−1
T (θ)ĜT (θ)

)−
R′

)−

l̂T (θ). (3)

This is Smith (1987)’s LLMT , Dagenais and Dufour (1991)’s PC or Newey and McFadden (1994)’s LM2n statistic

for testing linear restrictions. It falls under the class of Neyman (1959)’s C-alpha statistic.

In this paper we will always maintain that V (θ) is nonsingular, unlike in Andrews and Guggenberger (2015).

However, in Section 3 (but not in Section 2) we will allow for the column-rank deficiency of G(θ) following Antoine

and Renault (2012) and Andrews and Guggenberger (2014) to characterize the identification failure of θ. Our use

of the g-inverse in the definitions of l̂T (θ) and LMT (θ) reflects our asymmetric treatment of V (θ) and G(θ).

Define P (D) := D(D′D)−D′ as the projection matrix for any matrix D. If D is positive semidefinite then let

D1/2, upper triangular, be such that D = D1/2′D1/2. Then a familiar and equivalent representation of LMT (θ) is

LMT (θ) := T ×
(
V̂

−1/2
T (θ)ḡT (θ)

)′
P

(
V̂

−1/2
T (θ)ĜT (θ)

(
Ĝ′

T (θ)V̂
−1
T (θ)ĜT (θ)

)−
R′

)(
V̂

−1/2
T (θ)ḡT (θ)

)
. (4)

For illustration, let dθ = 2 and dR = 1, and to characterize the null hypothesis H0 consider two simple but

common cases: (i) R = [1, 0] and (ii) R = [1, 1]. Also, let Ĝ′
T (θ)V̂

−1
T (θ)ĜT (θ) be nonsingular (almost surely). Then

it is straightforward to see that LMT (θ) = t2LM (θ) where, under cases (i) and (ii), tLM (θ) is respectively:

(i) tLM (θ) =
ω̂22(θ)ξT,1(θ)− ω̂12(θ)ξT,2(θ)√
ω̂11(θ)ω̂22(θ)− ω̂2

12(θ)
√
ω̂22(θ)

, (ii) tLM (θ) =
(ω̂22(θ)− ω̂12(θ))ξT,1(θ) + (ω̂11(θ)− ω̂12(θ))ξT,2(θ)√
ω̂11(θ)ω̂22(θ)− ω̂2

12(θ)
√
ω̂11(θ) + ω̂22(θ)− 2ω̂12(θ)

,

ω̂ij(θ) is the (i, j)-th element of Ĝ′
T (θ)V̂

−1
T (θ)ĜT (θ) and ξT,i is the i-th row of Ĝ′

T (θ)V̂
−1
T (θ)

√
T ḡT (θ) for i, j = 1, 2.

(b) The second part of the idea is to re-parameterize the system in (1) in order to explicitly impose H0 and

thereby facilitate computation by allowing us to directly work with a reduced dimensional space from which we

do the projection. Accordingly, consider a (dθ − dR) × dθ matrix S such that the dθ × dθ matrix AS = [R′, S′]′,

indexed by S, is nonsingular. S exists since R is full row-rank (e.g., rows of S form a basis of the null space of R).

Now, for this S, use the linear restrictions imposed by H0 to rotate the original parameter vector θ and define:

(β′, γ′S)
′
:= ASθ. (5)

This rotation is different from that considered in Sargan (1983), Phillips (1989), and later in Choi and Phillips

(1992), Zivot et al. (2006), Antoine and Renault (2009, 2012), Andrews and Cheng (2012, 2014), Cheng (2015),

etc. The rotation in (5) isolates the directions in θ that are identified by the null hypothesis in (2) regardless of the
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identification that is due to the model (1), whereas in the aforementioned papers, a rotation is employed to isolate

the directions identified by the model itself. Importantly, the rotation in (5) is enforceable in practice.

(1) and (5) imply that β0 := Rθ0 and γ0S := Sθ0 are the true values for β and γS . The parameter space for

(β′, γ′S)
′ is B × ΓS where B := {Rθ : θ ∈ Θ} ⊂ RdR and ΓS := {Sθ : θ ∈ Θ} ⊂ Rdθ−dR . Obviously, by definition,

LMT (θ) ≡ LMT

(
A−1

S (β′, γ′S)
′) .

(This is not the invariance to reformulation of H0.) The same holds for all other quantities that are functions of θ.

2.2 An equivalence relation based on (5) through an alternative construction

The null hypothesis in terms of the new parameters (β′, γ′S)
′
is H0 : β0 = r0. Thus β is the parameter of interest,

and γS is an unknown key nuisance parameter. This directly fits into the framework of Chaudhuri and Zivot (2011)

where the construction of a similar GMM-LM statistic adhered more closely to Neyman (1959)’s original C-alpha

construction. By contrast, a similar adherence is not apparent from the construction of LMT (θ) in (3). In this

subsection we reconcile this difference by establishing a suitable equivalence relation between the two constructions.

Note that, given the choice of S in the re-parameterization (5), the scores for β and γs, by which we mean here

the population version of the optimal rotations, in the efficient GMM sense, of ḡT (θ
0) along the directions of β0

and γ0s , are lβ,S,T (θ
0) := 1

T

∑T
t=1 lβ,S(Zt; θ

0) and lγS ,S,T (θ
0) := 1

T

∑T
t=1 lγS ,S(Zt; θ

0) respectively, where

lβ,S(Zt; θ) := R1′

SG
′(θ)V −1(θ)g(Zt; θ), and lγS ,S(Zt; θ) := S1′

S G
′(θ)V −1(θ)g(Zt; θ),

and R1
S and S1

S are respectively dθ × dR and dθ × (dθ − dR) fixed, known matrices such that

A−1
S = [R1

S , S
1
S ].

(Quantities dependent on the choice of S in (5) are indexed throughout by the subscript S. While the definition of

β := Rθ does not depend on S, the score for β in the re-parameterized model does depend on S through R1
S .)

The residual from the population regression of lβ,S(Zt; θ
0) on lγS ,S(Zt; θ

0) is lβ.γS ,S(Zt; θ
0) where

lβ.γS ,S(Zt; θ) := lβ,S(Zt; θ)−
(
R1′

S Ω(θ)S1
S

)(
S1′

S Ω(θ)S1
S

)−1

lγS ,S(Zt; θ),

and Ω(θ) := G′(θ)V −1(θ)G(θ). Under the NM-9.2 conditions, it follows that 1√
T

∑T
t=1 lβ.γS (Zt; θ

0)
d−→ N(0,ΞS(θ

0))

where

ΞS(θ) :=
(
R1′

S Ω(θ)R1
S

)
−
(
R1′

S Ω(θ)S1
S

)(
S1′

S Ω(θ)S1
S

)−1 (
S1′

S Ω(θ)R1
S

)
.

Let Ω̂T (θ) := Ĝ′
T (θ)V̂

−1
T (θ)ĜT (θ) be a consistent estimator of Ω(θ) and accordingly, let

Ξ̂S,T (θ) :=
(
R1′

S Ω̂T (θ)R
1
S

)
−
(
R1′

S Ω̂T (θ)S
1
S

)(
S1′

S Ω̂T (θ)S
1
S

)−1 (
S1′

S Ω̂T (θ)R
1
S

)
= R1′

S Ĝ
′
T (θ)V̂

−1/2′

T (θ)
(
Idg − P

(
V̂

−1/2
T (θ)ĜT (θ)S

1
S

))
V̂

−1/2
T (θ)ĜT (θ)R

1
S
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be a consistent estimator for ΞS(θ). Then a sample version of lβ.γS ,T (θ) :=
1
T

∑T
t=1 lβ.γS

(Zt; θ) naturally is:

l̂β.γS ,T (θ) = R1′

S Ĝ
′
T (θ)V̂

−1/2′

T (θ)
(
Idg − P

(
V̂

−1/2
T (θ)ĜT (θ)S

1
S

))
V̂

−1/2
T (θ)ḡT (θ),

and the GMM-LM statistic in Chaudhuri and Zivot (2011) is a quadratic form of the standardized l̂β.γS ,T (θ):

LMalt
T,S(θ) := T × l̂′β.γS ,T (θ) Ξ̂

−1
S,T (θ) l̂β.γS ,T (θ),

= T ×
(
V̂

−1/2
T (θ)ḡT (θ)

)′
P
((
Idg − P

(
V̂

−1/2
T (θ)ĜT (θ)S

1
S

))
V̂

−1/2
T (θ)ĜT (θ)R

1
S

)(
V̂

−1/2
T (θ)ḡT (θ)

) (6)

which they refer to as the efficient score statistic, since they refer to lβ.γS ,T (θ) as the efficient score for β.

Lemma 2.1 For a given θ ∈ interior(Θ) and T ≥ 1, let Ω̂T (θ) be positive definite almost surely. Then LMalt
T,S(θ)

is numerically invariant almost surely for any choice of S for which [R′, S′]′ is nonsingular.

This result builds on Dagenais and Dufour (1991). The other quantities defined so far are not invariant. Using

Lemma 2.1 we then have an equivalence result between the two alternative constructions LMT (θ) and LM
alt
T,S(θ).

Proposition 2.2 For a given θ ∈ interior(Θ) and T ≥ 1, let Ω̂T (θ) be positive definite almost surely. Then

LMT (θ) = LMalt
T,S(θ) almost surely for any choice of S for which [R′, S′]′ is nonsingular.

The final equivalence relation in Proposition 2.2 mimics the same in the likelihood context for the LM (score)

statistics constructed as a standardized quadratic form of either the efficient score function or the efficient influence

function (the latter having a close and direct resemblance with the Wald statistic). In this sense it reaffirms the

connection between the original C-alpha construction of Neyman (1959) and the subsequent ones in Smith (1987)

and Dagenais and Dufour (1991). Although intuitively expected, to our knowledge, this reconciliation is new.

2.3 The projection tests

Our improved projection test for H0 can be conducted in two steps as follows. For some ϵ, α > 0 and ϵ+ α < 1:

Step 1: obtain a nominal (1− ϵ)-level confidence set CIT (γS ; ϵ) for γ
0
S ;

Step 2: reject H0 if CIT (γS ; ϵ) is empty or if inf
γ0∈CIT (γS ;ϵ)

LMT

(
A−1

S (r′0, γ
′
0)

′) > χ2
dR

(1− α)
(7)

where χ2
dR

(1− α) is the (1− α)-th quantile of a central χ2 distribution with dR degrees of freedom.

CIT (γS ; ϵ) can be obtained by inverting e.g. the S-test, the K-test, modifications of Moreira (2003)’s CLR

test (see Kleibergen (2005), Andrews and Guggenberger (2014, 2015)) for γS , while treating β = r0 as known. In

practice, the operations required in steps 1 and 2 can be simultaneously conducted since, to fail to reject H0, it is

sufficient to find a single point γ0 that would belong in CIT (γS ; ϵ) and also satisfy the condition from Step 2.

On the other hand, in this GMM-LM context the conventional projection test rejects H0 at the level α if:

inf
θ0∈Θ:Rθ0=ro

L̃MT (θ0) > χ2
dθ
(1− α) or equivalently, inf

γ0∈ΓS

L̃MT

(
A−1

S (r′0, γ
′
0)

′) > χ2
dθ
(1− α) (8)
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where (see the LM3n statistic in Newey and McFadden (1994) and the K statistic in Kleibergen (2005)):

L̃MT (θ) := T ×
(
V̂

−1/2
T (θ)ḡT (θ)

)′
P
(
V̂

−1/2
T (θ)ĜT (θ)

)(
V̂

−1/2
T (θ)ḡT (θ)

)
. (9)

2.4 Convenience in computation

The first version in (8) is the standard representation of the conventional projection score test. It is exactly the

same as rejecting H0 if there does not exist any θ0 inside the confidence set {θ ∈ Θ : L̃MT (θ) ≤ χ2
dθ
(1− α)} for θ

such that Rθ0 = r0. We present the second version to exploit the re-parameterization in (5) and thereby impose

H0 in order to facilitate computation. In general, these tests have to be conducted by searching over a grid of, say,

m points along each dimension – larger m gives better accuracy (ceteris paribus). The computational advantage of

the second version is now evident by noting that while the order of magnitude of the numerical operations required

by the first version is mdθ , it is only mdθ−dR for the second one. Similar arguments imply that the computational

advantage of the improved projection test in (7) over the first version in (8) is also of the same order of magnitude.

2.5 Reduction in conservativeness

Note from (3) and (9) that L̃MT (θ̃T ) = LMT (θ̃T ) where θ̃T is the restricted-by-H0 GMM estimator of θT (see

Appendix A.3). Under the NM-9.2 conditions (still maintained here), LMT (θ̃T ) converges in distribution to a

central χ2
dR

distribution if H0 is true, and to a non-central χ2
dR

distribution under local deviations from the truth

(see (10) and note that
√
T (θ̃T −θ0) is still Op(1) under local deviations of H0 from the truth). Hence, the needless

part of the conservativeness of the conventional projection test, that we try to address, is due to its use of a critical

value from the χ2
dθ

distribution, while the test statistic is itself infθ0∈Θ:Rθ0=ro L̃MT (θ0) ≤ L̃MT (θ̃T ) = LMT (θ̃T ).

On the other hand, for any (r′0, γ
′
0)

′ in a
√
T -neighborhood of (β0′ , γ0

′

S )′ with probability approaching one –

more precisely, for r0 := β0 + µβ/
√
T and γ0 := γ0S + µγS/

√
T for some constant µβ , and µγS = Op(1) – we have:

θ0 := A−1
S (r′0, γ

′
0)

′ = R1
S(β

0 + µβ/
√
T ) + S1

S(γ
0
S + µγS

/
√
T ) = θ0 + (R1

Sµβ + S1
SµγS

)/
√
T .

The NM-9.2 conditions give: ĜT (θ0)
P−→ G(θ0), V̂T (θ0)

P−→ V (θ0) and, crucially,

√
T l̂T (θ0)

P−→
√
T lT (θ

0) + µβ

by using the orthogonality RS1
S = 0 following from ASA

−1
S = Idθ

. Hence

√
T lT (θ

0)
d−→ N

(
0, R

(
G′(θ0)V −1(θ0)G(θ0)

)−1
R′

)
and, therefore,

LMT (θ0)
d−→ χ2

dR
with non-centrality parameter µ′

β

(
R
(
G′(θ0)V −1(θ0)G(θ0)

)−1
R′

)−1

µβ . (10)

Crucially, the
√
T -deviation of γ0 from γ0S does not matter for the asymptotic distribution of LMT (θ0).

Under the same conditions and those that ensure the existence of a consistent estimator for γ0S , it can be shown

that CIT (γS ; ϵ) defined in (7) belongs in a
√
T -neighborhood of γ0S with probability approaching one since the
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test statistic for the test inverting which the confidence set is obtained diverges to +∞ uniformly in γS when

evaluated at (r0 and) γS outside the
√
T -neighborhood of γ0S . (To fix ideas, ignore empty CIT (γS ; ϵ) for now.)

Thus, γ†S,T := arg infγ0∈CIT (γS ;ϵ) LMT

(
A−1

S (r′0, γ
′
0)

′) = γ0S+µγS ,T /
√
T for some µγS ,T = Op(1). Hence by (10), the

improved projection test is asymptotically equivalent to the locally optimal infeasible test, based on the infeasible

efficient influence function and the unknown true γ0S , that rejects H0 at the level α if for θinfeas0 := A−1
S (r′0, γ

0′

S )′,

LM infeas
T (θinfeas0 ) := T × l′T (θ

infeas
0 )

(
R
(
G′(θinfeas0 )V −1(θinfeas0 )G(θinfeas0 )

)−1
R′

)−1

lT (θ
infeas
0 ) > χ2

dR
(1− α). (11)

Our paper allows for identification failure of θ0, and the optimality discussion above is only for the special case

of no identification failure. The next section presents a more general treatment of the improved projection test.

3 The Improved Projection Test: Asymptotic Properties

The discussion and the clean expressions from the last section, although intuitive, may not be valid under possible

identification failures of θ0 as characterized by, e.g., Stock and Wright (2000), Kleibergen (2005), Antoine and

Renault (2012), Andrews and Guggenberger (2014), etc. There is already a vast literature discussing the general

problems in such cases. Thus, it is important to discuss the asymptotic properties of the improved projection test

allowing for possible identification failures of θ0, a problem encountered in numerous empirical applications.

The choice of ĜT (θ) in the definition of LMT (θ) in (3) is important, and to account for a possible identification

failure of θ0 it is imperative that the choice is based on Kleibergen (2005):

ĜT (θ) =
[
Ĝ1,T (θ), . . . , Ĝdθ,T (θ)

]
,

where ĜT,j(θ) =
∂

∂θj
ḡT (θ)− V̂j,g,T (θ)V̂

−1
T (θ)ḡT (θ),

V̂j,g,T (θ) and V̂T (θ) are respectively dθ × dg and dg × dg matrices, and θj is the j-th element of θ for j = 1, . . . , dθ.

In particular, for j = 1, . . . , dθ, we would require V̂j,g,T (θ) and V̂T (θ) to be estimators of respectively,

Vj,g(θ) := lim
T→∞

T ×E
[(

∂

∂θj
ḡT (θ)− E

[
∂

∂θj
ḡT (θ)

])
ḡT (θ)

′
]

and V (θ) := lim
T→∞

T ×E [(ḡT (θ)− E[ḡT (θ)]) ḡT (θ)
′] ,

provided they exist. Also applicable are the variety of choices of ĜT (θ) considered in Guggenberger and Smith

(2005, 2008) that only deviate from ĜT (θ) defined above by an order of magnitude of op(1/
√
T ).

We maintain high-level but standard assumptions on the joint distribution FT of the data {Zt}Tt=1. Allowing

for a drifting data generating process (DGP) in what follows is important, and to emphasize it we index by T the

key parameters defined in terms of FT ; see, e.g., Stock and Wright (2000), Andrews and Guggenberger (2014).

We repeat here that irrespective of the drifting DGP {FT }, but consistent with the GMM literature, we take

the true value θ0 satisfying the moment restrictions in (1) as fixed. The null H0 in (2) is true if the hypothesized

value r0 is equal to Rθ0, it is false otherwise. Apart from characterizing the false H0 by locally deviating (to be

made precise later) r0 from Rθ0, no other maintained assumptions involve r0. For convenience, we maintain that:
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Assumption O:

θ0 ∈ int(Θ) where Θ is compact in Rdθ and int(Θ) := interior(Θ).

Notation: We suppress the triangular array {Zt,T : t = 1, . . . , T ;T ≥ 1} notation, and instead denote Zt,T by Zt.

For any matrix D, define ∥D∥ :=
√
trace(D′D) as the matrix norm. For any a× b matrix D = [D1, . . . , Db] define

D(j:k) := [Dj , . . . , Dl] for 1 ≤ j ≤ k ≤ b. Allow for D(1:0) and D(b+1:b) to be empty matrices with no column. For

an (ab) × 1 vector D = [d1, . . . , dab]
′, define devecb(D) := [(d1, . . . , db)

′, (db+1, . . . , d2b)
′, . . . , (d(a−1)b+1, . . . , dab)

′].

To impose generic bounds on quantities uniformly with respect to T or sometimes with respect to θ, we use the

quantities c and c̄ where c and c̄ are small and large (respectively), fixed, positive, real numbers.

3.1 Rejection of the true null hypothesis by the improved projection test

Assumption M:

M1. g(z; θ) is differentiable in θ at θ0 for each z ∈ Rdz . For ḠT (θ) :=
1
T

∑T
t=1

∂
∂θ′ g(Zt; θ):

 √
T ḡT (θ

0)
√
Tvec(ḠT (θ

0)− ET [ḠT (θ
0)])

 d−→

 ψ

ψG

 ∼ N (0,Σ)

where

lim
T→∞

V arT

 √
T ḡT (θ

0)
√
Tvec(ḠT (θ

0))

 ≡ lim
T→∞

 VT VgG,T

VGg,T VGG,T

 = Σ :=

 V VgG

VGg VGG

 .
M2. ∥(ET [ḠT (θ

0)], VT , V
′
Gg,T )∥ ≤ c̄, ∥V̂T − VT ∥+ ∥V̂Gg,T − VGg,T ∥ = op(1), and V are positive-definite.

To characterize the possible identification failure, let GT := ET [ḠT (θ
0)] and following Andrews and Guggen-

berger (2014)’s generalization of Kleibergen (2005)’s setup, consider the singular value decomposition of V
−1/2
T GT :

V
−1/2
T GT = CT ∆̄TB

′
T (12)

where CT and BT are non-random dg × dg and dθ × dθ orthogonal matrices whose columns are respectively the

eigen-vectors of the matrices V
−1/2
T GTG

′
TV

−1/2′ and G′
TV

−1GT . The dg × dθ non-random matrix ∆̄T := [∆T , 0]
′

where ∆T := diag (δT,1, . . . , δT,dθ
) is the dθ × dθ diagonal matrix with its diagonal elements (always from the top)

as δT,1 ≥ δT,2 ≥ . . . ≥ δT,dθ
(≥ 0,without loss of generality) as the singular values of V

−1/2
T GT .

Assumption M: (continued)

M3. For the singular value decomposition in (12), there exists a p ∈ {0, 1, . . . , dθ} such that:

(a) δT,j → δj , a constant, and
√
TδT,j → ∞ for j = 1, . . . , p as T → ∞ (this assumption is void if p = 0);

(b)
√
TδT,j → lj , a constant, for j = p+ 1, . . . , dR as T → ∞ (this assumption is void if p = dθ);

(c) CT → C and BT → B as T → ∞ where B is a nonsingular matrix;

(d) The dg × dθ matrix G∗ := [C(1:p), C(p+1:dθ)L + V −1/2(θ0)devecdg (ψG − VGg(θ
0)V −1(θ0)ψ)B(p+1:dθ)] has

full column-rank dθ almost surely, where L := diag (lp+1, . . . , ldθ
) is a (dθ − p)× (dθ − p) diagonal matrix
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with lp+1, . . . , ldθ
as its diagonal elements if p < dθ, and L is empty if p = dθ.

Remarks: p is the number of directions in θ that are better than weakly identified in the sense of Kleibergen

(2005). The remaining dθ − p directions in θ are at best weakly identified and necessitate the particular choice of

ĜT (θ). Assumption M3 and the representation involved in it are entirely based on the original work of Andrews

and Guggenberger (2014) who systematically and rigorously develop the final assumption M3(d) in their Lemma

8.3(d) from primitive sufficient conditions; see, e.g., their equations (3.9), (3.10), Lemma 15.1, Corollary 15.2.5 The

other assumptions, O, M1 and M2, are standard; see, e.g., Kleibergen (2005), Guggenberger and Smith (2005).

Lemma 3.1 Let assumptions O and M1-M3 hold. Then for LMT (θ
0) defined in (3), LMT (θ

0)
d−→ χ2

dR
.

Proposition 3.2 Let null hypothesis H0 in (2) be true, i.e., r0 = Rθ0 for θ0 defined in (1). Let the joint distri-

bution {FT : T ≥ 1} of {Zt}Tt=1 be constrained by the assumptions O and M1-M3. Let ϵ, α > 0 and ϵ + α < 1.

Let CIT (γS ; ϵ) be a confidence set for γS defined in (5) with asymptotic coverage (1− ϵ) for γ0S := Sθ0. Then the

probability with which the improved projection test in (7) rejects H0 cannot exceed (ϵ+ α) asymptotically.

Remarks:

1. This is the most general and practically useful result on the improved projection test in this paper. It follows

by Bonferroni’s inequality applied to Lemma 3.1 and the asymptotic coverage of CIT (γS ; ϵ).
6 Importantly, the

upper bound (ϵ+ α) for the rejection probability of the true H0 is entirely under the control of the user.

2. An example of the first-step confidence set CIT (γS ; ϵ) that possesses the desired suitable property is:

CISW
T (γS ; r0, ϵ) :=

{
γ0 ∈ ΓS : T ×QT (A

−1
S (r′0, γ0)

′) ≤ χ2
dg
(1− ϵ)

}
(13)

where the superscript SW stands for Stock and Wright (2000) who proposed such confidence sets based on the

S-test (a non-linear generalization of the Anderson-Rubin test), r0 is the hypothesized value of β that is implied

by H0 in (2) under the re-parameterization in (5), and

QT (θ) := ḡ′T (θ)V̂
−1
T (θ)ḡT (θ) (14)

is the standard continuously updated (CU-) GMM criterion function. Theorem 2 of Stock and Wright (2000)

establishes that the asymptotic coverage of CISW
T (γS ; r0, ϵ) for γ0S := Sθ0 is (1 − ϵ) when H0 in (2) is true and

when: (a)
√
T ḡT (θ

0)
d−→ ψ and (b) V̂T (θ

0)
P−→ V (θ0). Since (a) and (b) are already assumed under M1 and M2, the

asymptotic coverage for CISW
T (γS ; r0, ϵ) holds under weaker conditions than what we maintain here.

Following Chaudhuri and Zivot (2011), we recommend the use of CISW
T (γS ; r0, ϵ) in practice because of its:

(i) validity under weak and general conditions, (ii) computational simplicity, and (iii) effectiveness in eliminating

certain spurious declines in power of the GMM-LM test from the second step of our test. The ϵ in the upper bound in

5The convergence δT,j → δj for j = 1, . . . , p in M3(a), and BT → B instead of BT,(p+1:dθ)
→ B(p+1:dθ)

in M3(c) as T → ∞ are
slightly stronger than in Andrews and Guggenberger (2014). Strictly speaking, they are not necessary for the results in this section,
but helps to avoid certain peripheral complications arising from the fact that dR < dθ (the main complications are addressed head on).

6While the formulation of the problem and the subsequence argument in Andrews and Guggenberger (2014) could be employed to
state this result as the upper bound on the asymptotic size (limit of the exact size) of the improved projection test, since this is only
an upper bound and the test is not asymptotically similar at this level of generality, we take a less rigourous approach for brevity.
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Proposition 3.2 is, in practice, primarily due to the fact that CISW
T (γS ; r0, ϵ) can be empty with nonzero probability

(that increases with ϵ). This feature is actually useful for (iii) and also for (ii), and hence is accommodated in the

definition of the improved projection test in (7). Thus, our recommendation is in spite of the concern raised in

Davidson and MacKinnon (2014) and Muller and Norets (2016) (page 2184) that CISW
T (γS ; r0, ϵ) does not properly

reflect the parameter uncertainty, since this concern is at least partly addressed by the second step of our test.

Other choices of CIT (γS ; ϵ) include those proposed by Kleibergen (2005) based on the GMM-LM principle

and on Moreira (2003)’s conditional likelihood ratio principle. See Andrews and Guggenberger (2014) for precise

conditions under which they possess the property suitable for Proposition 3.2. When this happens, these confidence

sets, by definition, always contain the CU-GMM estimator of γS restricted by H0 in (2), i.e.,

γ̂S,T (r0) := arg min
γ∈ΓS

QT (A
−1
S (r′0, γ

′)′) ≡ arg min
γ∈ΓS

QT (R
1
Sr0 + S1

Sγ). (15)

(If non-empty, then CISW
T (γS ; r0, ϵ) also always contains γ̂S,T (r0).) Sometimes the upper bound in Proposition 3.2

can be sharpened to α by the use of such confidence sets.7 However, based on our experience with simulations,

albeit under limited scenarios, we still prefer the use of CISW
T (γS ; r0, ϵ) in practice for reasons (i)-(iii) stated above.8

3.2 Rejection of the false null hypothesis by the improved projection test

Without identification failure, Section 2.5 demonstrated that when the null deviates (
√
T−) locally from the truth,

the improved projection test is asymptotically equivalent to the infeasible test that rejects H0 if LM infeas
T (θinfeas0 ) >

χ2
dR

(1− α) provided that CIT (γS ; ϵ) belongs in a
√
T -neighborhood of γ0S with probability approaching one.

The purpose of this section is to allow for identification failure and still obtain analogous results. To use contigu-

ity arguments reflecting local deviations, we rule out weak or worse identification of θ0. In terms of assumption M3,

it means p = dθ. With this condition imposed, the characterization of identification failure in M3 does not provide

much additional generality over the characterization of identification failure in Antoine and Renault (2012), since

taking p = dθ rules out the cases that Andrews and Guggenberger (2014) refer to as “joint weak identification”

in their equations (2.1)(ii) and (2.5)(iv). Furthermore, the local nature of M3 does not allow us to determine the

distance from γ0S of an arbitrary sequence of points inside {CIT (γS ; ϵ) : T ≥ 1}, which is essential for establishing

the desired asymptotic equivalence result. For these reasons, the characterization in Antoine and Renault (2012),

that directly models ET [ḡT (θ)] for θ ∈ Θ globally to characterize identification failure (better than weak), seems

appropriate for our purpose. Accordingly, for some ρ : Θ 7→ Rdg and a sequence of diagonal matrices {ΛT : T ≥ 1}

(to be made precise below), let

ET [ḡT (θ)] =
ΛT√
T
ρ(θ). (16)

7For example, consider the canonical case R = [IdR , 0], S = [0, Idθ−dR ] and let γS := Sθ be strongly identified. Under a special case
of our setup and in this context as in Chaudhuri and Zivot (2011), Theorem 2 of Kleibergen (2005) and Theorem 6 in Guggenberger

and Smith (2005) show that LMT (r0, γ̂S,T (r0))
d−→ χ2

dR
under H0 (and when M4 holds). Then, exactly following the steps in the

current proof of our Proposition 3.2 but with γ0
S replaced by γ̂S,T (r0), it can be shown that the upper bound in Proposition 3.2 is α.

8While it is clear that CIT (γS ; ϵ) based on Kleibergen (2005)’s GMM-LM principle cannot be helpful for (iii) in general, it should
be noted that CIT (γS ; ϵ) based on Moreira (2003)’s conditional likelihood ratio principle may not also be helpful for (iii). Simulation
evidence and discussion on this can be found in Section 7.2.1 of Andrews (2016b), and empirical evidence can be found in Figure 2 of
Chaudhuri and Rose (2009) (Supplemental Appendix). Both such CIT (γS ; ϵ)’s can also be less appealing in terms of (i) and (ii).
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Notation: For any 1× c vector a = (a1, . . . , ac), let diag(a) denote the c× c diagonal matrix with ai as its i-th

diagonal element for i = 1, . . . , c. Let 1c denote the 1× c vector with all elements equal to 1.

Assumption N:

N1. ρ(θ) = 0 if and only if θ = θ0.

N2. ψT (θ) :=
√
T (ḡT (θ)− ET [ḡT (θ)]) ⇒ ψ(θ) where ψ(θ) is a Gaussian process on Θ with mean zero and

covariance function E[ψ(θ1)ψ(θ2)
′] = V (θ1, θ2), and V (θ0, θ0) = V (as in M1).

N3. {ΛT : T ≥ 1} is a deterministic sequence of dg×dg diagonal matrix with positive diagonal elements. I∗ is a dg×

dg matrix whose rows are a suitable permutation of the rows of Idg giving I∗ΛT I
∗′

= diag(λT,11k1 , . . . , λT,l1kl
)

where kj > 0 for j = 1, . . . , l and
∑l

j=1 kj = dg, and, furthermore, such that λT,j = o(λT,j+1) for j =

1, . . . , l − 1, limT λT,1 = ∞ but limT λT,l/
√
T <∞ .9

N4. The dg × dθ matrix ρθ(θ) :=
∂
∂θ′ ρ(θ) exists and is continuous in θ ∈ int(Θ). ρθ(θ

0) is full column-rank dθ.

N5. g(z; θ) is differentiable in θ ∈ int(Θ) for each z ∈ Rdz .

N6. ∂
∂θ′ψT (θ

0) =
√
T
[
ḠT (θ

0)− ΛT√
T
ρθ(θ

0)
]
= Op(1).

Remarks: Assumptions N1-N6 restate assumptions 1, 2, 3 and 5 of Antoine and Renault (2012) excluding their

assumptions 3(iv) and 5(i), whose counterparts will be introduced later, and keeping their assumption 3(iii) local.

A crucial assumption in Antoine and Renault (2012) is the orthogonality condition in their assumption 6(i).

They provide an extensive discussion of it, along with sufficient conditions (assumption 6∗(i)), and relate it to the

orthogonality condition in Andrews (1994). Our presentation deviates here slightly in that we will try to note

the tradeoff between the smoothness of the moment vector with respect to θ, and the slowest rate at which the

expected moment vector, after a suitable rotation, moves away from zero when θ moves away from θ0. (Due to

this suitable rotation (made precise below), this rate is not necessarily λT1/
√
T (from N3).) It is important to

recognize the aforementioned tradeoff; and our presentation tries to make it clear why, for example, in the case of

linear instrumental variables regression (a common use of GMM) that involves the most smoothness, the slowest

allowed rate of deviation could be anything faster than T−1/2, while under the standard conditions of nonlinear

GMM (as in Antoine and Renault (2009, 2012)) this rate should typically be faster than T−1/4.

To proceed, we will first need to characterize the local deviation of the null from the truth such that the directions

of the deviation are “efficient” in the sense of Antoine and Renault (2012). It is useful for this characterization

(and also in various proofs of our results including that of Lemma 3.1) to consider the following constructions that

are adapted from the original work of Antoine and Renault (2012), Andrews and Cheng (2014), Cheng (2015), etc.

Let {WT = [WT,1, . . . ,WT,mT ] : T ≥ 1} be a sequence of r × c (for some r, c) matrix of full row-rank r(≤ c)

where WT,j is r × cT,j (and empty if cT,j = 0) for j = 1, . . . ,mT and such that
∑mT

j=1 cT,j = c for each T ≥ 1.

UBT-Construction: An upper block-triangular (UBT) construction

We construct a sequence of r × r matrix {ΠT = [ΠT,1, . . . ,ΠT,mT
] : T ≥ 1} such that the c × r matrix W ′

TΠT

has an upper block-triangular structure for each T ≥ 1. For any given T , the following steps give such a ΠT .

9I∗−1 = I∗
′
. I∗ is not unique unless k1 = . . . = kl = 1 and thus l = dg . The multiplicity of the elements can be made dependent

on T and θ at the cost of significantly involved notation, but such generalizations may not be relevant in practice.
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• Let rank(WT,mT
) = c∗T,mT

≤ min(r, cmT
). Define ΠT,mT

as the r × c∗T,m matrix such that its columns form

an orthogonal basis for the column space of W ′
T,mT

. Stop if mT = 1, otherwise proceed to the next step.

• Let rank([WT,mT−1,WT,mT ]) − rank(WT,mT ) = c∗T,mT−1 ≤ min(r, cmT−1). Define ΠT,mT−1 as the c ×

c∗T,mT−1 matrix such that the columns of [ΠT,mT−1,ΠT,mT ] form an orthogonal basis for the column space of

[WT,mT−1,WT,mT ]
′. Stop if mT = 2, otherwise proceed to the next step.

• Continue step-by-step, as above, for j = mT − 2, . . . , 1 and for each j, define ΠT,j as the r × c∗T,j matrix,

where c∗T,j = rank([WT,j , . . . ,WT,mT
]) − rank([WT,j+1, . . . ,WT,mT

) ≤ min(r, cT,j), such that the columns of

[ΠT,j , . . . ,ΠT,mT
] form an orthogonal basis for the column space of [WT,j , . . . ,WT,mT

]′.

As a convention we take ΠT,j as an empty matrix if c∗T,j = 0. ΠT is an orthogonal matrix by construction and

(i) for some integer qT ∈ {1, . . . ,min(r,mT )}, the qT blocks W ′
T,jk,T

ΠT,jk,T
for k = 1, . . . , qT , and where 1 ≤

j1,T < . . . < jqT ,T ≤ mT , each has full column-rank c∗T,jk,T
> 0 satisfying

∑qT
k=1 c

∗
T,jk,T

= r;

(ii) W ′
T,jΠT,k = 0, a zero matrix of suitable (according to the above) dimension, for all 1 ≤ k < j ≤ mT .

LBT-Construction: A lower block-triangular (LBT) construction

We construct a sequence of r × r matrix {ΠT = [ΠT,1, . . . ,ΠT,mT ] : T ≥ 1} such that the c × r matrix W ′
TΠT

has a lower block-triangular structure for each T ≥ 1. For any given T , the following steps give such a ΠT . (This

is essentially the same as the UBT-Construction, but in reverse order. Hence to save new notation, we continue to

use the same notation as in the UBT-Construction and hope that this is not confusing.)

• Let rank(WT,1) = c∗T,1 ≤ min(r, c1). Define ΠT,1 as the r × c∗T,1 matrix such that its columns form an

orthogonal basis for the column space of W ′
T,1. Stop if mT = 1, otherwise proceed to the next step.

• Let rank([WT,1,WT,2]) − rank(WT,1) = c∗T,2 ≤ min(r, c2). Define ΠT,2 as the c × c∗T,2 matrix such that the

columns of [ΠT,1,ΠT,2] form an orthogonal basis for the column space of [WT,1,WT,2]
′. Stop if mT = 2,

otherwise proceed to the next step.

• Continue step-by-step, as above, for j = 3, . . . ,mT and for each j, define ΠT,j as the r × c∗T,j matrix,

where c∗T,j = rank([WT,1, . . . ,WT,j ]) − rank([WT,1, . . . ,WT,j−1) ≤ min(r, cT,j), such that the columns of

[ΠT,1, . . . ,ΠT,j ] form an orthogonal basis for the column space of [WT,1, . . . ,WT,j ]
′.

As a convention we take ΠT,j as an empty matrix if c∗T,j = 0. ΠT is an orthogonal matrix by construction and

(i) for some integer qT ∈ {1, . . . ,min(r,mT )}, the qT blocks W ′
T,jk,T

ΠT,jk,T
for k = 1, . . . , qT , and where 1 ≤

j1,T < . . . < jqT ,T ≤ mT , each has full column-rank c∗T,jk,T
> 0 satisfying

∑qT
k=1 c

∗
T,jk,T

= r;

(ii) W ′
T,jΠT,k = 0, a zero matrix of suitable (according to the above) dimension, for all 1 ≤ j < k ≤ mT .

The local deviation of the null from the truth:

We consider the local deviation (of r0 from the truth Rθ0) that is efficient in the sense of Antoine and Renault

(2012). Roughly speaking, it captures the direction along which the local asymptotic power of the improved

projection test increases at the fastest rate. To obtain this deviation we apply the UBT and LBT constructions,

in that order, as follows. First, let ρθ := ρθ(θ
0) (i.e., ∂ρ(θ0)/∂θ′), and by using N3 write I∗ΛT ρθ ≡ I∗ΛT I

∗′
I∗ρθ =[

λT,1ρ
′
θ,1, . . . , λT,lρ

′
θ,l

]′
where ρθ,j(θ) is a kj × dθ matrix for j = 1, . . . , l. Take WT =

[
ρ′θ,1, . . . , ρ

′
θ,l

]
= (I∗ρθ)

′
(not

13



depending on T ) in the UBT-Construction. Thus r = dθ, c = dg and mT = l in terms of the notation from the

UBT-Construction. WT is full row-rank r (i.e. dθ) by N4.

Πρθ
= [Πρθ,1, . . . ,Πρθ,l] is the dθ × dθ matrix ΠT from the UBT-Construction with WT =

(
I∗ρθ(θ

0)
)′
. (17)

Let c∗ρθ,j
≡ c∗ρθ,T,j = c∗T,j ≥ 0 denote the number of columns of Πρθ,j for j = 1, . . . , l, and qρθ

≡ qρθ,T = qT

from (i) in this UBT construction. Let (j1, . . . , jqρθ ) denote the indices such that the block ρθ,jiΠρθ,ji of dimen-

sion kji × c∗ρθ,ji
is full column-rank c∗ρθ,ji

> 0 for i = 1, . . . , qρθ
and

∑qρθ
i=1 c

∗
ρθ,ji

= dθ. Thus, the correspond-

ing block of I∗ΛT I
∗′
I∗ρθ(θ

0)Πρθ
is λT,jiρθ,jiΠρθ,ji and, correspondingly, the columns from (dθ −

∑qρθ
i′=i c

∗
ρθ,ji′

) to

(dθ −
∑qρθ

i′=i c
∗
ρθ,ji′

+ c∗ρθ,ji
) for i = 1, . . . , qρθ

of I∗ΛT I
∗′
I∗ρθ(θ

0)Πρθ
are represented by the dg × c∗ρθ,ji

matrix:

[λT,1(ρθ,1Πρθ,1)
′, 0′]

′
if ji = 1, and [λT,1(ρθ,1Πρθ,ji)

′, . . . , λT,ji(ρθ,jiΠρθ,ji)
′, 0′]

′
otherwise. In both cases: ji = 1 and

j1 > 1, the 0’s inside the big matrices denote sub-matrices of zeros with number of rows, which can be zero, such

that the number of rows of the corresponding big matrix is dg.

Now, conforming to this above structure, define a dθ × dθ matrix DT,ρθ
as

DT,ρθ
:=

√
Tdiag

(
λ−1
T,j1

1c∗ρθ,j1
, . . . , λ−1

T,jqρθ
1c∗ρθ,jqρθ

)
(18)

such that

1√
T
I∗ΛT I

∗′
I∗ρθ(θ

0)Πρθ
DT,ρθ

→ G† as T → ∞ (19)

where G† is a dg×dθ finite matrix of full column-rank, and its columns from (dθ−
∑qρθ

i′=i c
∗
ρθ,ji′

) to (dθ−
∑qρθ

i′=i c
∗
ρθ,ji′

+

c∗ρθ,ji
) for i = 1, . . . , qρθ

are represented by the dg×c∗ρθ,ji
matrix: [(ρθ,1Πρθ,1)

′, 0′]
′
if ji = 1, and [0′, (ρθ,jiΠρθ,ji)

′, 0′]
′

otherwise (the use of 0’s to denote 0 sub-matrices follow the same convention as above (18)). Define the dg × dθ

finite matrix of full column-rank G∗ as:

G∗ := I∗
′
G†. (20)

Now take WT = RΠρθ
= [WT,1 = RΠρθ,j1 , . . . ,WT,qρθ

= RΠρθ,jρθ
] (not depending on T ) in the LBT-

Construction. (Note that (j1, . . . , jqρθ ) are the indices defined immediately below (17).) Thus r = dR, c = dθ

and mT = qρθ
. WT is full row-rank by the definition of R, Πρθ

and Lemma 3.8 (in Appendix B).

ΠR = [ΠR,1, . . . ,ΠR,qρθ
] is the dR × dR matrix ΠT from the LBT-Construction with WT = RΠρθ

. (21)

Let c∗R,j ≡ c∗R,T,j = c∗T,j ≥ 0 denote the number of columns of ΠR,j for j = 1, . . . , qρθ
, and qR ≡ qR,T = qT

from (i) in this LBT construction. Let (jn1 , . . . , jnqR
) denote the sub-indices of the indices (j1, . . . , jqρθ ) (de-

fined immediately below (17)) such that the block Π′
ρθ,jni

R′ΠR,ni of dimension c∗ρθ,jni
× c∗R,ni

is full column-

rank c∗R,ni
> 0 for i = 1, . . . , qR and

∑qR
i=1 c

∗
R,ni

= dR. Thus, the corresponding block of DT,ρθ
Π′

ρθ
R′ΠR is

√
T

λT,jni

Π′
ρθ,jni

R′ΠR,ni and, correspondingly, the columns from (dR −
∑qR

i′=i c
∗
R,ni′

) to (dR −
∑qR

i′=i c
∗
R,ni′

+ c∗R,ni
)

for i = 1, . . . , qR of DT,ρθ
Π′

ρθ
R′ΠR are represented by the dθ × c∗R,ni

matrix:

[
0′,

√
T

λT,jqρθ

(
Π′

ρθ,jqρθ
R′ΠR,qρθ

)′
]′

if

14



ni = qρθ
and

[
0′,

√
T

λT,jni

(
Π′

ρθ,jni
R′ΠR,ni

)′
, . . . ,

√
T

λT,jqρθ

(
Π′

ρθ,jqρθ
R′ΠR,ni

)′
]′

otherwise (as above, 0 represents the

sub-matrix of zeros with number of rows that make the number of rows of the corresponding matrix equal to dθ).

Now, conforming to this above structure, define a dR × dR matrix DT,R as

DT,R := T−1/2diag
(
λT,jn1

1c∗R,n1
, . . . , λT,jnqR

1c∗R,nqR

)
(22)

such that

DT,ρθ
Π′

ρθ
R′ΠRDT,R → R∗′

(23)

where R∗′
is a dθ × dR finite matrix of full column-rank, and its columns from (dR −

∑qR
i′=i c

∗
R,ni′

) to (dR −∑qR
i′=i c

∗
R,ni′

+ c∗R,ni
) for i = 1, . . . , qR are represented by the dθ × c∗R,ni

matrix:

[
0′,

(
Π′

ρθ,jqρθ
R′ΠR,qρθ

)′
]′

if

ni = qρθ
and

[
0′,

(
Π′

ρθ,jni
R′ΠR,ni

)′
, 0′

]′
otherwise (as above, 0 denotes sub-matrices of zeros with number of rows,

which can be zero, such that the number of rows of the corresponding matrix is dθ).

Based on the above constructions, the local deviation of the null from the truth that we consider is:

√
TDT,RΠ

′
R(r0 − β0) = µβ , i.e., r0 = β0 +ΠR × diag

(
λ−1
T,jn1

1c∗R,n1
, . . . , λ−1

T,jnqR

1c∗R,nqR

)
µβ (24)

where DT,R and ΠR are as defined in (22) and (21) respectively, r0 is as defined in (2) and β0 := Rθ0 where θ0 is

the true value of θ, and µβ is any arbitrary, finite, deterministic, dR × 1 vector such that r0 ∈ int(B).

Antoine and Renault (2012) note that the one-to-one transformation Π−1
ρθ
θ of θ provides the rate-disentangled

directions of θ that are identified under N1-N6. However, since Rθ and not θ is our object of interest, we need to

consider the further constructions in (21), (22) and (23) to arrive at a similar rate-disentangled form to characterize

in (24) the local deviation of the hypothesized value r0.

For the hypothesized value r0 satisfying (24), consider an arbitrary and possibly non-deterministic sequence

{γS,T : T ≥ 1} ∈ ΓS and, thus, θT := R1
Sr0 + S1

SγS,T (i.e., RθT = r0) such that

√
TD−1

T,ρθ
Π−1

ρθ
(θT − θ0) = µT,θ (25)

where DT,ρθ
and Πρθ

are as defined in (18) and (17) respectively, and µT,θ is any arbitrary, Op(1), dθ × 1 vector

satisfying R∗µT,θ
P−→ µβ , and thus relates (25) to (24). The relationship follows since

1√
T
Πρθ

DT,ρθ
µT,θ = θT−θ0 = R1

S(r0−β0)+S1
S(γS,T−γ0S) i.e., RΠρθ

DT,ρθ
µT,θ = Π

′−1
R D−1

T,Rµβ i.e., R∗µT,θ
P−→ µβ .

The first equality uses the definition in (25), the second one is due to (5), the third one uses a pre-multiplication of

both sides by R and then the definition in (24), and the final step uses the definition in (23) and that µT,θ = Op(1).

Assumption N: (continued)

N7. The version of the tradeoff (see the remark below N6) assumption to be maintained is:

(a) ρ(θ) is twice continuously differentiable in θ ∈ int(Θ). g(z; θ) is twice differentiable in θ ∈ int(Θ) for each
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z ∈ Rdz and supθ∈int(Θ)

∥∥∥ ∂
∂θi

[
ḠT (θ)− ΛT√

T
ρθ(θ)

]∥∥∥ = op(λT,l/
√
T ) for i = 1, . . . , dθ.

(b) λT,j1 from (18) is such that λ2T,j1
/λT,l → ∞ as T → ∞, and where λT,l is defined in N3.

Remarks:

1. N7(a) imposes additional structure on the convergence in probability similar to assumption 5(i) (also see

3(iv)) of Antoine and Renault (2012), but on the second derivative of the moment vector. However, this structure

is still weaker than that in assumption 6(ii) of Antoine and Renault (2012) unless λT,1 = . . . = λT,l, i.e., unless

there is only a single rate associated with all the rows of the moment vector in (16). N7(b) resembles Antoine and

Renault (2012)’s assumption 6∗(i), which is a sufficient condition for their high-level orthogonality condition. If

limT

√
T/λT,l < ∞, in addition to N3, then N7(b) is equivalent to limT λ

2
T,j1

/
√
T = ∞, which resembles, in the

sense of Antoine and Renault (2012), the well-known condition in equation (4.13) in Andrews (1994).

2. We conjecture that if, when stated in terms of ∂a/(∂θa1
1 . . . ∂θ

adθ

dθ
) where a1, . . . , adθ

are non-negative integers

and a :=
∑dθ

j=1 aj , N7(a) would hold for a ≥ 2, then in N7(b) we could allow for limT λ
a
T,j1

/λT,l = ∞. (The key

steps are sketched for a = 3 below the proof of Lemma 3.9(c) in Appendix B.) Thus as a→ ∞, an extreme example

of whose limiting case is the linear instrumental variables regression with θ as the structural coefficients, we could

allow for the slowest rate (i.e. λT,j1/
√
T ) of deviation from zero of the suitably rotated expected moment vector

to be anything faster that T−1/2. This rate corresponds to just better than the genuinely weak identification of θ.

3. As noted by Antoine and Renault (2012) and also evident from Remark 1, the restriction in N7(b) under

our setup is not required if there is only a single rate, i.e., if λT,j1 = . . . = λT,jqρθ
(see (18)).

Lastly, the following standard assumption similar to M2 completes the characterization of our framework.

Assumption N: (continued)

N8. supθ∈Θ ∥V̂T (θ) − V (θ)∥ = op(1) and supθ∈N (θ0) ∥V̂Gg,T (θ) − VGg(θ)∥ = op(1) where N (θ0) is some open

neighborhood of θ0. V (θ) and VGg(θ) are finite and continuous inside N (θ0). V (θ) is positive-definite with

supθ∈Θ max[eigen values(V (θ))] ≤ c̄ <∞ (thus, finite), infθ∈Θ min[eigen valuesV (θ))] ≥ c > 0. V (θ0) = V .

Ideally VGg(θ) is such that VGg(θ
0) = VGg defined in M1. However, this is not necessary since we do not allow for

genuinely weak identification here, and thus do not need to use Kleibergen (2005)’s orthogonalization argument

that we needed under the more general characterization when studying the rejection of the true null in Section 3.1.

Lemma 3.3 Let assumptions O and N hold. Consider a sequence {θT = R1
Sr0+S

1
SγS,T : T ≥ 1} where r0 satisfies

(24) and {γS,T : T ≥ 1} is such that θT satisfies (25). Then the following results hold as T → ∞:

(a) LMT (θT ) = LM infeas
T (θinfeas0 ) + op(1) where LMT (θT ) is as defined in (3), LM infeas

T (θinfeas0 ) is as defined in

(11) and θinfeas0 := A−1
S (r′0, γ

0′

S )′ = R1
Sr0 + S1

Sγ
0
S.

(b) LMT (θT )
d−→ χ2

dR
with non-centrality parameter µ′

β

(
R∗(G∗′

V −1G∗)−1R∗′
)−1

µβ.

Remarks: Lemma 3.3(a) is a striking result emphasizing that local deviations of the nuisance parameters γS from

their true value γ0S (irrespective of the choice of S) does not matter as long as (25) holds. Under the standard

NM-9.2 conditions such a result is expected since LMT (θ) is constructed based on the efficient influence function;

and Section 2 (in particular, Section 2.5) discusses this. On the other hand, we relax those standard assumptions
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in this section and, as a result, the ideas behind standard
√
T -consistent estimation, efficiency bound, etc. may

no longer hold. Even under these relaxed conditions, that allow for identification failure (albeit not weak), we

demonstrate that this asymptotic equivalence result holds. Note that Chaudhuri and Zivot (2011) demonstrate a

similar asymptotic equivalence result but without allowing for any identification failure. They consider the classical

characterization of local deviations. In our case, however, the characterization of local deviations is nonstandard

and this is evident from the (rather long) step-by-step construction that was described before this lemma.

Lemma 3.3(b) specifies the asymptotic distribution of LMT (θT ), which we now use to study the asymptotic

properties of the improved projection test defined in (7). (Recall that when the null H0 is true, we have µβ = 0.)

Proposition 3.4 Let assumptions O and N hold. Let the hypothesized value r0 for β0 := Rθ0 satisfy the local

deviation from the truth characterized by (24). For the given choice of S, and some ϵ > 0 such that ϵ+ α < 1, let

CIT (γS ; ϵ) be a confidence set for γ0S, the true value of γS, such that

sup
γ0∈CIT (γS ;ϵ)

√
T
∥∥∥D−1

T,ρθ
Π−1

ρθ

(
(R1

Sr0 + S1
Sγ0)− θ0

)∥∥∥ = Op(1) (26)

where Πρθ
and DT,ρθ

are defined in (17) and (18) respectively. Then

inf
γ0∈CIT (γS ;ϵ)

LMT

(
A−1

S (r′0, γ
′
0)

′) = LM infeas
T (θinfeas0 ) + op(1)

where LM infeas
T (θinfeas0 ) is as defined in (11) and θinfeas0 := A−1

S (r′0, γ
0′

S )′ = R1
Sr0 + S1

Sγ
0
S.

Remark: The proposition, therefore, establishes the asymptotic equivalence of the improved projection test and

the infeasible test described above (11), provided that the first-step confidence set for γ0S (for the given choice of

S) satisfies the condition in (26). Thus, the improved projection test inherits any optimality property (discussed

in Section 2) of the infeasible test in such cases.

It is useful to have a closer look at (26). For convenience of future reference, recall that for any γ0 ∈ ΓS :

√
T
∥∥∥D−1

T,ρθ
Π−1

ρθ

(
(R1

Sr0 + S1
Sγ0)− θ0

)∥∥∥ =
√
T
∥∥∥D−1

T,ρθ
Π−1

ρθ
R1

S(r0 − β0) +D−1
T,ρθ

Π−1
ρθ
S1
S(γ0 − γ0S)

∥∥∥ .
If ΛT = λT Idg for some λT → ∞ (but limT λT /

√
T < ∞), i.e., all the rates are equal, and if our interest lies in

testing sub-vectors of θ (e.g., R = [IdR , 0]), then by virtue of (24), the condition in (26) boils down to

sup
γ0∈CIT (γS ;ϵ)

λT
∥∥γ0 − γ0S

∥∥ = Op(1).

If, additionally, we consider the setup of Chaudhuri and Zivot (2011) where (the part related to) asymptotic

equivalence similar in spirit to that in Proposition 3.4 is discussed under standard conditions such as the NM-9.2

conditions and those that ensure consistent estimation of γ0S (as in Section 2.5), then again by virtue of (24), the

condition in (26) boils down to

sup
γ0∈CIT (γS ;ϵ)

√
T
∥∥γ0 − γ0S

∥∥ = Op(1).
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Both these scenarios are familiar by now. By contrast, in our assumption N3 (and N7(b)) we do not force all the

rates to be equal. Nor do we focus only on testing sub-vectors of θ (although it should be noted that such cases are

the leading and most common examples of our general null hypotheses on linear restrictions). As a consequence,

the general representation (26) in Proposition 3.4 is more involved than the corresponding representations in the

two familiar scenarios above. Nevertheless, the intuition behind this general representation is the same.

Does there exist such a confidence set CIT (γS ; ϵ) satisfying (26)?

The general answer seems to be negative under the framework of this sub-section. For example, consider the choice

CISW
T (γS ; r0, ϵ) defined in (13). There are two issues. The first one is specific to this choice, and does not have an

adverse effect on the asymptotic power of the improved projection test. The second one may have adverse effects on

asymptotic power. This issue is related to the generality of our framework, and does not appear under the special

cases that are typically considered in this literature, including that in Chaudhuri and Zivot (2011). Thus, for those

special cases and certain generalizations of them, all our results so far go through without any further assumption.

Let us now be more specific about these two issues, and then state the precise condition under which the second

issue becomes immaterial and there is no adverse effect on the asymptotic power of the improved projection test.

First, as noted in remark 2 following Proposition 3.2, CISW
T (γS ; r0, ϵ) can be empty with positive probability,

a property that we actually deem desirable for the power of the improved projection test.10 Nevertheless, it means

that CISW
T (γS ; r0, ϵ) cannot satisfy (26). This is well-known and has been noted in Chaudhuri and Zivot (2011).

Second, it seems that even without the consideration of the emptiness of the confidence set, it is not possible to

conclude that CISW
T (γS ; r0, ϵ) would satisfy (26) without imposing further restrictions. The fundamental problem

behind this has nothing to do with the fact that we are testing hypotheses on Rθ, but seems to be intrinsic to the

framework of this sub-section and our focus on the efficient directions in terms of θ (and thereby in terms of Rθ).

It is important to highlight this problem since even if we were testing a null hypothesis such as θ = θ0 (and thus

no projection test is required), this problem affects how the power of a test increases as the hypothesized value θ0

deviates from the truth along the efficient (in the sense of Antoine and Renault (2012)) direction: Π−1
ρθ

(θ0 − θ0).

Without deviating from the discussion, we note this problem in the context of CISW
T (γS ; r0, ϵ), i.e., the S-test.11

Thanks to N1 and subsequently N8, it is straightforward to see that infθT :∥θT−θ0∥≥c T × QT (θT ) diverges (in

probability) to ∞ as T → ∞ for any c > 0. Thus, by the definition in (13), such θT ’s (or random sequences θT ’s

taking such values) are not contained in CISW
T (γS ; r0, ϵ) with probability approaching one. However, the problem

arises when we wish to conclude that sequences {θT : T ≥ 1} such that θT −θ0 = o(1) but
√
TD−1

T,ρθ
Π−1

ρθ
(θT −θ0) ̸=

O(1) cannot be contained in CISW
T (γS ; r0, ϵ) asymptotically, i.e., when we wish to establish that for such a sequence

(or random sequences θT ’s taking such values), T ×QT (θT ) diverges (in probability) to ∞ as T → ∞.12 This result

is necessary to justify the use of CISW
T (γS ; r0, ϵ), which crucially hinges on (26). The technical problem that we

face in establishing it is similar to what necessitated assumption 6(i) in Antoine and Renault (2012).

The following high-level assumption overcomes this problem.

10The probability of emptiness decreases as ϵ → 0. Provided that CISW
T (γS ; r0, ϵ) is non-empty, it contains γ̂S,T (r0) defined in (15).

11This choice helps us to focus on the specific problem since, as noted in Remark 2 following Proposition 3.2, the other tests whose
asymptotic size is robust to identification failures suffer from an additional problem of spurious declines in power due to other reasons.

12See assumptions 5(i)-(iii) in Andrews and Mikusheva (2016) who also provide further discussion.
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Assumption N: (continued)

N9. There exists an open neighborhood N (θ0) of θ0 such that

sup
θ∈N (θ0)

κT (θ) = op(1) where κT (θ) :=

{
ΛT√
T

[
ρθ(θ)− ρθ(θ

0)
]
Πρθ

DT,ρθ

}√
TD−1

T,ρθ
Π−1

ρθ
(θ − θ0)

∥
√
TD−1

T,ρθ
Π−1

ρθ (θ − θ0)∥
.

Remarks: It is clear that N9 is trivially satisfied when ρ(θ) is linear in θ, an example of which is the linear

instrumental variables regression. Now consider some special cases by allowing for ρ(θ) to be nonlinear in θ.

First, if ΛT = λT Idg , i.e., if all the rates are equal, then also N9 holds trivially due to continuity of ρθ (see

N4). As noted before, this is the scenario considered in Chaudhuri and Zivot (2011) to discuss the asymptotic

equivalence of the projection test and the locally optimal infeasible test. Also, as noted in Remark 3 following

N7, the assumption N7(b) is redundant under this scenario. Thus, all the results so far automatically hold for the

so-called nearly weak identification cases considered in, e.g., Caner (2010).

Second, allow for the λT,j ’s in ΛT to be unequal and of different order of magnitude, but let ρθ(θ) be such that

the same Πρθ
works for the purpose of (17) for all θ ∈ N (θ0). N9 holds in such cases. A further special case of this

is where Πρθ
= Idθ

, i.e., ρθ(θ) is already such that the elements of θ are locally identifiable at disentangled rates.13

Apart from the above cases, certain restrictions on the λT,j ’s and ∥
√
TD−1

T,ρθ
Π−1

ρθ
(θ− θ0)∥ in addition to N7(b)

also make assumption N9 hold. However, in general, assumption N9 is not innocuous and, as a partial support to

the condition (26), we are only able to provide the following result in Lemma 3.5 by maintaining this assumption.

Although we say partial support to acknowledge that CISW
T (γS ; r0, ϵ) can be empty asymptotically with positive

probability, we already noted that this can not be bad for the power of the improved projection test. So it is only

for technical reasons that we will, in Lemma 3.5, define the sup in (26) to be zero if CISW
T (γS ; r0, ϵ) is empty, as

was done in Lemma 2 in Andrews (2016b). In this sense the result below is similar to an intermediate result in

the proof of Theorem 3.2(ii) of Chaudhuri and Zivot (2011) and also Theorem 3 of Andrews (2016b) both of whom

focus on the case of strong identification, unlike our setup of less than strong and rate-entangled identification.

Lemma 3.5 Let assumptions O and N hold. Let the hypothesized value r0 for β0 := Rθ0 satisfy the local deviation

from the truth characterized by (24). Then CISW
T (γS ; r0, ϵ) satisfies (26) for ϵ > 0, i.e.,

sup
γ0∈CISW

T (γS ;r0,ϵ)

√
T
∥∥∥D−1

T,ρθ
Π−1

ρθ

(
(R1

Sr0 + S1
Sγ0)− θ0

)∥∥∥ = Op(1)

where the left hand side is defined as 0 if CISW
T (γS ; r0, ϵ) is empty.

For completeness, we summarize the result from Proposition 3.4 and Lemma 3.5 in the form of the following

corollary. The proof is similar to that of Theorem 3.2(ii) in Chaudhuri and Zivot (2011) and hence is omitted.

Corollary 3.6 Let assumptions O and N hold. Let the hypothesized value r0 for β0 := Rθ0 satisfy the local

deviation from the truth characterized by (24). Then, for ϵ, α > 0 such that ϵ + α < 1, the asymptotic probability

13While not strictly nested by our model for E[ḠT (θ)] = ΛT√
T
ρθ(θ), it can be shown that N9 is not required under general cases of

rate-disentangled θ, e.g., E[ḠT (θ)] = ρθ(θ)diag(δT,1, . . . , δT,dθ )/
√
T where δT,j → ∞ but limT δT,j/

√
T < ∞ for all j = 1, . . . , dθ.
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of rejection of this hypothesized value by the improved projection test in (7) based on the choice CISW
T (γS ; r0, ϵ) in

(13), cannot be smaller than that by the infeasible test in (11).

3.3 Closely related literature

The notion of optimality in relation to the infeasible test in (11) is less ambitious than that considered in the

literature on identification failure inspired by Moreira (2002, 2003). See Andrews et al. (2006), Moreira and

Moreira (2013), Andrews (2016b), Andrews and Mikusheva (2016), Montiel-Olea (2016), etc. By contrast, our

use of the term is similar to that in Section 9 of Andrews and Guggenberger (2015) and Comment (iii) following

Theorem 4.1 of Andrews and Guggenberger (2014). Indeed, the LM-principle generally does not lead to optimality

other than in a local sense since it is only based on the slope of the moment vector (slope of log-likelihood function).

Furthermore, as originally noted by Kleibergen (2005), allowing for identification failure necessitates the use of

an estimator for the Jacobian matrix that is not simply the sample mean of the derivative of the moment vector,

but the sample mean of the residual of the regression of this derivative on the moment vector itself. In certain cases

of identification failure, this affects the intended direction along which the LM-principle maximizes local power; see,

e.g., Antoine and Renault (2009). Even otherwise, this may lead to a spurious decline in power away from the truth;

see Kleibergen (2005). To partially address this problem in the context of testing for sub-vectors, Chaudhuri and

Zivot (2011) recommend inverting the S-test to obtain the first-step confidence set for the nuisance parameters; and

we follow their approach in this paper. The price to pay is that since this confidence set can be empty with positive

probability (even asymptotically), the asymptotic equivalence (as in Section 2) of the improved projection test with

the infeasible test no longer holds. However, as we saw in Section 3.1, one can still impose a pre-specified upper

bound on the asymptotic size of the improved projection test. And, remarkably, the conventional fixed critical

values are sufficient for this purpose even under a very general setup. See McCloskey (2015), Andrews (2016a),

etc. for more sophisticated approaches. The results from Section 3.2 indicate that the improved projection test is

competitive with the infeasible test in terms of asymptotic power even when we generalize the setup of Section 2.

Lastly, we note that while we generalize the use of the LM and C-alpha principle in Chaudhuri (2008), Zivot

and Chaudhuri (2009), Chaudhuri et al. (2010) and Chaudhuri and Zivot (2011); the LM and/or C-alpha tests

were originally used in the context of identification failure by Wang and Zivot (1998), Dufour and Jasiak (2001),

Kleibergen (2002), Moreira (2003), Kleibergen (2005), Guggenberger and Smith (2005), Antoine and Renault

(2009), etc. It has also been considered more recently in Magnusson and Mavroeidis (2010), Guggenberger et al.

(2012b), Qu (2014), Dufour et al. (2015), Andrews and Mikusheva (2015), Andrews and Guggenberger (2014), etc.

The equivalence relation established in Section 2 between the alternative constructions of the C-alpha statistics,

however, appears to be new. This reconciles the C-alpha statistic in Smith (1987), Dagenais and Dufour (1991),

etc. with the efficient score statistic in a re-parameterized model, and thereby makes the latter directly adaptable

to our framework. Thus, although we work with the original parameter vector θ and the original linear restrictions

Rθ from (1) and (2) respectively to closely adhere to the recent literature, one could alternatively obtain the same

results by working with the re-parameterized model and thereby providing a direct generalization of the results in

Chaudhuri and Zivot (2011) to the more involved characterizations of identification failures in our paper.
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Appendix A: For the references from Section 2

A.1 Efficient influence function for β0 := Rθ0 under (1)

It is well-known that under the assumptions that (1) holds, G(θ0) is full column-rank, and V (θ0) is positive definite: the
efficient estimator of Rθ0 has an asymptotically linear representation −

√
T lT (θ

0)+op(1). Unfortunately, we could not find a
paper to cite the proof of it, and hence we provide a simple proof following Newey (1990) (and maintaining his assumptions)
for the sake of completeness. Alternatively, one could follow Sections 2 and 3 of Chamberlain (1987) to use the multinomial
approximation, and then appeal to the invariance property of maximum likelihood estimators (MLEs) to establish the same
result. Yet otherwise, one could use Back and Brown (1992)’s construction of an exponentially tilted density corresponding
to which the MLE of θ is the efficient GMM estimator of θ, and then appeal to the invariance property of MLEs.

Lemma 3.7 Let {Zt}Tt=1 be i.i.d. copies of a random variable Z, and let (1) holds. If G := ∂
∂θ′E[g(Z; θ)]θ=θ0 is a full

column-rank dg × dθ matrix and V := E[g(Z; θ0)g′(Z; θ0)] is a positive definite dg × dg matrix, then the asymptotic variance
lower bound for any regular estimator of the dR × 1 parameter vector β0 := Rθ0 where dR ≤ dθ is (R(G′V −1G)R′)−1. The

regular estimator whose asymptotic variance attains this bound has the asymptotically linear representation
√
T (β̂0 − β0) =

−
√
T lT (θ

0) + op(1).

Proof: Consider a parametric path ξ of the distribution of Z such that for the unique value ξ0 we have the joint density
fξ0(z) = f(z). Denote the score with respect to ξ with sξ(Z). Without any other restrictions, the tangent space for
the model is simply T = a(z) where a(z) satisfies E[a(Z)] = 0, and E[.] equivalently stands for Eξ0 [.]. Since dg >
dR, (1) equivalently requires that for any given dR × dg matrix B, the relation BE[g(Z; θ0)] = 0 holds. Take B as full

row-rank without loss of generality. Now, differentiating with respect to ξ under the expectation we obtain ∂θ(ξ0)
∂ξ

=

−(BG)−1E[Bg(Z; θ0)sξ0(Z)] and thus ∂β0(ξ0)
∂ξ

= −R(BG)−1E[Bg(Z; θ0)sξ0(Z)]. Therefore, any regular estimator for β0

will be asymptotically linear with the influence function φ(B) := −R(BG)−1Bg(Z; θ0). Given the structure of the tangent
space T , (1) implies that the projection of this influence function φ(B) onto T is φ(B) itself. For this given B, V ar(φ(B)) =

Σ(B) := R(BG)−1BV B′(BG)−1′R′. Thus the efficient influence function is obtained by choosing B∗ := argminB Σ(B) =
G′V −1, giving Σ(B∗) = R(G′V −1G)−1R′ and φ(B∗) = −R(G′V −1G)−1G′V −1g(Z; θ0).

A.2 Proofs of the lemma and the proposition in Section 2:

The following relations that follow from the fact that AS = [R′, S′]′ and A−1
S = [R1

S , S
1
S ], will be used repeatedly:

RR1
S = IdR , RS

1
S = 0, SR1

S = 0, SS1
S = Idθ−dR and R1

SR+ S1
SS = Idθ . (27)

We will suppress the dependence of the quantities on θ to avoid notational clutter. We will not consider the negligible set
on which the assumptions are allowed to not hold since we only require to show the intended results hold almost surely.

Proof of Lemma 2.1: Consider any (dθ − dR) × dθ full row-rank matrix S in (5), i.e., such that [R′, S′]′ is nonsingular.
Let ζ be a dθ × (dθ − dR) matrix whose columns form a basis for the null space of R. Therefore, since RS1

S = 0 by (27),
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S1
S = ζBS for some (dθ − dR) × (dθ − dR) nonsingular matrix BS . Similarly, if S̃ is another such (dθ − dR) × dθ matrix in

(5), then the corresponding S̃1
S̃
= ζBS̃ for some (dθ − dR) × (dθ − dR) nonsingular matrix BS̃ . Thus, we have S̃1

S̃
= S1

SB

where B = B−1
S BS̃ is a (dθ − dR)× (dθ − dR) nonsingular matrix.

Now for any dθ × dθ nonsingular matrix M = [M1,M2], where M1 is dθ × dR and M2 is dθ × (dθ − dR), define:

ΦT (M) := T ×
(
V̂

−1/2
T ḡT

)′
P
(
V̂

−1/2
T ĜTM

)(
V̂

−1/2
T ḡT

)
, (28)

Φ1.2,T (M) := T ×
(
V̂

−1/2
T ḡT

)′
P
((
Idg − P

(
V̂

−1/2
T ĜTM2

))
V̂

−1/2
T ĜTM1

)(
V̂

−1/2
T ḡT

)
, (29)

Φ2,T (M2) := T ×
(
V̂

−1/2
T ḡT

)′
P
(
V̂

−1/2
T ĜTM2

)(
V̂

−1/2
T ḡT

)
, (30)

and note that, by construction:

(i) ΦT (M) = ΦT (Idθ ),

(ii) ΦT (M) = Φ1.2,T (M) + Φ2,T (M2),

(iii) Φ2,T (M2) = Φ2,T (M2B) since B is a (dθ − dR)× (dθ − dR) nonsingular matrix.

Therefore, considering the choices: M := [R1
S , S

1
S ] and M̃ := [R1

S̃
, S̃1

S̃
] corresponding to the two choices S and S̃, we obtain:

ΦT (M) = ΦT (M̃) [by (i)]

Φ1.2,T (M) + Φ2,T (M2) = Φ1.2,T (M̃) + Φ2,T (M̃2) [by (ii)]

Φ1.2,T (M) = Φ1.2,T (M̃) [by (iii), since M̃2 := S̃1
S̃
= S1

SB =:M2B].

Thus, (6) implies that LMalt
T,S(θ) = Φ1.2,T (M) = Φ1.2,T (M̃) = LMalt

T,S̃
(θ), and gives the invariance property.

Proof of Proposition 2.2: Consider a (dθ − dR)× dθ matrix S in (5) that satisfies RΩ̂−1S′ = 0, i.e., the (dθ − dR) rows

S1, . . . , Sdθ−dR of S are (dθ − dR) linearly independent elements of the null space of RΩ̂−1.

Claim 1: With this S, we have a nonsingular AS := [R′, S′]′.
Proof: Suppose not. Then, the full row-rank ofR implies that there has to exist a (dθ−dR)×1 vector c := (c1, . . . , cdθ−dR)

′ ̸= 0

such that R1 =
∑dR

j=2 ajRj + c′S for some scalar coefficients a2, . . . , adR and where R = [R′
1, . . . , R

′
dR

]′. Since Ω̂−1 is

positive definite in except in the negligible set that we are ignoring, it means that for this c ̸= 0, we have R1Ω̂
−1 =∑dR

j=2 ajRjΩ̂
−1+ c′SΩ̂−1. Post-multiplying both sides by S′ and noting that the rows of S belong in the null space of RΩ̂−1,

it follows that 0 = c′SΩ̂−1S′. Since SΩ̂−1S′ is positive definite (as Ω̂−1 is positive definite and as the rows of S are linearly
independent), this is only possible if c = 0, which contradicts our supposition. Therefore, Claim 1 is true.

Claim 2: RΩ̂−1S′ = 0 if and only if R1′
S Ω̂S1

S = 0.
Proof: We use (27) repeatedly in this proof. Post-multiply R1′

S Ω̂S1
S = 0 by S to get R1′

S Ω̂(Idθ −R1
SR) = 0 and hence

R = (R1′
S Ω̂R1

S)
−1R1′

S Ω̂. (31)

Similarly obtain S = (S1′
S Ω̂S1

S)
−1S1′

S Ω̂. Thus, RΩ̂−1S′ = (R1′
S Ω̂R1

S)
−1(R1′

S Ω̂S1
S)(S

1′
S Ω̂S1

S)
−1 and hence RΩ̂−1S′ = 0 if and

only if R1′
S Ω̂S1

S = 0, once again by using the positive definiteness of Ω̂.

Thus (6) implies that LMalt
T,S(θ) = T ×

(
V̂

−1/2
T ḡT

)′
P
(
V̂

−1/2
T ĜTR

1
S

)(
V̂

−1/2
T ḡT

)
. On the other hand, (4) gives:

LMT (θ) = T×
(
V̂

−1/2
T ḡT

)′
P
(
V̂

−1/2
T ĜT Ω̂

−1R
′
)(

V̂
−1/2
T ḡT

)
= T×

(
V̂

−1/2
T ḡT

)′
P
(
V̂

−1/2
T ĜTR

1
S(R

1′
S Ω̂R1

S)
−1
)(

V̂
−1/2
T ḡT

)
by

using (31). But, by the construction of the projection matrix P (.), we have P
(
V̂

−1/2
T ĜTR

1
S(R

1′
S Ω̂R1

S)
−1
)
= P

(
V̂

−1/2
T ĜTR

1
S

)
since (R1′

S Ω̂R1
S)

−1 is nonsingular. Therefore, LMT (θ) = T ×
(
V̂

−1/2
T ḡT

)′
P
(
V̂

−1/2
T ĜTR

1
S

)(
V̂

−1/2
T ḡT

)
= LMalt

T,S(θ). The

desired result now follows from Lemma 2.1 for any general choice of S in (5) such that [R′, S′]′ is nonsingular.

Remark: The particular choice of S employed to facilitate the proof of Proposition 2.2 has an interesting interpretation.
To see it, consider the analogous population version of S, i.e., S such that RΩ−1S′ = 0. Similar to the proof of Claim 1
above, it can be shown that [R′, S′]′ is nonsingular. Similar to the proof of Claim 2 above, it can be shown that RΩ−1S′ = 0

if and only if R1′
S ΩS1

S = 0, where the R1
S and S1

S correspond to this particular choice of S. Now, note from the discussion
immediately preceding the statement of Lemma 2.1 that with this particular choice of S, the score for β, i.e., lβ,S,T (θ

0) is
identical to the efficient score for β, i.e., lβ.γS ,S,T (θ

0). In other words, this particular choice of S in the re-parameterization
(5) directly makes the scores for β and γS uncorrelated (and, by asymptotic normality, asymptotically independent.) In yet
other words, this means that the optimal rotation (in the efficient GMM sense) of the moment vector along the directions
of β and γS are already orthogonal, and thus the subsequent orthogonalization in order to obtain the efficient score is moot.

A.3 L̃MT (θ̃T ) = LMT (θ̃T )

From (28)-(30) and the definition in (9) it follows that L̃MT (θ) = LMT (θ) + Φ2,T (S
1
S , θ) for all θ where the underlying

quantities are defined. (Note that by Φ2,T (S
1
S , θ) we mean Φ2,T (S

1
S) with ḡT , ĜT and V̂T evaluated at θ.) Now, by the
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definition of the θ̃T , i.e., (R
1
Sro + S1

S γ̃T ) where γ̃T is the GMM estimator of γ by imposing β = r0, it follows from the first

order condition of the GMM optimization problem that Φ2,T (S
1
S , θ̃T ) = 0. This is because Φ2,T (S

1
S , θ) is simply a quadratic

form of the first derivative of the GMM objective function with respect to γS , which is zero when evaluated at θ̃T . Thus
L̃MT (θ̃T ) = LMT (θ̃T ).

Appendix B: Proofs of the results from Section 3

Since we use (have used) the following result often, let us state it here for reference.

Lemma 3.8 Let X be an a× b matrix, and P and Q be a×a and b× b nonsingular matrices. Then rank(X) = rank(PX) =
rank(XQ).

Proof: rank(X) ≥ rank(PX) ≥ rank(P−1PX) = rank(X) ≥ rank(XQ) ≥ rank(XQQ−1) = rank(X).

Proof of Lemma 3.1: The proof is based on the original work of Antoine and Renault (2012), Andrews and Guggenberger
(2014), Andrews and Cheng (2014) and Cheng (2015), with suitable adjustments required by our setup.

Let ĜT := ĜT (θ
0), V̂T := V̂T (θ

0). By M1 and M2, V̂T is positive definite with probability approaching one as T → ∞.

Thus, if defined, let V̂
−1/2
T be such that V̂

−1/2′

T V̂
−1/2
T = V̂ −1

T and ĝT := V̂
−1/2
T ḡT (θ

0). Then, for T sufficiently large, (4)
gives

LMT (θ
0) = T ĝ′TP

(
HT {H ′

THT }−R′) ĝT = T ĝ′TP
(
HTBTΥT

{
(HTBTΥT )

′ (HTBTΥT )
}−

ΥTB
′
TR

′Π̄T D̄T

)
ĝT

where HT := V̂
−1/2
T ĜT , ΥT := diag(1/δT,1, . . . , 1/δT,p,

√
T1dθ−p), a dθ × dθ diagonal matrix, nonsingular for any given T .

(Recall that by 1c we mean a 1× c vector with all elements equal to 1.) Note that ΥT is diag(1/δT,1, . . . , 1/δT,p) if dθ = p
and is diag(

√
T1dθ−p) if p = 0. For a given T , Π̄T and D̄T are dR × dR nonsingular matrices defined as follows.

Step 1: Definition of Π̄T and D̄T , and the asymptotic behavior of ΥTB
′
TR

′Π̄T D̄T

Note that under assumption M3(a) we can, without loss of generality, partition the set of elements δT,1, . . . , δT,p intom−1
groups containing p1, p2, . . . , pm−1 elements respectively as (δT,1, . . . , δT,p1), (δT,p̄1+1, . . . , δT,p̄2),. . . , (δT,p̄m−2+1, . . . , δT,p̄m−1)

where pj ≥ 0 and p̄j :=
∑j

k=1 pk for j = 1, . . . ,m− 1 and m ∈ {1, . . . , p+ 1} (let pm := dθ − p; and when p = 0 let m = 1;
and also, by construction, p̄m−1 = p and p̄m = dθ), such that:

δT,p̄j ̸= o(δT,p̄j−pj+1) for j = 1, . . . ,m− 1, and δT,p̄j+1 = o(δT,p̄j ) for j = 1, . . . ,m− 2. (32)

Now, define Π̄T as the ΠT matrix from the UBT-Construction in Section 3.2 and with WT := RBT = [WT,1, . . . ,WT,m]
where WT,j := RBT,(p̄j−pj+1:p̄j) for j = 1, . . . ,m. Since BT is orthogonal for each T and also BT → B, which is nonsingular

by M3(c), the qT = q and c∗T,ji,T
= c∗ji , i.e., these quantities in the UBT-Construction do not depend on T .14

∑q
i=1 c

∗
ji = dR.

Define D̄T = diag(δT,p̄j1
1c∗j1

, . . . , δT,p̄jq
1c∗jq

) where, for simplicity, we use the notation δT,p̄m−1+1 = . . . = δT,p̄m = T−1/2

to accommodate for the possible case that jq = m. D̄T is a dR × dR nonsingular diagonal matrix for each T .
Therefore, as T → ∞, it follows by M3(a) and (32), and then again using Lemma 3.8, that:

ΥTB
′
TR

′Π̄T D̄T →W ∗′ , say, where W ∗′ is a finite, non-random, dθ × dR matrix with full column-rank dR. (33)

In particular, by using arguments similar to those below (18) along with M3(a), we obtain for the matrix W ∗′ that
its columns from (dR −

∑q
i′=i c

∗
ji′

) to (dR −
∑q

i′=i c
∗
ji′

+ c∗ji) for i = 1, . . . , q are represented by the dg × c∗ji matrix:[
(δp̄1diag(δ

−1
1 , . . . , δ−1

p̄1
)B′

(1:p1)
R′Π̄1)

′, 0′
]′

if ji = 1, and
[
0′, (δp̄jidiag(δ

−1
p̄ji−pji+1, . . . , δ

−1
p̄ji

)B′
(p̄ji−pji+1:p̄ji )

R′Π̄ji)
′, 0′
]′

other-

wise (as it was below (18), 0 denotes sub-matrices of zeros with number of rows, which can be zero, such that the number of
rows of the corresponding big matrix is dθ). Thus the non-zero blocks in such sets of columns (one block per set of columns)
are: (a) at mutually non-overlapping positions (sets of rows); (b) are finite by M1, M3(a); (c) of full column-rank by Lemma
3.8, which tells that pre-multiplication by the nonsingular matrix δp̄jidiag(δ

−1
p̄ji−pji+1, . . . , δ

−1
p̄ji

) does not change the rank of

B′
(p̄ji−pji+1:p̄ji )

R′Π̄ji . The latter has full column-rank c∗ji for i = 1, . . . , q by (i) in the UBT-Construction. Therefore, full

column-rank dR of W ∗′ follows by noting that
∑q

i=1 c
∗
j1 = dR.

The rest of the proof is completely based on Andrews and Guggenberger (2014).

Step 2: Asymptotic behavior of HTBTΥT

Under (12), ∥∆T ∥ ≤ c× c̄ for some c > 0 by M2. Then it follows that

V
−1/2
T ĜTBTΥT = V

−1/2
T ĜT

[
BT,(1:p)∆

−1
T,(1:p),

√
TBT,(p+1:dθ)

]
= V

−1/2
T GT

[
BT,(1:p)∆

−1
T,(1:p),

√
TBT,(p+1:dθ)

]
+V

−1/2
T

√
T
(
ĜT −GT

) [
BT,(1:p)(

√
T∆T,(1:p))

−1, BT,(p+1:dθ)

]
.

14We use BT instead of B in the UBT-Construction to avoid strong conditions on the rate of convergence of BT → B as T → ∞.
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By the orthogonality of BT it follows from the relation V
−1/2
T GT = CT,(1:dR)∆TB

′
T (obtained from (12)) and M3, that

the first term on the right hand side of the above equation converges to [C(1:p), C(p+1:dθ)L]. On the other hand, M1 and

M2 give
√
T
(
ĜT −GT

)
d−→ devecdg (ψG − VGgV

−1ψ) = Op(1) which, crucially, is independent of ψ. Also M3 implies

that [BT,(1:p)(
√
T∆T,(1:p))

−1, BT,(p+1:dθ)] → [0, B(p+1:dθ)] as T → ∞. Thus, by M1, the second term on the right hand

side of the above equation (i.e., V
−1/2
T

√
T
(
ĜT −GT

) [
BT,(1:p)(

√
T∆T,(1:p))

−1, BT,(p+1:dθ)

]
) converges in distribution to

[0, V −1/2devecdg (ψG − VGgV
−1ψ)R1B(p+1:dθ)]. Since M2 implies that V̂

−1/2
T V

1/2
T

p−→ Idg , it follows that

HTBTΥT = V̂
−1/2
T ĜTBTΥT =

(
V̂

−1/2
T V

1/2
T

)
V

−1/2
T ĜTBTΥT

d−→ G∗ (34)

where G∗ := [C(1:p), C(p+1:dθ)L+ V −1/2devecdg (ψG − VGgV
−1ψ)B(p+1:dθ)] , as defined in M3(d).

Step 3: Asymptotic behavior of LMT (θ
0)

Therefore, P (HTBTΥT {(HTBTΥT )
′(HTBTΥT )}−ΥTB

′
TR

′Π̄T D̄T )
d−→ P (G∗(G∗′G∗)−1W ∗′), a finite matrix with full

column-rank dR almost surely by (33), (34) and Lemma 3.8. Now, since M1 and M2 imply that
√
T ĝT

d−→ V −1/2ψ ∼ N(0, Idg ),

and since we already noted the independence between ψ and G∗, it follows that LMT (θ
0)

d−→ χ2
dR

.

Proof of Proposition 3.2: Recall that our definition of the improved test accommodates for the convention that
infγ0∈CIT (γS ;ϵ) LMT

(
A−1

S (r′0, γ
′
0)

′) = ∞ if CIT (γS ; ϵ) is empty. Let {ϕγS ,T : T ≥ 1} denote the sequence of indicator
variables where ϕγS ,T = 0 if CIT (γS ; ϵ) contains γ

0
S , and ϕγS ,T = 1 otherwise. Since it is given that CIT (γS ; ϵ) has asymp-

totic coverage (1 − ϵ) when H0 is true, naturally, limT→∞ PrT (ϕγS ,T = 0) ≥ (1 − ϵ) where PrT (.) denotes the probability
of an event under FT constrained by assumptions O and M1-M3 and when β0 = r0 (equivalently, Rθ0 = r0). Therefore, by
construction:

lim
T→∞

PrT

(
inf

γ0∈CIT (γS ;ϵ)
LMT

(
A−1

S (r′0, γ
′
0)

′) ≤ LMT (θ
0)

)
≥ lim

T→∞
PrT (ϕγS ,T = 0) ≥ 1− ϵ, (35)

since for any T ≥ 1, the event {ϕγS ,T = 0} implies the event {infγ0∈CIT (γS ;ϵ) LMT

(
A−1

S (r′0, γ
′
0)

′) ≤ LMT (θ
0)}.

Let {ϕβ,T : T ≥ 1} denote the sequence of indicator variables where ϕβ,T = 1 if infγ0∈CIT (γS ;ϵ) LMT

(
A−1

S (r′0, γ
′
0)

′) >
χ2
dR

(1− α), and ϕβ,T = 0 otherwise. Therefore,

PrT (ϕβ,T = 0) = PrT

(
inf

γ0∈CIT (γS ;ϵ)
LMT

(
A−1

S (r′0, γ
′
0)

′) ≤ χ2
dR(1− α)

)
≥ PrT

({
inf

γ0∈CIT (γS ;ϵ)
LMT

(
A−1

S (r′0, γ
′
0)

′) ≤ LMT (θ
0)

}∩{
LMT (θ

0) ≤ χ2
dR(1− α)

})
= 1− PrT

({
inf

γ0∈CIT (γS ;ϵ)
LMT

(
A−1

S (r′0, γ
′
0)

′) > LMT (θ
0)

}∪{
LMT (θ

0) > χ2
dR(1− α)

})
≥ 1−

(
PrT

(
inf

γ0∈CIT (γS ;ϵ)
LMT

(
A−1

S (r′0, γ
′
0)

′) > LMT (θ
0)

)
+ PrT

(
LMT (θ

0) > χ2
dR(1− α)

))
where the first line follows by the definition of ϕβ,T , the second line by the construction of the improved projection test, the
third line by De Morgan’s law, and the fourth line by Bonferroni’s inequality. Taking limits on both sides gives:

lim
T→∞

PrT (ϕβ,T = 0) ≥ 1− lim
T→∞

(
PrT

(
inf

γ0∈CIT (γS ;ϵ)
LMT

(
A−1

S (r′0, γ
′
0)

′) > LMT (θ
0)

)
+ PrT

(
LMT (θ

0) > χ2
dR(1− α)

))
≥ 1− (ϵ+ α)

where the last line follows by (35) and Lemma 3.1.

Remark: Since the way it is stated in the statement of the proposition, the coverage probability of CIT (γS ; ϵ) is (1 − ϵ)
possibly under a larger class of distributions than FT constrained by assumptions O and M1-M3. This is the reason behind
the inequality limT→∞ PrT (ϕγS ,T = 0) ≥ (1− ϵ). However, the confidence sets CIT (γS ; ϵ), e.g., CI

SW
T (γS ; r0, ϵ) defined in

(13), that we actually specify are asymptotically similar and hence for them the above inequality will hold as an equality.

Lemma 3.9 Let assumptions O and N hold. Consider a sequence {θT = R1
Sr0 + S1

SγS,T : T ≥ 1} where r0 satisfies (24)
and {γS,T : T ≥ 1} is such that θT satisfies (25). Then the following results hold as T → ∞:

(a) V̂T (θT )
P−→ V (θ0) ≡ V .

(b) V̂Gg,T (θT )
P−→ VGg(θ

0) ≡ VGg.

(c) ḠT (θT )ΠρθDT,ρθ

P−→ G∗ where Πρθ , DT,ρθ and G∗ are as defined in (17), (18) and (20) respectively.

(d)
√
T ḡT (θT ) =

√
T ḡT (θ

0) +G∗µT,θ + op(1) where G∗ and µT,θ are as defined in (20) and (25) respectively.

(e)
[
V̂1,g,T (θT )V̂

−1
T (θT )ḡT (θT ), . . . , V̂dθ,g,T (θT )V̂

−1
T (θT )ḡT (θT )

]
ΠρθDT,ρθ = op(1) (a dg × dθ matrix).

(f) ĜT (θT )ΠρθDT,ρθ

P−→ G∗ where Πρθ , DT,ρθ and G∗ are as defined in (17), (18) and (20) respectively.
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Proof: (a) and (b) follow by assumption N8 since θT = θ0 + op(1).

(c) We prove it working term-by-term in the following decomposition:

ḠT (θT )ΠρθDT,ρθ =
[
ḠT (θT )− ḠT (θ

0)
]
ΠρθDT,ρθ +

√
T

[
ḠT (θ

0)− ΛT√
T
ρθ(θ

0)

]
ΠρθDT,ρθ√

T
+

ΛT√
T
ρθ(θ

0)ΠρθDT,ρθ . (36)

From the definitions in (17) and (18) it follows that ΠρθDT,ρθ = o(
√
T ) by N3, and hence using N6 it follows that the second

term on the right hand side (RHS) of (36) is op(1). On the other hand, (19) and (20) imply that the third term on the RHS
of (36) converges to G∗ by construction.

To complete the proof, now let us show that the first term on the RHS of (36) is op(1). It is the treatment of this term
where we deviate from Antoine and Renault (2012), and the result thus obtained has substantive implications in terms of the
allowable weakness of identification in the system. Let ḠT,i(θ) :=

∂
∂θi

ḡT (θ) denote the i-th column of ḠT (θ) for i = 1, . . . , dθ

(recall that θ = (θ1, . . . , θdθ )
′). Therefore, with a bad but common abuse of notation in denoting the mean values element

by element, we obtain by a mean value expansion of ḠT,i(θT ) around ḠT,i(θ
0) for i = 1, . . . , dθ that:

[
ḠT (θT )− ḠT (θ

0)
]
ΠρθDT,ρθ =

[{
∂

∂θ′
ḠT,1(θT (θ1))

}
(θT − θ0), . . . ,

{
∂

∂θ′
ḠT,dθ (θT (θdθ ))

}
(θT − θ0)

]
ΠρθDT,ρθ

=

[{
∂

∂θ1
ḠT (θT (θ1))

}
(θT − θ0), . . . ,

{
∂

∂θdθ
ḠT (θT (θdθ ))

}
(θT − θ0)

]
ΠρθDT,ρθ (37)

by twice interchanging the order in which the derivatives are taken in each of the dθ columns. Note that, for i = 1, . . . , dθ,
we used θT (θi) (such that ∥θT (θi) − θ0∥ ≤ ∥θT − θ0∥) to denote the mean value, row by row, on the first line of the above
equation. Recalling that µT,θ =

√
TD−1

T,ρθ
Π−1

ρθ (θT − θ0) by (25), define UT,i for i = 1, . . . , dθ as the dg × dθ matrix with{
∂

∂θi
ḠT (θT (θi))

}
(θT − θ0) =

{
∂

∂θi
ḠT (θT (θi))

√
T

λT,l

}
ΠρθDT,ρθλT,j1√

T
µT,θ

λT,l√
TλT,j1

in the i-th column and zero everywhere else. (See N7(b) for more on λT,j1 .) Therefore, (37) implies that

[
ḠT (θT )− ḠT (θ

0)
]
ΠρθDT,ρθ =

dθ∑
i=1

UT,iΠρθDT,ρθ

and thus ∥∥[ḠT (θT )− ḠT (θ
0)
]
ΠρθDT,ρθ

∥∥
≤

dθ∑
i=1

∥UT,i∥ × ∥ΠρθDT,ρθ∥

≤
dθ∑
i=1

∥∥∥∥ ∂

∂θi
ḠT (θT (θi))

√
T

λT,l

∥∥∥∥× ∥∥∥∥ΠρθDT,ρθλT,j1√
T

∥∥∥∥× ∥µT,θ∥ ×
∥∥∥∥ΠρθDT,ρθλT,j1√

T

∥∥∥∥ √
TλT,l

λ2
T,j1

√
T

≤
dθ∑
i=1

sup
θ

{∥∥∥∥√TλT,l

∂

∂θi

ΛT√
T
ρθ(θ)

∥∥∥∥+ ∥∥∥∥√TλT,l

∂

∂θi

[
ḠT (θ)−

ΛT√
T
ρθ(θ)

]∥∥∥∥}× ∥µT,θ∥ ×
∥∥∥∥ΠρθDT,ρθλT,j1√

T

∥∥∥∥2 λT,l

λ2
T,j1

= op(1)

since, on the third line from above, the order of magnitude of the terms (from left to right) inside the sum is respectively:

(i) supθ

∥∥∥ √
T

λT,l

∂
∂θi

ΛT√
T
ρθ(θ)

∥∥∥ = O(1) by N3 and N4, (ii) supθ

∥∥∥ √
T

λT,l

∂
∂θi

[
ḠT (θ)− ΛT√

T
ρθ(θ)

]∥∥∥ = op(1) by N3 and N7(a), (iii)

∥µT,θ∥ = Op(1) by (25), (iv)
∥∥∥Πρθ

DT,ρθ
λT,j1√

T

∥∥∥ = O(1) by N3, (17) and (18), and (v)
λT,l

λ2
T,j1

= o(1) by N7(b).

(d) A mean value expansion (with similar abuse of notation as above to denote the mean value, this time, θ̄T ) gives√
T ḡT (θT ) =

√
T ḡT (θ

0) + ḠT (θ̄T )
√
T (θT − θ0) =

√
T ḡT (θ

0) + ḠT (θ̄T )ΠρθDT,ρθµT,θ =
√
T ḡT (θ

0) + G∗µT,θ + op(1) where
the second equality uses (25) and the last equality uses the result from (c).

(e) The result follows by using (a), (b), (d) and since ΠρθDT,ρθ = o(
√
T ) by N3.

(f) The result follows by (c) and (e).

Remark:
Let us briefly elaborate on Remark 2 following assumption N7 from the main text. Take a = 3 there. An argument by

induction can be used to extend it to a general a, to essentially demonstrate that more smoothness in the moment vector
helps to weaken the restrictions on the relative order of magnitude of the λλT ,j ’s, and in the limit (a → ∞), an example of
which is the linear instrumental variables regression, we would not need restrictions beyond N3.

Since the main idea remains the same for all a, we focus on a = 3 to avoid further clutter in notation. From the above
lemma, which is key to all the results under the local deviation from the truth, it is clear that Remark 2 is pertinent only to
part (c) of this lemma. Indeed the only part of (c) that needs attention is where we show that

[
ḠT (θT )− ḠT (θ

0)
]
ΠρθDT,ρθ ,
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i.e., the first term on the RHS of (36), is op(1).
To accommodate for a = 3 we extend assumption N6 as N6’ to the second derivative, and replace N7 by N7’ as follows.

Naturally, the existence of the derivatives of appropriate order are assumed. (Assumptions N1-N5 and N8 remain the same.)

Assumption N6’: (a one-time assumption for this remark only)

(a) ∂
∂θ′ψT (θ

0) =
√
T
[
ḠT (θ

0)− ΛT√
T
ρθ(θ

0)
]
= Op(1). (This was the original N6.)

(b) For i = 1, . . . , dθ:
∂

∂θi

∂
∂θ′ψT (θ

0) =
√
T ∂

∂θi

[
ḠT (θ

0)− ΛT√
T
ρθ(θ

0)
]
= Op(1). (This is the extension.)

Assumption N7’: (a one-time assumption for this remark only)

(a) ρ(θ) is thrice continuously differentiable in θ ∈ int(Θ). g(z; θ) is thrice differentiable in θ ∈ int(Θ) for each z ∈ Rdz and

supθ∈int(Θ)

∥∥∥ ∂
∂θi

∂
∂θk

[
ḠT (θ)− ΛT√

T
ρθ(θ)

]∥∥∥ = op(λT,l/
√
T ) for i, k = 1, . . . , dθ.

(b) λT,j1 from (18) satisfies λ3
T,j1/λT,l → ∞ as T → ∞.

Comparing assumption N7 with N7’ reveals the tradeoff in terms of parts (a) and (b) of these assumptions. We note
that for a = 4, 5, . . . , similar tradeoffs would result in the same result as we obtain below for a = 3.

For clarity, introduce further structure but without loss of generality. First, for i = 1, . . . , dθ, define Πρθ,i and DT,ρθ,i by
the UBT-Construction in a similar to that in (17) and (18), but this time, by taking

WT =

[
∂

∂θi
ρ′θ,1(θ

0), . . . ,
∂

∂θi
ρ′θ,l(θ

0)

]
=

(
I∗

∂

∂θi
ρθ(θ

0)

)′

(instead of WT =
[
ρ′θ,1(θ

0), . . . , ρ′θ,l(θ
0)
]
=
(
I∗ρθ(θ

0)
)′
) not depending on T in the UBT-Construction. The corresponding

quantities with full column-rank, and thus also the elements of DT,ρθ,i will change. Indeed no full-rank conditions are
required, and instead, for the purpose of this proof, the only properties we will require are: For i = 1, . . . dθ,(

I∗
′
{
∂

∂θi
I∗

ΛT√
T
I∗

′
I∗ρθ(θ

0)

}
Πρθ,iDT,ρθ,i

)
= O(1), (38)

Πρθ,iDT,ρθ,i = o(
√
T ) (39)

and these will not change since (38) holds by the construction of DT,ρθ,i, while (39) follows from N3.
Start from (37). All we do below is to tease out further structure in the non-zero (i.e.,the i-th) column of UT,i (defined

below (37)) so that assumption N7’ could be effectively used to show that
[
ḠT (θT )− ḠT (θ

0)
]
ΠρθDT,ρθ , i.e., the first term

on the RHS of (36) is op(1). With this purpose in mind, for each i = 1, . . . , dθ, consider a further mean value expansion (with
similar abuse of notation, and this time using θT (θ

k
i ) to denote the mean value such that ∥θT (θki )− θ0∥ ≤ ∥θT (θi)− θ0∥ ≤

∥θT − θ0∥ for k = 1, . . . , dθ):{
∂

∂θi
ḠT (θT (θi))

}
(θT − θ0) =

{
∂

∂θi
ḠT (θ

0)

}
(θT − θ0)

+

[{
∂

∂θi

∂

∂θ1
ḠT (θT (θ

1
i ))

}
(θT (θi)− θ0), . . . ,

{
∂

∂θi

∂

∂θdθ
ḠT (θT (θ

dθ
i ))

}
(θT (θi)− θ0)

]
(θT − θ0)

by similar (to above) interchange in the order of the derivatives. Since µT,θ =
√
TD−1

T,ρθ
Π−1

ρθ (θT − θ0) by (25), it follows that{
∂

∂θi
ḠT (θ

0)

}
(θT − θ0) =

(
I∗

′
{
∂

∂θi
I∗

ΛT√
T
I∗

′
I∗ρθ(θ

0)

}
Πρθ,iDT,ρθ,i

)
µT,θ︸ ︷︷ ︸

= ua,T,i (say)

1√
T

+

(
∂

∂θi

√
T

(
ḠT (θ

0)− ΛT√
T
ρθ(θ

0)

))(
Πρθ,iDT,ρθ,i√

T

)
µT,θ︸ ︷︷ ︸

= ub,T,i (say)

1√
T

for i = 1, . . . , dθ. Define the dg × dθ matrices Ua,T,i and Ub,T,i such that all their columns are zeros, except for the i-th
column, which for them is ua,T,i and ub,T,i respectively. Do this for all i = 1, . . . , dθ.

For the notation-abused quantity θT (θi), define µT,θ(i) :=
√
TD−1

T,ρθ
Π−1

ρθ (θT (θi) − θ0) where ∥µT,θ(i)∥ ≤ ∥µT,θ∥ by

construction for i = 1, . . . , dθ (recall that µT,θ =
√
TD−1

T,ρθ
Π−1

ρθ (θT − θ0) by (25)). Now for each i = 1, . . . , dθ define the
dg × dθ matrices Uc,T,i,k for k = 1, . . . , dθ such that all columns of Uc,T,i,k are zeros, except for the k-th column which is{

∂

∂θi

∂

∂θk
ḠT (θT (θ

k
i ))

}
(θT (θi)− θ0) =

{
∂

∂θi

∂

∂θk
ḠT (θT (θ

k
i ))

√
T

λT,l

}
ΠρθDT,ρθλT,j1√

T
µT,θ(i)

λT,l√
TλT,j1

.

Therefore, it follows that UT,i (defined below (37)) can be written as:

UT,i = Ua,T,i + Ub,T,i +

(
dθ∑
k=1

Uc,T,i,k

)
(θT − θ0) = Ua,T,i + Ub,T,i +

(
dθ∑
k=1

Uc,T,i,k

)
ΠρθDT,ρθλT,j1√

T
µT,θ

1

λT,j1

.
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And, therefore,∥∥[ḠT (θT )− ḠT (θ
0)
]
ΠρθDT,ρθ

∥∥
≤

dθ∑
i=1

∥UT,i∥ × ∥ΠρθDT,ρθ∥

≤
dθ∑
i=1

∥Ua,T,i∥ × ∥ΠρθDT,ρθ∥+
dθ∑
i=1

∥Ub,T,i∥ × ∥ΠρθDT,ρθ∥+
dθ∑
i=1

dθ∑
k=1

∥Uc,T,i,k∥ ×
∥∥∥∥ΠρθDT,ρθλT,j1√

T

∥∥∥∥× ∥µT,θ∥
λT,j1

× ∥ΠρθDT,ρθ∥.

Since ∥ua,T,i∥ = O(1/
√
T ) by its definition and using (38), it follows that

∑dθ
i=1 ∥Ua,T,i∥×∥ΠρθDT,ρθ∥ = op(1) by then using

(39). Since ∥ub,T,i∥ = O(1/
√
T ) by its definition and using N6’ and (39), it follows that

∑dθ
i=1 ∥Ub,T,i∥×∥ΠρθDT,ρθ∥ = op(1)

by then using (39). Finally, note that
∑dθ

i=1

∑dθ
k=1 ∥Uc,T,i,k∥×

∥∥∥Πρθ
DT,ρθ

λT,j1√
T

∥∥∥× ∥µT,θ∥
λT,j1

×∥ΠρθDT,ρθ∥ = op(1) since (collecting

similar terms together)

∥Uc,T,i,k∥ ×
∥∥∥∥ΠρθDT,ρθλT,j1√

T

∥∥∥∥× ∥µT,θ∥
λT,j1

× ∥ΠρθDT,ρθ∥

≤ sup
θ

{∥∥∥∥ ΛT√
T

∂

∂θi

∂

∂θk
ρθ(θ)×

√
T

λT,l

∥∥∥∥+ ∥∥∥∥ ∂

∂θi

∂

∂θk

[
ḠT (θ)−

ΛT√
T
ρθ(θ)

] √
T

λT,l

∥∥∥∥}×
∥∥∥∥ΠρθDT,ρθλT,j1√

T

∥∥∥∥3 × ∥µT,θ(i)∥ × ∥µT,θ∥ ×
λT,l

λ3
T,j1

= Op(1)×O(1)×Op(1)×Op(1)× o(1)

term by term: (i) supθ

∥∥∥ ΛT√
T

∂
∂θi

∂
∂θk

ρθ(θ)×
√
T

λT,l

∥∥∥+∥∥∥ ∂
∂θi

∂
∂θk

[
ḠT (θ)− ΛT√

T
ρθ(θ)

] √
T

λT,l

∥∥∥ = O(1)+op(1) by using N3 and N7’(a),

(ii)
∥∥∥Πρθ

DT,ρθ
λT,j1√

T

∥∥∥3 = O(1) by using N3, (17) and (18), (iii) ∥µT,θ(i)∥ = Op(1) by using (25) and the definition of µT,θ(i),

(iv) ∥µT,θ∥ = Op(1) by using (25), and (v)
λT,l

λ3
T,j1

= o(1) by using N7’(b). Thus
[
ḠT (θT )− ḠT (θ

0)
]
ΠρθDT,ρθ = op(1).

Proof of Lemma 3.3: (a) Utilizing the constructions of the nonsingular matrices Πρθ , DT,ρθ , ΠR and DT,R in (17),(18),
(21) and (22) respectively, recall from (4) that LMT (θ) and LM

infeas
T (θ) can be written as

LMT (θ) = T ×
(
V̂

−1/2
T (θ)ḡT (θ)

)′
P
(
ĤT (Ĥ

′
T ĤT )

−DT,ρθΠ
′
ρθR

′ΠRDT,R

)(
V̂

−1/2
T (θ)ḡT (θ)

)
,

LM infeas
T (θ) = T ×

(
V

−1/2
T (θ)ḡT (θ)

)′
P
(
HT (H

′
THT )

−DT,ρθΠ
′
ρθR

′ΠRDT,R

) (
V

−1/2
T (θ)ḡT (θ)

)
,

where ĤT (θ) := V̂
−1/2
T (θ)ĜT (θ)ΠρθDT,ρθ and HT := V

−1/2
T (θ)ET [ḠT (θ)]ΠρθDT,ρθ respectively. Essentially LM infeas

T (θ) is
LM infeas

T (θinfeas), but without plugging in θinfeas in place of the general θ. Now recall that for θT defined in (25), we have:

(i) V̂
−1/2
T (θT )

P−→ V −1/2 by N8 and V
−1/2
T (θT ) → V −1/2 by definition;

(ii) V̂
−1/2
T (θT )

√
T ḡT (θT ) = V

−1/2
T (θT )

√
T ḡT (θT ) + op(1) = V −1/2[

√
T ḡT (θ

0) + G∗µT,θ] + op(1) by (i) and Lemma 3.9(c);
and this is Op(1) by N2 and N8;

(iii) DT,ρθΠ
′
ρθR

′ΠRDT,R → R∗′ by (23).

Therefore, to show that LMT (θT ) = LM infeas
T (θT ) + op(1), it suffices to show that ĤT − HT = op(1). Thus, by virtue of

(i) and Lemma 3.9(f), it suffices to show that ET [ḠT (θT )]ΠρθDT,ρθ → G∗. Further, by virtue of (20), it is now sufficient
to show that ET [(GT (θT )−GT (θ

0)]ΠρθDT,ρθ = o(1). This follows exactly by proceeding from (37) onward in the proof of
Lemma 3.9 simply by replacing GT (.) in that proof with ET [GT (.)]. Thus LMT (θT ) = LM infeas

T (θ) + op(1).
Now, using (ii), (iii), N4, N8 and the fact that we just established HT → V −1/2G∗, note that:(
HT (H

′
THT )

−DT,ρθΠ
′
ρθR

′ΠRDT,R

)′ (
V

−1/2
T (θ)

√
T ḡT (θ)

)
= R∗(G∗′V −1G∗)−1G∗′V −1[

√
T ḡT (θ

0) +G∗µT,θ] + op(1)

= R∗(G∗′V −1G∗)−1G∗′V −1
√
T ḡT (θ

0) +R∗µT,θ + op(1)

= R∗(G∗′V −1G∗)−1G∗′V −1
√
T ḡT (θ

0) + µβ + op(1).

by using the relation R∗µT,θ
P−→ µβ (see below (25)). It therefore follows that the RHS on the last line does not depend on

γS,T at all as long as the latter is such that (25) holds. Note that γ0
S , a constant for all T , is trivially such a choice of the

sequence {γS,T : T ≥ 1}. Thus LM infeas
T (θinfeas0 ) = LM infeas

T (θT ) + op(1) = LMT (θT ) + op(1).

(b) From (a) it now follows that LMT (θT )
d−→ χ2

dR
with non-centrality parameter µ′

β

(
R∗(G∗′V −1G∗)−1R∗′

)−1

µβ .

Proof of Proposition 3.4: Define the sequence {γ†
T : T ≥ 1} such that

γ†
T := arg inf

γ0∈CIT (γS ;ϵ)
LMT

(
A−1

S (r′0, γ
′
0)

′) .
By condition (26) on CIT (γS ; ϵ), it then follows that γ†

T is such that µ†
T,θ = Op(1) where µ

†
T,θ :=

√
TD−1

T,ρθ
Π−1

ρθ R
1
S(θ

†
T − θ0)

and θ†T := R1
Sr0 + S1

Sγ
†
T . Therefore, the final result follows by Lemma 3.3.
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Proof of Lemma 3.5: The proof partly follows the intermediate steps in the proof of Theorem 3 of Andrews (2016b)
after adapting it to our setup. Take any ϖ > 0 and note that N1 implies that infβ∈B,γ:∥γ−γ0

S
∥≥ϖ ∥ρ(R1

Sβ + S1
Sγ)∥ > 0 (see

equation (2.1) in Antoine and Renault (2012)). Let the infimum occur at θ∗ (not necessarily unique). Using N1, let λ∗
T be

the largest in order of magnitude diagonal element of ΛT whose corresponding element of ρ(θ∗) is not zero. Now note that

V −1/2(θ)

√
T

λ∗
T

ḡT (θ) = V −1/2(θ)

√
T

λ∗
T

[ḡT (θ)− ET [ḡT (θ)]] + V −1/2(θ)

√
T

λ∗
T

ET [ḡT (θ)].

By N2, N3 and N8, the first term on the RHS is op(1) uniformly in θ ∈ Θ. By (16), N2, N3, N8 and the definition of λ∗
T ,

for the second term on the RHS we have:

inf
β∈B,γ:∥γ−γ0

S
∥≥ϖ

∥∥∥∥V −1/2(θ)

√
T

λ∗
T

ET [ḡT (R
1
Sβ + S1

Sγ)]

∥∥∥∥ = inf
β∈B,γ:∥γ−γ0

S
∥≥ϖ

∥∥∥∥V −1/2(θ)
1

λ∗
T

ΛT ρ(R
1
Sβ + S1

Sγ)

∥∥∥∥→ c > 0

as T → ∞ for some c > 0. Therefore, by using the uniform consistency of V̂ −1
T (θ) for V −1(θ) from N8, and the definition

of QT (θ) from (14), it follows that infβ∈B,γ:∥γ−γ0
S
∥≥ϖ(λ∗

T )
−2 × T ×QT (R

1
Sβ + S1

Sγ
′)

P−→ c∗ for some c∗ > 0. Therefore, by

definition (and since λ∗
T → ∞ by N3) it follows that infγ:∥γ−γ0

S
∥≥ϖ T ×QT (R

1
Sr0 + S1

Sγ
′)

P−→ ∞. Since ϖ > 0 is arbitrary,

by the definition in (13) where the critical value is a fixed, finite positive number for a given ϵ < 1, it follows that

sup
γ0∈CISW

T
(γS ;r0,ϵ)

∥γ0 − γ0
S∥ = op(1).

This is an intermediate result since we actually need to show more. For that purpose let us proceed as follows. Since
r0 − β0 = o(1) by (24), we appeal to the above result and now focus on θ such that θ − θ0 = op(1). Define

ϑT := sup
γ0∈CISW

T
(γS ;r0,ϵ)

∥
√
TD−1

T,ρθ
Π−1

ρθ (R
1
S(r0 − β0) + S1

S(γ0 − γ0
S))∥.

Since CISW
T (γS ; r0, ϵ) is closed by construction (see (13)), we have

γT := arg sup
γ0∈CISW

T
(γS ;r0,ϵ)

∥
√
TD−1

T,ρθ
Π−1

ρθ (R
1
S(r0 − β0) + S1

S(γ0 − γ0
S))∥ ∈ CISW

T (γS ; r0, ϵ)

for all T . We know from the above result that ∥γT − γ0
S∥ = op(1) and hence for θT := R1

Sro + S1
SγT , it follows that

∥θT − θ0∥ = op(1). Hence θT ∈ N (θ0) (defined in N9) with probability approaching one.
Note that if ϑT = op(1), the required result for the lemma is already proved. So let us consider the case that ϑT ̸= op(1).

Now, we wish to prove that ϑT = Op(1), and we do it by contradiction.
Suppose that ϑT ̸= Op(1). Then there exist a ε > 0 and a subsequence {Tn} such that PrTn(ϑTn > n) ≥ ε for all n.

The required proof follows by contradiction if we show that this is not possible.
First, using (16) and N1, we obtain by a mean value expansion of ρ(θT ) that

√
T ḡT (θT ) =

√
T (ḡT (θT )− ET [ḡT (θT )]) +

√
T

[
ΛT√
T

{
ρ(θ0) + ρθ(θ

0)(θT − θ0) + [ρθ(θ̄T )− ρθ(θ
0)](θT − θ0)

}]
where, as before, ρθ(.) :=

∂
∂θ′ ρ(.). ψT (θ) :=

√
T (ḡT (θT )− ET [ḡT (θT )]) (be its definition in N2) and ρ(θ0) = 0 by N1. Hence,

focusing on the subsequence {Tn}, we obtain that∥∥∥∥√TnḡTn(θTn)−
{
ψTn(θTn) +

(
ΛTn√
Tn

ρθ(θ
0)ΠρθDTn,ρθ

)√
TnD

−1
Tn,ρθ

Π−1
ρθ (θTn − θ0)

}∥∥∥∥ ≤ ϑTn × sup
θ∈N (θ0)

κTn(θ) = ϑTn × op(1)

where ψT (θ) and κT (θ) are defined in N2 and N9 respectively. For notational simplicity define

bTn(θTn) := ψTn(θTn) +

(
ΛTn√
Tn

ρθ(θ
0)ΠρθDTn,ρθ

)√
TnD

−1
Tn,ρθ

Π−1
ρθ (θTn − θ0),

which is Op(1) +Op(ϑTn) by virtue of N2, (20) (using the full column rank of G∗).
Define ϖT := 1 + ϑ2

T ≥ 1. Now, by the definition of QT (θ), it follows from using N8 that

1

ϖTn

∣∣Tn ×QTn(R
1
Sr0 + S1

SγTn)− b′Tn
(θTn)V

−1bTn(θTn)
∣∣ = op(1)

since the minimum eigen value of V (θ) is uniformly bounded away from zero. Further noting the full column rank of G∗ and
the fact that bTn(θTn) = Op(1)+Op(ϑTn) (please note the two additive components of bTn(θTn) from above) will imply that

1
ϖTn

b′Tn
(θTn)V

−1bTn(θTn) ̸= op(1) but Op(1). Therefore,
Tn

ϖTn
×QTn(R

1
Sr0+S

1
SγTn) ̸= op(1) but Op(1). On the other hand,

since γTn ∈ CISW
Tn

(γS ; r0, ϵ), we also know that Tn×QTn(R
1
Sr0+S

1
SγTn) = Op(1) by the definition of CISW

Tn
(γS ; r0, ϵ) in (13).

Therefore, there cannot exist a ε > 0 such that PrTn(ϖTn > 1 + n2) ≥ ε for all n. Equivalently, since ϖT := 1 + ϑ2
T ≥ 1,

there cannot exist a ε > 0 such that PrTn(ϑ
2
Tn

> n2) ≥ ε for all n. Equivalently, there cannot exist a ε > 0 such that
PrTn(ϑTn > n) ≥ ε for all n, which is a contradiction to our supposition that ϑT ̸= Op(1). Hence, ϑT = Op(1).
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