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Abstract

Cost-effective survey methods such as multi(R)-phase sampling typically generate samples that are collec-
tions of monotonic sub-samples, i.e., the variables observed for the units in sub-sample r are also observed for
the units in sub-sample » 4+ 1 for r = 1,..., R — 1. These sub-samples represent sub-populations that can be
systematically different if the selection of a unit in each phase of sampling depends on the observed variables
for that unit from past phases. Our paper is about optimally combining all the sub-samples for the efficient
estimation of a finite dimensional parameter defined by moment restrictions on a generic target population
that is an arbitrary union of these sub-populations. Only the R-th sub-sample is assumed to contain all the
variables that are arguments of the moment function. Semiparametric efficiency bounds for estimation are
obtained under a unified framework allowing for full generality of the selection on observables in the sampling
design. Contribution of each sub-sample toward efficient estimation is analyzed; and this turns out to differ
fundamentally from that in setups where the same collection of sub-samples are instead generated unplanned
by unknown sampling. Uniquely, our setup enables all the sub-samples to contribute to the efficient estimation
for all the target populations, which we show is not possible in other setups. Efficient estimation is standard.

Simulation evidence of substantive efficiency gains from using all the sub-samples is provided for all the targets.
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1 Introduction

Planned incompleteness in the data can be useful when conducting surveys under budget constraints.
The basic idea behind planned incompleteness is that: when it is expensive to collect all the variables
for all the units in the sample, the next best alternative could be to collect the less expensive variables
for all the units in the sample but the more expensive variables only for a subset of these units.

A variable may be more expensive to collect for numerous reasons; e.g., a correct measurement
may be expensive, it may require intensive follow-ups, it may require tracking of or offering incentives
to respondents, etc. In all such cases, planned incompleteness cuts the cost of surveys by generating a
sample in which only a subset of the units contains all the intended variables, while the rest contains
various collections of only the less expensive variables. This happens by plan, i.e., sampling design,
and, thus, the targeted use of survey resources eliminates or at least reduces unplanned non-response
or mismeasurement that could have otherwise complicated subsequent analyses of the data.!

The idea of planned incompleteness is not new, and is more frequently employed in fields of
research where the use of primary data is more prevalent than what has been typical in economics.
(Appendix A.1 provides specific examples from economics and other fields.) However, while the loss
of information due to the incompleteness in the sample makes it imperative that any estimator using
such data be as precise as possible, efficient estimation in such contexts is rarely considered.?

Our paper seeks to address this issue of efficient estimation using planned incomplete data by
taking the sampling design as given. We focus on monotonic multi-phase samplings and, for full
flexibility in the design of the multiple phases, we maintain a general selection on observables, i.e.,
the missing at random (MAR), assumption. Close attention is paid to special cases of MAR.

To fix ideas consider the prototypical multi(R)-phase sampling that, along with its variations,

falls under the premise of our paper. Suppose that a researcher intends to collect R sets of variables

Z(1),--+,2Z(g)- In phase one she collects Z(;) for a random selection of units. Then, recursively, at
each phase r = 2,..., R, she collects Z(,) for a subset of the units from phase r — 1, selecting the
subset randomly with or without regard to the already available information on Z(y),..., Z(r—1)~3

The resulting sample consists of R groups of units such that the r-th group contains only Z(y), ..., Z,

(these are the units followed until phase r but dropped after that) where r = 1,..., R. We refer to

!See Carroll et al. (1995), Little and Rubin (2002), etc. for methods of dealing with mismeasured or missing data.

2An exception is Chatterjee and Li (2010) who consider efficiency under a specific type of planned incompleteness
design known as the partial questionnaire designs of Wacholder et al. (1994) [also see Chaudhuri and Guilkey (2016)].

3The two-phase sampling is a special case where Z(3), -+, Z(r) would also be collected with Z(,) in phase two, and
the survey would end there. In turn, the variable probability (VP) sampling studied in Wooldridge (1999), Wooldridge
(2007), etc. is a special type of two-phase sampling that would discard all the units for whom only Z(;) was collected.
Thus, VP sampling unnecessarily losses information that has already been collected (paid for). The loss is naturally
more severe if such a strategy is extended to multiple phases. Hence, we do not consider VP sampling in this paper.



these R groups as R sub-samples. Only the R-th sub-sample is complete in the sense that it contains
all the intended variables Zy),..., Z(g). These sub-samples are monotonic, i.e., variables observed
for the units in sub-sample 7 are also observed for the units in sub-sample r+1 forr=1,..., R— 1.

Note that, the underlying populations for the sub-samples, call them sub-populations, can differ
systematically in terms of the joint distribution of the intended variables Z ), ..., Z(g) if the selection
of the units for any phase takes into account any information that is already available by then.

In this paper we consider efficient estimation of a finite dimensional parameter defined by generic
moment restrictions on the joint distribution of Z(y),..., Z(g) in a generic target population that is
an arbitrary union of these sub-populations. Special cases of the target include the sub-populations
and the full population (union of all sub-populations). We provide a unified presentation of all cases.

The main contribution of our paper is twofold. First, we obtain the efficient influence function
and efficiency bound for the generic parameter of interest and analyze them closely to make explicit
the role of each sub-sample toward efficient estimation. Second, we express the problem of efficient
estimation in an alternative, equivalent way in the spirit of Brown and Newey (1998) and Graham
(2011) rendering the actual efficient estimation a simple special case of Chamberlain (1992), Ai and
Chen (2012), etc. Both contributions are driven by the two key features of our paper — planned
incompleteness and monotonicity — and, throughout, we emphasize the novelty of their implications
with respect to the literature, e.g., Robins et al. (1994), Robins and Rotnitzky (1995), Rotnitzky and
Robins (1995), Hahn (1998), Chen et al. (2008), Graham (2011), Barnwell and Chaudhuri (2018).%

Our paper proceeds as follows. Section 2 describes our theoretical framework and presents our
main theoretical results under MAR. Section 3 takes a closer look at two important special cases of
MAR that could be more relevant in practice, and provides auxiliary results along with an analytical
demonstration of efficiency gained from the optimal use of all the sub-samples for efficient estimation.
Section 4 demonstrates this efficiency gain in finite samples using a Monte Carlo experiment.

There is a Supplemental Appendix (referred to as Appendix for brevity). Appendix A elaborates
on statements from the main text when they require longer explanations. Appendix B presents
proofs of the theoretical results from Sections 2 and 3. Appendix C describes efficient estimation,
presents the formal statements and proofs of the asymptotic properties of the efficient estimator, and

also Monte Carlo evidence of its good finite-sample properties under the setup of Section 4.

4Tt must also be noted here that our presentation in the sequel is incomplete in the following sense. While the
idea of planned incompleteness to reduce survey cost and the unintended consequences of unplanned incompleteness is
intuitively appealing, our paper is silent about the optimality of such survey designs and instead takes a generic design
as given. Indeed, to our knowledge, a general optimality theory is yet to be developed for survey designs with planned
incompleteness and this perhaps needs to be addressed on a case-by-case basis [see Reilly (1996)]. While a broader
exploration of optimality is the topic of our ongoing research, at this point we only present in Appendix A.2 simple
and illustrative examples of the optimality of a planned incomplete survey design in two-phase (double) sampling.



Lastly, we note that recent contributions to data combination in economics include, e.g., Ichimura
and Martinez-Sanchis (2005), Ridder and Moffitt (2007), Devereux and Tripathi (2009), Tripathi
(2009), Dardanoni et al. (2011), Muris (2016), Graham et al. (2016), Abrevaya and Donald (2017),
and the many references therein. It is our focus on: (i) planned incompleteness, (ii) the allowance for
a dynamically updating MAR condition, and (iii) the allowance for the parameter of interest to be

defined in terms of arbitrary unions of sub-populations, that distinguishes our paper from the rest.

2 Framework and the Combination of Sub-samples

2.1 Framework

Let Z := (ZEI),...,ZER))’ where Z,y is a d; x 1 random vector for r = 1,..., R, and Zle d, is
finite. Following Tsiatis (2006), consider a scalar variable C' with support C := {1,..., R} and
a transformation T (Z) defined as T,.(Z) = (Zgl), ce

1,..., R. The value of C determines T(Z), i.e., how much of Z is observed for a sample unit.

Zér))/ of dimension (Zgzl dg) x 1 for r =

Let O := (C,T((Z))" denote what is observable for a unit. The observed sample is {O; :=
(C},T¢.(Zi))' }i=1. The r-th sub-sample is the collection of units for whom 7,.(Z) is observed; it is of
size n, := Y ;| I[(C; =) for r =1,..., R. Only the R-th sub-sample is complete, i.e., Tr(Z) = Z.

A natural consequence of our description of the multi-phase sampling is that it involves selection
on observables. Note that, at the end of phase r = 1,..., R — 1, the researcher is left with the units
{i=1,...,n:C; > r} and has observed T,(Z;) for each of them. Now, the researcher decides the
probability with which each such eligible unit continues to phase r+1. This probability can be equal,
say 1 —p,, for all eligible units, in which case P(C = r|C > r,T,(Z)) = p,; or it can be more involved
if it depends on T,(Z). Regardless, the researcher cannot possibly incorporate in this decision the
knowledge of Z(,11),..., Z(g) since she does not observe them by the end of phase r. We formalize

this statement by maintaining a general selection on observables, i.e., the MAR condition that:
P(C=r|C>r,Tr(Z))=P(C=r|C >rT,(Z2)), equivalently, P(C =r|Tr(Z)) = P(C =r|T.(2))

for r = 1,...,R. The equivalence in (1) follows from the invertible relation between hazard and
probability mass functions [see Appendix A.3]. The second relation in (1) is the MAR condition in
the sense of Rubin (1976) [see, e.g., Robins and Rotnitzky (1995), Tsiatis (2006)] and generalizes to
the case of R > 2 the MAR assumption found in econometrics where the focus has traditionally been

on R =2 [see, e.g., Chen et al. (2005), Chen et al. (2008), Graham (2011), Graham et al. (2012)].



To signify that the incompleteness in the data is by plan/design, we maintain under (1) that:

P(C =r|C>rT.(2)), equivalently, P(C' = r|T(Z)) is known for each r=1,...,R.  (2)

The equivalence in (2) follows under (1) [see Appendix A.4]. The condition in (2) is a formality in
this context since the researcher actually decides these probabilities as part of the sampling design.

Now, to define the parameter value of interest, consider a generic function m(Z; ) : Support(Z) x
B +— R of the parameter § € B C R% where dg < d,,. For a given target population A € A where

A := Power-Set(C) excluding the empty set, define the parameter value of interest 59\ as:

E[m(Z;B)|C € \] =0 for B € B<= 3=0". (3)

ﬁ?\ is defined as a function of A and may differ across targets A € A if C and Z are dependent.

For a given 3, the function m(Z; 3) can be evaluated from the observed sample only for the ng
units in the complete sub-sample, i.e., I(C = R)m(Z; 3). However, point identification of 3 is still
possible by the Horvitz-Thompson re-weighting provided that P(C = R|Tr(Z)) > 0 almost surely.
This is due to the following relation that holds identically in 3 [see Appendix A.5 for details]:

P(C € MTr(2Z)) I(C=R)

El™"pcexn  P(C=RTa2)

m(Z; )| = E[m(Z; B)|C € Al. (4)

All the terms inside the expectation on the left hand side (LHS) of (4) will be feasible under our
assumptions because P(C' € \) will be trivially identified by the observed data under assumption
(A1) below, whereas (1) and (2) already imply that P(C € MTr(Z)) and P(C = R|Tr(Z)) are
known. Hence, the LHS of (4) can serve as the estimating function for ﬁg. However, such estimation
will be based solely on the complete sub-sample. We will focus on exploring the information contained
in the incomplete sub-samples and demonstrating how that information can be combined with the
information in the complete sub-sample for the purpose of efficient estimation of Bg defined in (3).
The discussion of our framework concludes by listing an assumption that we maintain hereafter.

Assumption A

(A1) The observed sample units {O; := (C;, T, (Z;))}ie, are ii.d. copies of O := (C, T (Z))'.

(A2) (P(C = r|Tr(Z))EZ! > 0 and P(C = R|TR(Z)) > p almost surely in Tr(Z) for a fixed
p € (0,1).

(A3) M) := {%E (m(Z;B)|C € )\}} , is a dy, x dg finite matrix of full column rank.

A

Remark: (Al) is a standard assumption [see, e.g., Tsiatis (2006), Devereux and Tripathi (2009),



Tripathi (2011), etc.]. P(C = R|Tr(Z)) > p > 0 in (A2) is a strict version of the overlap assumption
[see Khan and Tamer (2010)]. The restrictions P(C' = r|Tr(Z)) > 0 for r = 1,..., R — 1 are not
strictly required but help to avoid more involved proofs peripheral to the main message. However,
P(C =r) >0 for r = 1,...,R is intrinsic to the R-level missing data model. (A3) allows for
moment vectors m(Z; ) that are not differentiable in 5. We do, however, impose differentiability of
E[m(Z;5)|C € A] as in, e.g., Chen et al. (2003), Chen et al. (2008), Cattaneo (2010), etc.

The theoretical framework above is closely related to several well-known papers such as Robins
and Rotnitzky (1995), Whittemore (1997), Holcroft et al. (1997), Chen et al. (2005), Chen et al.
(2008), Cattaneo (2010), Dardanoni et al. (2011), Lee et al. (2012) and Abrevaya and Donald (2017).
In Appendix A.6 we discuss in detail where we actually differ from them. Broadly speaking, the
differences are one or more of the following: (i) allowance for a general R, (ii) expansion of the scope
to all (2f — 1) sub-populations (including A = C), (iii) introduction a dynamically updated sampling

design via MAR, and (iv) emphasis on the new insights available only from letting R > 2.

2.2 Optimally combining the sub-samples for efficiency

To state our main result in Proposition 1 let us first, for a given A € A, define the following d,, x 1

functions of the observed data O and the dg x 1 parameter 3 as:

orn(0;8) == E [P(ifCAgf;gZ))m(TR(Z);ﬁ) TT(Z)] forr=1,...,R, (5)
ex(0;B) = P(C{SIZT]Z)(Z))@R,A(O§B)
= I(C>R—r) I(C>R—r+1) _
T [P(C SR 1\Tnr(2))  PIC>R—r+1Tn,nz)) P2 0A{0)

T

Proposition 1 Let (1), (2), (3) and assumption A hold. Let the dp,Xdp, matriz Vy := Var(ox(0; 89))
be finite and positive definite where px(O;B) is defined in (6) and B3 is defined in (3). Then, the
asymptotic variance lower bound for any regular estimator of 83 is given by 2 := (M;\V)\_IM,\)A. A

reqular estimator whose asymptotic variance equals ) has the asymptotically linear representation:

V(B — 8) = —QAM;VQ\}E S 0a(03.89) + 0y(1).
=1

Remarks:
1. Chen et al. (2008)’s results are for R = 2 with A = {1} and A = {1,2}. Proposition 1

generalizes Theorem 2 of Chen et al. (2008) to the case of a generic R and a generic target A. To see



this, let R = 2. Then, under (1), equations (5) and (6) imply that for A = {1,2} and {1} respectively:

PR 0) = pri g (mT(2):8) ~ Elm(TA 23 )T (2)) + Elm(T(2): DT (2)]
90{1}(0;/3) = P((;;(:lell()z))@{m}(o;ﬁ),

giving exactly the same expressions as in Chen et al. (2008) (p. 830) [see Appendix A.7 for details].
Interestingly, however, pointing to the crux of the matter related to the planned incompleteness
condition (2) is the case where R = 2 and A = {2}. (This case is not considered in Chen et al.

(2008).) In this case, our Proposition 1 implies that (following steps as in Appendix A.7):

o1(0:8) = i gymiTa(2)i8) + (DG - JOE Y (26T 2)

i.e., all the sub-samples still contribute toward efficient estimation (as evident from the first term
inside parentheses on the RHS), a phenomenon that holds for the other targets (A’s) too. On the other
hand, the generic result for unplanned incompleteness (i.e., without (2)) under MAR in Proposition
1 of Barnwell and Chaudhuri (2018) would imply that, when R = 2 and A = {2}, then:

1(C =2)

<P{2}[u](0§5) = ]3(07:2)

m(Ta(Z); B),

rendering the incomplete sub-sample useless. (The subscript [u] stands for unknown/unplanned.)
This comparison makes evident the important benefit of the planned incompleteness approach that
makes all the sub-samples always usable irrespective of A. It is also straightforward to see that:

P(C =111 (2))P(C = 2|T\(2))
P2(C = 2)

Var <<P{2}(0; 5?2})) = Var (90{2}[u](0; B&Q)—E [ o(T1(2))d (Ta(2)) | -

where ¢(T1(2)) := Eim(T>(2); Bg2})]T1(Z)]. Hence, in this case, the difference between planned and
unplanned incompleteness in terms of the efficiency bound boils down to the additional (relevant)
information brought by the incomplete sub-sample, which is reflected by the last term on the RHS.
2. When R > 2, Chen et al. (2008)’s selection on observables assumption (Assumption 2) can be
generalized as MAR in (1) (or its special cases noted in Section 3). Proposition 1 works under MAR.
The result for a generic R under MAR and when the target is A = C has been known since Robins
and Rotnitzky (1995), Rotnitzky and Robins (1995), Robins et al. (1995), Holcroft et al. (1997).
On the other hand, the novelty in Proposition 1 is that it allows for any target A. The key

to obtaining this result under a unified framework is how we treat the term P(C € MTgr(Z)) in



(5) (immaterial when A = C since P(C € C|Tr(Z)) = 1). Our treatment simplifies to Chen et al.
(2008)’s treatment when considering their verify-out-of-sample case, i.e., when R = 2 and A = {1},
from which, however, an extension to the general case in our paper may not seem obvious ez ante.
3. ©A(O;p) in (6) belongs to the class of AIPW (Augmented Inverse Probability Weighted)
estimating functions of Robins et al. (1994). The first term pg A(O; ) is the IPW term based on
the complete sub-sample. The rest are the augmentations due to the incomplete sub-samples: the
r-th term represents the contribution of the (R — r + 1)-th sub-sample. Each of these R terms are
themselves unbiased estimating function for 6&) but only the first one, i.e., the IPW term, is known
without further assumptions [see below (4)]. The augmentation terms reduce the variability of the

IPW estimating function and thereby deliver the efficient AIPW estimating function. More precisely:

Cov(termy, term,) = —Var(term,) forr=2,... R

Cov(termg, term,) = 0 for s #r # 1,

R R
and hence Vy, = Var (Z termr> = Var(term;) — Z Var(term,).
r=1 r=2

The (R — r + 1)-th sub-sample’s contribution to the efficiency of estimation for A rises with

Var(term,) for r > 1, countering Var(term;) to decrease the variance of the estimating function.’

2.3 Contribution of the observability of the Z,)’s toward efficiency

Let us now look into combining the sub-samples from an alternative viewpoint that stresses on how
the observability of each Z(,) contributes toward efficiency. To this end, rearrange the terms on the

RHS of (6) and rewrite ¢ (O; ) as:

I(C>r)

C >r|T(Z))

R
©A(0; 8) = p1.A(0;8) + Y 2 [r A (05 B) = ©r-1,(O; B)] (7)
r=2

to slice the contribution of the sub-samples differently. (Note that, [(C > R) = I(C = R).) Consider
the r-th term on the RHS. ¢, x(0; 8) and ¢, 1 1(O; B) differ due to Z(,y, which is only observed for
all the (R — r + 1) sub-samples (i.e., for all the units ¢ = 1,...,n : C; > r) as is signified by the
multiplier I(C' > r). Thus, the contribution of all the R sub-samples toward estimation is represented

in this r-th term in an incremental fashion according to their ability in delivering an observable Z,).

"While Var(pr—r+1.2(0;8)) > Var(¢r—r(0;8)) (in a matrix sense), the order is not always preserved when
comparing the relative contribution of Var(term,) and Var(term,;1) for r > 1 because these latter variances are
affected by certain conditional probabilities in a nontrivial way as evident from the expression that Var(term,) =

P(C=R—r+1|Tg_,11(Z)) . 30 . 30 — is i
E [P(CZR7T+1\TR,T+1(Z))P(HCZEiTwLQlTR,TJrQ(Z))@R*TJFLA(O’/B)\)@;%*TJFL)\(O”B)\)} for r = 2,..., R. This is what com-

plicates a general optimality theory for the survey design, which is the topic of our ongoing work [see footnote 4].




This holds for each r = 1,..., R, i.e., including the first term on the RHS of (7). Note that, the R

terms on the RHS of (7) are uncorrelated. Therefore, V) is the sum of the variances of the R terms:

Var (e (0; B)IT-1(2))
P(C = r|T(2))

R
Vi =Var(pia(0;8) + Y E [
r=2

The variance inflation factor 1/P(C' > r|T.(Z)) accounts for the observability of Z,) by varying
inversely with the conditional probability of observing Z(,). Naturally, there is no such variance
inflation for the first term on the RHS of (7) since Z(y) is always observed.

Yet another way of looking at these incremental contributions is to design a set of extended
moment restrictions whose information content, when combined optimally, equals that in Proposition

1. Accordingly, consider the estimation of BE\) based on the moment restrictions:

Elora(0;8)] = Ofor fe B f=5, 5)
E[érr(O)Trr(Z)] = 0 almost surely Tr_(Z) for r=1,...,R —1; 9)
where:

orr(0:8) = =T (0:8) [the IPW torm from (6))

P(C = R|Tg(2)) "™
¢rr(0) = I(C>R—-1)[[(C>R-r+1)—P(C>R—r+1/C>R—r,Th_(2))]

forr =1..., R — 1. When considering the expression for ¢r_,(O), note that, by definition, I(C >
R—r)y=I(C>1)=1whenr=R—1,and I(C > R—r+1)=1(C > R) =I(C = R) when r = 1.

Under (1) and (2), the moment restriction in (8) already identifies 3% [see below (4)], and GMM
estimation based on it using the complete sub-sample is the GMM-version of the Horvitz-Thompson
method of obtaining IPW estimators [see, e.g., Wooldridge (2007)].

The key to our following discussion, on the other hand, is the moment restrictions in (9). These
restrictions do not involve 8 but bring additional information due to the observability of the Z,)’s
in the sub-samples. Under the monotonic structure of the observed data, this information is usable
due to the MAR condition (1) and, importantly, the planned incompleteness condition (2).

(2) did not play a role in similar discussions in the literature, e.g., Graham (2011), Chaudhuri and
Guilkey (2016), etc., since they focused on the full population, i.e., A = C, for which the efficiency
bound is the same irrespective of (2). However, we also consider sub-populations; and, hence, (2) will
play an important role here without which the contribution of the Z;)’s would be further attenuated.

Additionally, the monotonic structure also plays an important role in our discussion, as is apparent

from a comparison with the results in pp. 686-687 of Chaudhuri and Guilkey (2016). The monotonic-



ity is captured by the multiplier I(C' > r) for the r-th moment function ¢,(O) for r =1,..., R — 1.
This multiplier ensures that the corresponding moment restriction reflects the additional information

that becomes available due to the observability of Z(,), which is observed if and only if C' > r.

Proposition 2 Denote ¢,.(0) by ¢, forr =1,..., R—1, and define Projp, (Y| ;) :=Y —Projp (Y| ;)
and Projp, (Y|ér) == E[Y¢.|T(2)] (E [¢%|TT(Z)D_1 ¢r for any random variable Y whenever the
relevant terms in the definition exist. Then, the following results hold.

(i) If (1) and assumptions (A1) and (A2) hold, then px(O; ) defined in (6) satisfies:

@ (0; B) = Projr, (WOJT2 ( .. Projr,, , (WOJTR_l (orA(O; B)| (bel)‘ ¢R—2) ’ ¢2) ‘ ¢>1) :

(ii) Let (1), (2) and assumption A hold. Then, the asymptotic variance lower bound under (8) and
(9) for any regular estimator of B3 is Q as defined in Proposition 1. A regular estimator with

asymptotic variance Q) has the same asymptotically linear representation as that in Proposition 1.

Remarks:

1. The results in (ii) under the moment restrictions (8)-(9) and the conditions (1) and (2) follow
directly as a special case of Chamberlain (1992) and Ai and Chen (2012).5

2. The result in (i) is essentially a repeated application of equation (15) in Brown and Newey
(1998) [see also Theorem 2.1 of Graham (2011)] facilitated by the monotonicity (7}.(Z) nests T,,_1(Z))
of the conditioning sets in (9). As noted in pp. 686-687 of Chaudhuri and Guilkey (2016), who also
refer to an earlier version of our current paper, a similar exercise under a non-monotonic structure
would not lead to the efficient influence function except in very special cases [see their footnote 5].

3. The broad message of Proposition 2 is that the original problem of optimally combining the
sub-samples can be boiled down to an equivalent problem of optimally combining a set of carefully
chosen moments restrictions, a problem/idea that is perhaps more common in economics [see Ap-
pendix A.8 for further discussion and its relation with the calibration literature in survey sampling].

Graham (2011) was first to establish a similar result for the case where R = 2 and the target was
A = C. Our setup is more involved and thus requires condition (2) and an adequately rich choice for
the sequence of functions (¢ R,T(O))f;f in (9) to establish this equivalence result that provides the
alternative viewpoint to appreciate the contribution of the sub-samples toward efficient estimation.

4. It is important to note that the more involved nature of our setup is not just that we allow for

R > 2, but also because we allow for the sub-populations to be the target A. This latter feature helps

5To match the sequential moment restrictions in Chamberlain (1992) and Ai and Chen (2012), define To(Z) as a
constant and consider the unconditional expectation in (8) equivalently as the expectation conditional on To(Z).
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to highlight a pertinent implication of the planned incompleteness condition in (2). To make this
point, take R = 2 to match the setup of Hahn (1998), Chen et al. (2008), and, importantly, Graham
(2011). Now, note that, under assumption (A2) (that now becomes Graham (2011)’s Assumption 1.4)
our augmenting moment restriction (9) becomes E[I(C = 2) — P(C = 2|T1(Z))|T1(Z)] = 0 almost
surely in T1(Z), i.e., the same as Graham (2011)’s [equation (5)] augmenting (auxiliary) moment
restriction. However, when A\ = {1}, Proposition 2 gives the efficiency result only under (2) but not
under unplanned incompleteness, and this can be seen simply by comparing Case 1 in Theorems
1 and 2 of Chen et al. (2008) [see Appendix A.9 for details|]. This point was moot in Graham
(2011) because the efficiency results are identical under planned or unplanned incompleteness when
A =C (={1,2}). Therefore, it is important to recognize that, in general, equivalence results such as

Proposition 2 hold only under planned incompleteness (along with monotonicity; see Remark 2).

3 A closer look at two special cases of MAR: CMAR and INDEP

It is instructive to observe the simplifications in the efficient influence function and, thus, the efficiency
bound if instead of the general MAR condition in (1), one maintains the following stronger conditions

that rule out dynamically updated survey designs and makes it easier to plan ahead with the survey:

CMAR: P(C=r|Tr(2))=P(C=rTi(Z)) forr=1,...,R, (10)

INDEP: P(C=r|Tgr(Z))=P(C=r) forr=1,...,R. (11)

Convenient MAR (CMAR) sampling happens if the sampling design for the later phases is based
only on the observed variables from the first phase (baseline). CMAR and MAR are trivially the
same in the commonly studied case of R = 2, i.e., both generalize Chen et al. (2008). Independent
(INDEP) sampling happens if the sampling design is independent of Z. A = C is the only target of
interest under INDEP since ,6’9\ does not vary with A\; however, that is not the case under CMAR.
Given the results in Barnwell and Chaudhuri (2018), it is also instructive to compare the results
thus obtained with those where one cannot maintain or, as in our paper, enforce by design the
condition of planned incompleteness in (2). Both issues will be extensively analyzed in this section.
Under CMAR and INDEP, P(C € MTgr(Z)) becomes P(C € M\T1(Z)) and P(C € \) respectively
for all A € A. Since all sub-populations \’s are the same under INDEP but not under CMAR, the
discussion under CMAR is going to be more involved. Hence, in the sequel, we primarily focus on

the discussion under CMAR while complementing it with the associated results under INDEP.
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3.1 Efficient influence functions and efficiency bounds

For brevity, we follow the spirit of the equivalent form of ¢ (O; ) in (7) and define, for all A € A,

PPIAR(0s ) o= TR { )+ Z P T2 ) — T4 (2) /3)]}
(12)
where:
W(To(2); B) = E[m(Tr(2): B)| T,(Z)] forr=1,...,R. (13)

It is straightforward to see using (7) that ¢, (O; ) in (6) boils down to {MAR(O; ) under CMAR.
(While this seems trivial, we will later point out by appealing to Barnwell and Chaudhuri (2018)

that such nesting does not hold in general if the planned incompleteness condition in (2) is relaxed.)

Proposition 3 Let (2), (3), (10) and assumption A hold. Let the dy, X dyy, matriz Vy := Var(p{MAR(0; 8Y))
be finite and positive definite where {MAE(O; B) is defined in (12) and 3 is defined in (3). Then, the
asymptotic variance lower bound for any reqular estimator of Bg is given by {2y 1= (M;\V;lM,\)_l. A

reqular estimator whose asymptotic variance equals 2y has the asymptotically linear representation:

V(B — BY) = —QAM;VA*\}H S CMAR(O,; 69) + 0,(1).
=1

Proposition 4 Let (3), (10) and assumption A hold. Assume P(C =r|Ty(Z)) = P(C = r|T1(Z);~)
for somey° € I' € R® where P(C = r|Ti(Z);7) is known up to the finite-dimensional unknown ~y for
r=1,...,R. Let S,(C|T1(Z)) := 1| %%P( = r|T1(Z);~4°) denote the score function
for v evaluated at v =+, and assume that E [S,(C|Ti(Z))S,(C|T1(2))"] is positive definite. Define

PSAT(0:0) = £45(05) 4 1 ( C SN BImTa(2) )T (2)| (1T (2)))
where the subscript [pu] represents that P(C = r|T1(Z)) is partially unknown, i.e., the finite dimen-
sional parameter 7 is unknown; QOCMAR(O;B) is as in (12); and for any variables Y and X, let
(Y |X) := E[Y X'|(E[XX'])"1X denote the population least squares projection when it exists.” Let
Vijpu] = Var(tpfé{lAR(O BY)) be a dp X dp, finite positive definite matriz. Then, the asymptotic vari-
ance lower bound for any reqular estimator of ﬁg is gen by Qypy) = (M V)\[p | >_1‘ A regular

estimator whose asymptotic variance equals Qy,, has the asymptotically linear representation:

\/E(B\A - 6&)) Q)\[pu]MA )\[pu \/’ Z )?[?){Z?R 17/69\) + Op(l)'

"In terms of the notation for the conditional projection PI‘OJ‘ (| .) in the statement of Proposition 2, II(Y|X) =
Projz, 7)(Y[X) where To(Z) is defined as any constant, which makes the conditional projection an unconditional one.
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Proposition 5 Let (3), (10) and assumption A hold. Define

~—

I(CeN P(C € NTy(2)) ZR: I(C>r

PUM(0:8) 1= e yyalTh(2): B)+ (T (2):8) - a(Tr-1(2); B)

where the subscript [u] represents that P(C' = r|T1(Z)) is unknown; and q(T,(Z); B) is as defined in
(13) forr =1,...,R. Let Vyp,) := Var(p C[MAR(O BY)) be a dy, % dp, finite positive definite matriz.
Then, the asymptotic variance lower bound for any regular estimator of 52 is gwen by Q) =
(M’ V)\[u] >_1. A regular estimator whose asymptotic variance equals 1y, has the asymptotically

linear representation.:

V(B = BY) = = M3V o Z o5 (033 BY) + 0p(1).

Remarks:
1. Proposition 3 turns out to be a special case of Proposition 1. Proposition 5 fully relaxes the
planned incompleteness condition (2). Proposition 4 is an intermediate result partially relaxing (2).

2. It is straightforward to see (after some algebra) from Propositions 3-5 that:

P(C e NTW(Z P2(C € NTy(Z)) < Var (q(T(2); BY|Tr-1(2)
— (pzchK() Doz )¢ (ru(2): ) + (Pfc'ei 2 c>r|£< 0 )
Vi = VA[u]—E[P(CEMTl(Z])D)z((lC_GPA()CE/\Tl(Z)))Q(T1(Z);BQ)Q’(Tl(Z);69)]
Vapul = Va+ B (E [S,(CIT1(2))S,(CIT1(2))]) ™" B’

— Vi Var (G028 - 11 (o Sam2is)|s

(C1i(2)))

where B = B [ {2E(T1(2); B)8,(CIT1(2)) | = B [“5E2 5,c) 2 P(C = r|T1(2):7°)] (=0
if A =C). Therefore, V) = V) = Vi if A = C. Otherwise V) < V), < V) in the matrix sense.
(Proposition 4 is presented only for the purpose of this remark.) This ordering of the asymptotic
variances shows that this well-known result for R = 2 and A = {1}, A = {1, 2} from Chen et al. (2008)
and Hahn (1998) also holds under CMAR for a generic R and a generic target (sub-)population .
3. For a generic R > 2, CMAR is essentially an extreme dimension reduction assumption that
helps to preserve the similarities of the results under planned and unplanned incompleteness. Of
course, as we already saw, the forms of the efficient influence functions are different under these two
cases; and there are still other important dissimilarities that we will note in the corollaries below.
However, all these dissimilarities are substantively mild compared to what would be the case under

the general MAR condition in (1). Relaxing the planned incompleteness condition (2) and imposing

13




restrictions on dimension reduction in MAR in (1), it follows from Proposition 1 in Barnwell and
Chaudhuri (2018) that for sub-populations of interest such as A = {a,a+1,...,b} wherea € {2,...,b}
and b € {2,..., R}, the units from sub-samples 1, ..., a—1 are not at all usable for efficient estimation.

By contrast, under planned incompleteness, units from all the sub-samples are usable for efficient
estimation for any target A irrespective of whether dimension reduction assumptions such as CMAR
are allowed. In this sense, MAR in (1) properly nests all dimension reduction assumptions, with
CMAR in (10) being the extreme one, only under planned incompleteness. On the other hand, in
contrast to Remark 1 above, our Proposition 5 (under CMAR) is not a special case of Barnwell and
Chaudhuri (2018) (under MAR) since neither imposes the planned incompleteness condition (2).

4. Lastly, note that if INDEP in (11) holds, then P(C € A\|[Tr(Z)) = P(C € ) for all A. In this
case, all the sub-populations are the same and hence there is only one population of interest A = C,

for which our Proposition 1 (or Proposition 3 or 4 or 5, i.e., irrespective of (2)) implies that:

R
r=c(0: 8) = PPEP(0; B) = q(Ti(2): ) + 3 D 2 1y(m(2); ) — (T s (2):8)]. (14)

3.2 Efficiency gains from the existence of additional incomplete sub-samples

The efficiency gain for a generic target A from using all the sub-samples instead of — (i) only the
complete sub-sample, or (ii) the complete sub-sample and some but not all incomplete sub-samples —
was evident from Remark 3 following Proposition 1 (and also from Proposition 2).® The underlying
premise in that discussion is that all R — 1 incomplete sub-samples exit and, hence, not using any
sub-sample cannot be more beneficial (asymptotically) than using all the sub-samples.
The question that we ask in this subsection is different because it changes this premise. More
precisely, we ask what is, if any, the benefit from having an additional incomplete sub-sample?
Care is required to avoid trivially positive answers by ensuring that the benefit is not entirely
driven by the increase in sample size from the additional incomplete sub-sample, but rather incorpo-
rates the quality of information in this sub-sample that is actually relevant to the target population
of interest (leading to zero benefits in certain cases). Accordingly, for a precise measure of “bene-
fit”, define the efficiency loss associated with the j-th element 3, ; from estimating 3\ based on a
collection of sub-samples denoted by s instead of another collection of sub-samples denoted by s’ as:
. o Avar(33 ) — - Avar (57

n—o0 n{lé./} Avar(ﬁiiﬁ

where \,s,s' € Aand j =1,...,ds. (15)

8If the (R — r 4 1)-th sub-sample is not used then Remark 3 made it evident that the variance V) increases by
Var(term,) for r = 2,..., R. Similar conclusions would follow from Propositions 3 and 5.
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Ny = D e e = Y opey 2oieq 1(Ci = 1) is the size of the combined sub-samples in [ for [ = s, s'. B\é\j
is the j-th element of B\é\ forj=1,...,dgand [ =s,5'.

Crucially for the question posed here, B} is the efficient estimator of 8 based on the sub-samples
in [. Hence, Avar(@\, j) is the asymptotic variance ignoring the existence of the sub-samples not in
l. For example, if A = {1} and s = {1, R}, then we replace P(C = 1|T1(Z)) and P(C = 1) in the
result of Proposition 3 or 5 by P(C = 1|T1(Z),C € {1,R}) and P(C = 1|C € {1, R}) respectively,
as if only two sub-samples 1 and R exit (a substitution pattern as in multinomial /conditional logit).

Thus, the estimators not using all the sub-samples are not penalized for the sub-optimal use of
the (available) information since they are actually efficient if the sub-samples they use were the only
available sub-samples. Letting s be included in s, the loss in (15) thus reflects the usable incremental
information brought in by the additional sub-samples that are included in s’ but not in s.

Analytical expressions for this loss under INDEP in (11) and CMAR in (10) are intuitive, and are
provided as corollaries to (14) and Proposition 3 in Corollaries 6 and 7. Analogous results without
the planned incompleteness condition (2) are provided as corollary to Proposition 5 in Corollary 8.

We take R = 3 and always include {R} in s,s’ for identification [see (4)]. Unless A = C, we
include A in s, s" as a convention. Unless A = {3}, we do not consider s = {3} for brevity (but do so
in the Monte Carlo study in Section 4).°

For simplicity, let dg = d,, = 1. For I = s,¢', let Vi denote Var(px(0;3Y)) when the latter is
modified according to the discussion below (15). To avoid clutter, we write: ¢(7,(Z); 89) in (13) as
¢r where A is omitted from the latter but will be clear from the context; 7,.(Z) as T,; P(C = r) as py;
P(C =r|Ti(Z)) as p,(Th); P(C € {r,t}) as pp; and P(C € {r,t}|T1(Z)) as ppt(T1) for r,t =1,2,3.

Corollary 6 Let (3), (11) (i.e., INDEP) and assumption A hold. Under INDEP in (11): (i) 5\
is the same for all X € A, and (ii) p.(T1) = p, for all ™ = 1,...,R. Thus, there is no distinction
between planned versus unplanned incompleteness [see (14)], and hence (2) plays no role. Taking

A =C:={1,2,3}, and assuming that the concerned variances exist, the following hold as n — oo:
(a) Loss(Br;s = {3},s = {1,3}) x V)\{l’?’} = %E [q%]

(b) Loss(Bx;is = {3}, ¢' = {2,3}) x V¥ = 2B [¢2].

(¢) Loss(Bx;s ={1,3},s' ={1,2,3}) x V)\{I’Q’g} =2p [q%] + L2 E[Var(¢|T1)].

p13 p3p23

(d) Loss(Br;s = {2,3},8' = {1,2,3}) x V,{"*¥ = 2Lp [¢2].

P23

9This is because the relevant comparison in such cases is rooted in the study of the sub-optimality of the asymptotic
variance of standard IPW estimators that has already been studied extensively in the literature. On the other hand,
our focus below is the comparison between two asymptotic variances each of which is optimal under its own assumption
on the availability of the sub-samples as discussed in and around the definition of the loss in (15).
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Corollary 7 Let (2), (3), (10) (i.e., CMAR) and assumption A hold. Assuming that the concerned
variances exist, the following hold as n — oo:
(a) Loss(Byis = {1,3}, 5 = {1,2,3}) x V{i*¥ = p [0 [ pgv(;jggi'f(;)l)}’ c=1].
(b) Loss(Bray;s = {2,3},8" = {1,2,3}) x 1({{21}’2’3} E [%%’ C= 2}
(c1) Loss(Bpsyis = {3},5' = {1.3}) x V™ = B [%
(c2) Loss(Brzyis = {3}.¢' = (2.3) x V¥ = E [% ) 2] C= 3}
(c3) Loss(Brzyis = {1.3},¢' = {1.2.3}) x V™" = B [W(Tl;fj?’(Tl) {m"(%Tl) + p:’(;jgng(;)l)}’ C= 3} .

(c4) Loss(Bpayis = (2,3}, 8 = (1.2.3) x V*P = 2 [M )c - 3]

pi(T1) 2|~ _
p1s(11) 4 ’ C= 3}

p3p23(T1)

(4) Loss(Brusyis = 11,3}, ' = {1,2,3))x V{5 = p [ mtllmeth) fodi oo vartel®) 4 o e q1,3)].

(¢) Loss(Bragyis = {2,315’ = {1,2,3) x Vi5¥ = B[ 200 ¢2| ¢ e 2,3)].
(f1) Loss(B(1,2,3:s = {1,3}, s ={1,2,3}) x {{1152}’3} =L [;23((:%)) ar + %V@T((D\Tﬂ]

2,3
(12) Loss(Brisyis = (2,3} = {1,2,3) x Vi5® = B [ 200.¢2].

Remarks: Complementing the discussion on efficiency in Section 5 of Wooldridge (2007), let us note
here that Corollaries 6 and 7 imply that there may not always be a loss in efficiency in the sense of
(15) when one does not use the sub-samples that have been assumed in (15) to not exist (i.e., those
in &' but not in s; see the discussion below (15)). For example, if g2 := E[m(Z; 83)|Z 1y, Z(2)] = 0,
then there is never any loss in all the above cases. Similarly, there is no loss in Corollary 6 (a), (d)

and Corollary 7 (b), (c1), (c4), (e), (f2) under a weaker condition that ¢ := E[m(Z; 83)|Z1)] = 0.1°

Corollary 8 Let (3), (10) (i.e., CMAR) and assumption A hold, but (2), i.e., planned incomplete-

ness, does not hold. Assuming that the concerned variances exist, the following hold as n — oo:

2,3
(0) Loss(Byi s = {131/ = (1,2,3) < Vi = B [pRG@REE VarelT)| 0 = 1].

(b) Loss(Bray;s = {2,3},8" = {1,2,3}) x 1/1{{21} 3t _ g [p;’;z(i%)\/ar qngl)’ C = 2]

(c1) Loss(Biays = {3}, 8" = {1,3}) x V{i™ =
(c2) Loss(Bzyis = {3},5' = {2,3)) x V7™ = 0.

(¢8) Loss(Brsy;s = {3} or s ={1,3} or s ={2,3},s' = {1,2,3})><V{gl}2 M _E [pf;Q(g(lT)l)Var(qﬂTl)‘

YA similar analysis of the loss in (15) with MAR in (1) under the premise of Section 4.2 is theoretically problematic.
To see this, consider comparing the two cases s = {1,3} and s’ = {1,2,3}. For MAR in (1) to hold, a similar analysis
demands P(C = 3|Z) = 1—-P(C =1|Z) =1 - P(C = 1|Zny) = P(C = 3|Z()) in the former case (i.e., if {2}
does not exist), whereas the latter case can still accommodate for P(C' = 3|2) = P(C = 3|Zn), Z(2)) # P(C = 3|Z(1))
contradicting the requirement in the former. This obstructs our intended analytical comparison in a strict sense. Hence,
such comparisons are not done here. Nevertheless, if one still proceeds with a similar, albeit theoretically problematic,
comparison under MAR, then the way P(C € MTr(Z)) enters (5) and (6) [also see Remark 2 below Proposition 1]
suggests that a zero loss under CMAR in Corollary 7 may not imply a zero loss under MAR.
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(@) Loss(Bays = {13}’ = {1.2,3)) x V{3¥ = B | 200l var(g|T)| € € {1,3}]

(¢) Loss(Biagyis = (2,3} = {1,2,3}) x V55" = o.

(1) Loss(Briosyis = {13} = {1,2,3) x V{'5¥ = B [ 2002 4 — 200 var(glTy)] .

{1.3} pis(Tn) 11 T1)p23(T1)
(12) Loss(Briosyis = (2,3} = {1,2,3) x Vi® = B [ 200.¢2].

Remarks: First, it is not surprising that Corollaries 7 and 8 give identical results in (f1) and (£2)
since, as evident from Propositions 3 and 5, there is no difference between planned and unplanned
incompleteness when A = C. Second, the results in (a), (b), (c3) and (d) imply that leaving out
incomplete sub-samples now results in zero loss under weaker conditions, i.e., Var(q|T1) = 0 as
opposed to the dual requirement of Var(g2|7T1) = 0 and ¢q; := E[g2|T1] = 0 under Corollary 7. Third,
we note that such differences between planned and unplanned incompleteness can manifest more
prominently if the additional sub-samples in s’ that are not in s are of worse quality (in terms of the
observability of the elements of Z) than each sub-sample in s. This is evident from comparing (cl),
(c2) and (e) in Corollaries 7 and 8 respectively. Consequently, a comparison of (c1) or (c2) with (c3)

in Corollary 8 shows that an identically zero loss when R = 2 need not imply the same when R = 3.

4 Simulation Study

Now we numerically study the benefit, if any, of using all the sub-samples for efficient estimation of )
by estimating (15) in a standard linear regression setup using a small scale Monte Carlo experiment.

The following observation motivates our experiment. In their editorial introduction, McKenzie
and Rosenzweig (2012) note how the different measurements of the same variables (e.g., consumption)
can dramatically alter the conclusion of analyses using survey data. But, the “good” measures can
be substantially more expensive.!'l Hence, under budget constraint, one could obtain the good but
expensive measures for only subsets of units, and the other measures for larger subsets or everyone.

Accordingly, consider a linear regression of a random variable y on a constant and another random
variable X. Let X, and X, be mismeasured X, possibly dependent also on y. Let Z) = (y, XY,
Z9) = Xe and Z(3) = X, a data structure that can be justified if y and X, (“c” for cheap) are cheap

to observe, while X, (“e” for expensive) is more expensive but still cheaper to observe than X (e.g.,

"For example, collecting consumption data through maintaining a personal diary can be 6 to 10 times more expensive
than a 7-day recall [see the last 3 rows of column 6 in Table 10 of Beegle et al. (2012)]. On the other hand, the 7-day
recall with a short list of aggregated consumption items can understate food consumption by 30% as compared to
personal diaries [compare rows 4 and 8 of column 2 in Table 2 of Beegle et al. (2012)]. These figures are based on eight
different measures of consumption, with accuracy varying inversely with cost, collected for non-monotonic sub-samples
of 4029 sample units in Tanzania. For simplicity, and similarity with Section 3.2, we will consider (i) only three different
measures and (ii) monotonic sub-samples. (ii) helps us to focus on efficient estimation and avoid ad hoc comparisons.
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where X is true consumption). Now, defining X = (1,X)" and By := (Bx1,Bx2)’, our experiment
involves efficient estimation of 35 by taking the moment vector in (3) as m(Z; 8) = X (y — X'B).
The underlying efficient estimator is a special case of Ai and Chen (2012) [also see Chamberlain
(1992) and Hahn (1997)]. Hence, we do not describe it in the main text but refer to Appendix C for:
(i) a self contained description of the estimator for a generic 8 defined by (3) based on a generic
moment vector, (ii) its connection with the literature, (iii) its asymptotic properties (highlighting
the key features) and proofs, (iv) a simulation study of its finite-sample properties, and (v) a simple
one-step updating efficient estimator in contexts that are more complicated than that of this section.
The generic expression of the efficient estimator for any target A relevant for this section is given
in Illustration 1 in Appendix C.5. However, when using the collection of sub-samples in s, i.e., the
nested collection, these estimators need to be adapted to the premise of the discussion in Section 3.2
[see below (15)]. Let us give an example to make this adaption clear. Consider A = {1}, s’ = {1,2,3}

and s = {1,3}. Then, the efficient estimators using s’ and s are as in (16) and (17) respectively.

gmtian _ (Zn: " {agi)@)?; tayFE [X’X"|T2(Zi)} +(1—ag —az)E [X’X’\Tl(Zi)] }) h

i=1

X z”: qi {a?)i)zi +agE [X|T2(Zi)] + (1 —ag; — az)E [X'|T1(Zi)} } Yi (16)
i=1

where E[.|.] denotes the estimated conditional expectation.'? Under MAR, as; := I(C; = 3)/P(C =
3\T5(Z0)), ani = [1 — 1(C; = D)/[1 — P(C = 1|T4(Z:))] — as; and ¢; := P(C = N|T3(Z) = P(C =
1|71 (Z;)) fori = 1,...,n. The only difference under CMAR is that as; := I(C; = 3)/P(C = 3|T\(Z;))
fori =1,...,n. Under INDEP, a3, := I(C; = 3)/P(C = 3), az; := I(C; € {2,3})/P(C € {2,3})—as;,
whereas ¢; := P(C = 1) (a constant, which cancels out making A moot) for i = 1,...,n. ((16) is

simplified from the generic expression in Illustration 1 in Appendix C.5 that provides further details.)

n -1 n
B - (Z g {agi)?i)?g +(1—as)B [)?)?’\Tl(zi)] }) 34 {agp?i +(1—az)E [)Z'yﬂ(z,»)} } i
i=1 i=1 a7
as; == I1(C; = 3)/P(C =3|C € {1,3},T1(Z;)) and ¢; :== P(C =1|C € {1,3},T1(Z;)) fori=1,...,n
under MAR and CMAR. While this conditioning does not affect the terms with ¢;as;, this does affect
the terms with ¢;(1 — as;). Under INDEP, ag; := I(C; = 3)/P(C =3|C € {1,3}) fori=1,...,n (¢

is moot as before). Conditioning on the event C' € {1, 3} adapts (17) to the premise of Section 3.2.

12In our simulation experiment below, these £ [.|T-(Z)]’s are series estimators for which we always use cubic polyno-
mials of the elements of (1,T;.(Z)")" irrespective of the sample size n. Hence, the resulting estimators for the parameters
of interest B8x’s can alternatively be considered parametric in the sense of Ackerberg et al. (2012).
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4.1 Simulation Design

We draw n i.i.d. copies of the concerned variables Z = (y, X, X., X.)’ defined as follows.
yi=a+8X;+ e, Xe=Xi+1(yi > 0)V2ei, Xei=Xi+1(y;i > 0)ees

where €;, €., €¢;, X; are mutually independent and i.i.d. N(0,1) for alli =1,...,n. We take a« =6 =
1. While E[X]| = E[X.] = E[X.], X is relatively less variable than X, as a measure of X because
the former has smaller variance when y > 0 (precisely, Var(X.) — Var(X.) = P(y > 0) = ®(1/v/2)).
The specification is arbitrary except only to motivate the data structure from a multi-phase sampling
design — Z(1) = (y, X¢), Z(g) = Xe and Z(3) = X — because the relative accuracy of X, helps to
envision X, as more expensive to observe than X, but less expensive to observe than X.

In the context of dependent sampling, without regard to the optimality of the sampling design,

we generate the variable C; € C :={1,2,3} for i = 1,...,n as i.i.d. copies of C such that:
P(C = 1‘ZZ) - Ft1(70(Xci +Yi — 1))7 P(C - 2‘01 > 1, Zz) =1- Ftl(’)/eXei + ’Yc(Xci + Vi — 2))7

and P(C = 3|Z;) = 1— P(C = 1|Z;) — P(C = 2|Z;) where Fy,(a) is the cumulative distribution
function of a ¢;-distributed random variable evaluated at a € R. (The fat tail of the ¢; distribution
helps to partly offset problems with limited overlap [see assumption (A2) and Chaudhuri and Hill
(2016)].) We design the selection mechanisms MAR in (1) and CMAR in (10) by taking v, = 7. =
.25 and v, = .25,7. = 0 respectively. Although 7. = v, = 0 gives INDEP in (11), this hinders
comparability with MAR and CMAR since this results in P(C = 2) = P(C = 3) = .25 while MAR
and CMAR give P(C = 2) = ny/n ~ .31 and P(C = 3) =~ n3/n ~ .19 (obtained as average over
10,000 Monte Carlo trials). Hence, we directly design INDEP as (n1,n2,n3) ~ Trinomial(n, .5, .31).

The sub-samples are made incomplete by deleting X; if C; # 3 and X if C; =1fori=1,...,n.
We take n = 600, 1200, 1800.

The true value of the parameters of interest 31 (Intercept) and 5 (Slope) is (1,1)’, i.e., (a,d),
under INDEP. The same holds under CMAR and MAR when A = {1,2,3}. However, it is difficult
to analytically obtain the true values under CMAR and MAR when A # {1,2,3}. Since the study of

bias is not our focus, we take the values listed in Table 1 as (roughly) the truth for the other §y’s.

Target CMAR Sampling MAR Sampling
A {1} {2} {3 {y,3p {23} | {1} {2} 3y {43} {2,3}
Intercept | 1.1375 0.7602 1.0087 1.1006 0.8652 | 1.1375 0.7624 0.9991 1.0985 0.8652
Slope 0.9630 0.9318 0.9562 0.9675 0.9685 | 0.9630 0.9239 0.9473 0.9628 0.9685

Table 1: Obtained as averages over 10,000 Monte Carlo trials of ordinary least squares estimates of Intercept
and Slope from the regression of y on X using the correct (infeasible) sub-sample (s = \) when n = 1 million.
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4.2 Simulation Results

Tables 2 and 3 list the estimated loss (in percent) defined in (15) for various s with respect to s =
{1,2,3} under INDEP, and CMAR and MAR respectively. Although, this particular demonstration
may not be strictly correct theoretically under MAR [see footnote 10], we nevertheless report the
MAR results to get a sense of the concerned loss. Incidentally, here the losses under MAR turn out
to be quite close to those under CMAR, and hence are not given much special attention.

If all the sub-samples contained the same variables then these losses should more or less reflect
the smaller than n size of the collection of sub-samples in s. For example, the first row of Table 2
would be 100 x (1/n3 —1/n)/(1/n) ~ 100 x (1/P(C = 3) — 1) ~ 426, and similarly the second and
third rows would be approximately 45 and 100 respectively. The actual loss will invariably be much
smaller in the first and third rows because the units in the additional sub-samples in s’ = {1,2,3}
that are not in s = {3} and s = {2, 3}, i.e., the sub-samples {1,2} and {1} respectively, are uniformly
worse in terms of their information content than those in s. This is however not true for the second
row since the extra sub-sample in s’ is {2}, and a unit in it is more informative than a unit in the
sub-sample {1} but less so than a unit in the other sub-sample {3} in s. Thus, it is not clear a priori
in this case, i.e., s = {1,3}, if the actual loss will also be much smaller. All these intuitions are

reflected in the tables, not only for INDEP (Table 2) but also for CMAR and MAR (Table 3).

INDEP Sampling
Target Popln. Used Sample Intercept Slope
A S n=600 n=1200 n=1800 n =600 n=1200 mn =1800
{1,2,3} {3} 155 159 157 104 107 104
{1,2,3} {1,3} 30 32 33 21 24 23
{1,2,3} {2,3} 33 34 33 23 23 21

Table 2: Estimated Loss(f8x ;5,8 = {1,2,3}) (in percent) defined in (15) for j = 1 (Intercept) and j = 2
(Slope). Results are based on the analytically estimated Avar averaged over 10,000 Monte Carlo trials.
There are cases like A = {2}, s = {2,3} under CMAR and MAR sampling where the loss for
the Slope estimator is minimal and close to zero, and this is in spite of the fact that the estimator
based on s = {2,3} uses roughly half the number of observations used by the estimator based on
s’ ={1,2,3}. The loss can, however, be quite substantial in many cases and would be even larger if
we had not restricted the definition of loss in (15) from penalizing the sub-optimal use of information
by the sub-samples in s. Taken together, these simulation results show the obvious benefit of using
all the sub-samples for estimation. Furthermore, comparing the first three (i.e., the only comparable)
rows of Tables 2 and 3, it is evident that such benefits could be more under dependent sampling.

Appendix C.6 reports simulation evidence of reasonably good finite-sample properties of the
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CMAR Sampling MAR Sampling
Target Used Intercept Slope Intercept Slope
Popln.  Sample n n n n
A s 600 1200 1800 600 1200 1800 | 600 1200 1800 600 1200 1800
{1,2,3} {3} 156 160 159 123 128 125 | 165 168 167 134 139 136
{1,2,3} {1,3} 37 38 39 43 41 39 40 42 42 47 46 44
{1,2,3} {2,3} 47 44 43 47 45 44 49 45 43 54 48 48
{1} {3} 126 129 127 103 110 107 | 134 135 133 105 111 109
{1} {1,3} 24 26 26 17 18 17 29 31 30 18 20 19
{2} {3} 168 174 173 120 136 135 | 165 174 172 139 152 151
{2} {2,3} 24 25 25 1 5 5 22 23 21 2 4 4
{3} {3} 151 156 155 102 107 104 | 148 155 153 95 101 99
{3} {1,3} 35 37 37 32 32 30 33 36 36 25 26 25
{3} {2,3} 42 41 41 35 33 32 41 41 40 40 36 34
{1,3} {3} 134 137 136 105 110 108 | 140 142 140 104 110 109
{1,3} {1,3} 28 29 30 21 21 20 30 32 32 20 22 21
{2,3} {3} | 170 176 175 123 134 132 | 176 184 184 142 151 149
{2,3} {2,3} 35 35 35 14 16 16 36 36 36 16 17 17

Table 3: Estimated Loss(f8x ;;s,s" = {1,2,3}) (in percent) defined in (15) for j = 1 (Intercept) and j = 2
(Slope). Results are based on the analytically estimated Avar averaged over 10,000 Monte Carlo trials.
efficient estimator used here under all the cases considered.!®> This lends credibility to the above
simulation results on efficiency loss. In turn, the simulation results help to appreciate our detailed
analytical exposition of efficiency gain/loss (from Section 3.2) by quantifying them numerically.

We conclude with the hope that the analytical and simulation evidence of efficiency gains from
the optimal use of the sub-samples, and the simplicity of efficient estimation would encourage further

research to facilitate the adoption of planned incomplete surveys in the face of budget constraints.
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Supplemental Appendix to “A Note on Efficiency Gains from Mul-

tiple Incomplete Sub-samples” by Saraswata Chaudhuri

Brief description of the content:

e Appendix A (A.1-A.9) contains clarifying or descriptive endnotes from Sections 1-3.
e Appendix B contains the proofs of all the propositions from the paper in Sections 2 and 3.

e Appendix C (C.1-C.7) provides formal statements and their proofs for the asymptotic properties
of the general efficient estimator, whose special case was referred to in Section 4. It also
reports simulation results describing the finite-sample properties of the efficient estimator in
the context of the Monte Carlo experiment in Section 4. Additionally, Appendix C describes
a simple one step updating of any \/n-consistent estimator (e.g., IPW estimator) to obtain
an estimator that is asymptotically equivalent to the efficient GMM estimator. A sketch of
the proof for this efficiency is provided under standard regularity conditions. This updating is
computationally convenient and can be easily performed following the first step estimation (e.g.,
weighted quantile regression) in standard statistical softwares such as STATA. We provide two
illustrations of the efficient estimator: (i) a linear regression as in Section 4 where a closed form
efficient estimator is available (so, no updating is required), and (ii) a linear quantile regression

where the one step updating is useful due to the unavailability of closed form expressions.
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Appendix A: Descriptive endnotes
A1l. Planned incomplete design: examples from economics and other fields

Examples from other fields

The adoption of the planned incomplete survey design is common in other fields to the extent that
there are even established terminologies to refer to the different types of planned incompleteness.

The two/many-measurement-design is used in psychology where it is common to encounter an
expensive “gold standard” measure and other inexpensive but less accurate measures for behavioral
traits [see, e.g., Graham et al. (2006)]. Then, the gold standard measure is typically employed only
on a subset of the study subjects while the other measures are employed on all. In other contexts,
planned missing waves for pre-selected sample units in a panel have been extensively used since
MacArdle and Woodcock (1997) to cut the cost of estimation of key quantities in psychology.'* In
yet other contexts, the multiple matrix sampling of Shoemaker (1973), that requires most units to
respond only to parts of the full survey questionnaire, was extended as the split-questionnaire design
(SQD) by Raghunathan and Grizzle (1995) in statistics, as the partial questionnaire design (PQD) by
Wacholder et al. (1994) in biostatistics and epidemiology, and as the multi-forms surveys discussed
by Graham et al. (1996), Graham et al. (2006), and others in psychology and behavioral research.
Examples from economics

The common theme in all these references is the cost cutting of surveys, which also applies to
the field of economics. This is even more relevant now as the use of primary data, often under tight
budgets, gets more common among economists. However, in spite of the promising early work of

DiNardo et al. (2006) who point to the benefits of planned incompleteness, systematic adoption of

1YWhile this example may appear less familiar than the other two types of examples, note that the structure of the
sample due to missing waves is actually similar to that from rotating panels with a single rotation. Rotating panels
such as the Current Population Survey are common in economics [see Nijman et al. (1991) for an influential study].
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planned incompleteness seems nonexistent in economics. Ad hoc adoptions can be found in laboratory
and field experiments, and we list below a small number of representative examples of both types.

(1) In a highly cited paper in experimental economics, Holt and Laury (2002) run a laboratory
experiment to elicit risk aversion for studying its dependence on the size of the stake. The experiment
involved planned incompleteness whereby the low-stake experiments were first run on all subjects
(phase one) and then the high-stake experiments were run on subsets of these subjects.

(2) Field experiments also typically involve follow-up rounds. We provide three recent examples:

(2a) Thornton (2008) studies an experiment in rural Malawi where the subjects where tested for
their HIV status and given incentives to learn the results from a nearby centre. After the respondents
had a chance to learn about the result (some did not), a follow-up interview was conducted on 75%
(so, 25% incompleteness by plan) of the original subjects to record their sexual behavior and their
response to an offer to buy up to 5 packages of 3 condoms using the .30 USD that was paid to them.

(2b) Ashraf et al. (2010) run an experiment in Zambia to differentiate between the screening
and sunk-cost effects measured by the usage of clorin (purchased from the experimenter) to purify
drinking water. In the first phase (baseline), the experimenter measures, among other variables, the
chemical concentration of clorin in the households’ drinking water. In the second phase (marketing),
the experimenter offers to sell a bottle of clorin to the concerned households at less than market
price. In the third phase (follow-up), the experimenter again measures, among other things, the
clorin concentration. The data are monotonic in terms of incompleteness — the third phase was
conducted only on those households who could be reached in the second phase (planned incomplete)
and there was also high attrition, particularly, in the third phase (unplanned incomplete).

(2c) Ashraf et al. (2014) run an experiment in Zambia to study household bargaining power in
terms of eventual fertility and usage of contraceptives when women were given access to contraceptives
in the presence and absence of their husbands. The first phase is a baseline survey on women that also
provided them with information on contraception and prevention of STD, and distributed condoms.
In the second phase (experiment) the respondents were reached either in the presence or absence
of their husbands (reflecting two types of treatments) and vouchers for injectable contraceptives
were provided. In the third phase (follow-up) information was collected on the women’s use of
contraceptives, sexual behavior, fertility, etc. Interestingly, beside a small number of rather balanced
attrition (unplanned incompleteness), the monotonicity in this data resulted primarily from planned
incompleteness because the second phase was conducted on a much smaller subset of the respondents
from the first phase owing, in the authors’ words, to “overwhelmingly...resource constraints on the

part of the investigators and a strict timeline for completion of the study” /“Not enough budget”.
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Other types of planned incompleteness in economics

Another source of planned incompleteness (and eventual monotonicity) in Ashraf et al. (2014)’s
data is the decision to collect new variables during the follow-up and an additional round but only
in focus groups with subsets of participants. In other words, now the full data set contains a subset
of units with the original variables, while the rest with the original plus new variables. Relatedly,
there can be cases where such new variables might have less accurate counterparts in the original
variables, making the latter subset (in the last sentence) a validation sample. An example is Beaman
et al. (2015) who use an input survey to obtain such data. An important consequence of this that
we highlight in our paper is that the joint distribution of the more and less accurate variables that
are jointly observed in the validation sample can often be useful for efficiency gains in subsequent
estimation (although Beaman et al. (2015) did not need to exploit it). A similar example with more
and less accurate measures of consumption, but unfortunately no joint observability (not needed for
the stated purpose of their paper), is Beegle et al. (2012) [see our Section 4 for more on it]. This is
also an example that does not involve a time dimension unlike the other references presented here.

Other types of cases where planned incompleteness could be useful include McKenzie (2012) and
Allcott and Rogers (2014). Monotonicity is natural (at least, not unnatural) in both types of cases.

McKenzie (2012) draws on the clinical trial literature and provides an analysis of the benefit in
precision gains from multiple follow-up measurements in field experiments over the standard practice
of a single baseline and a single follow-up. His discussion focuses on the tradeoff in the choice of n
(number of subjects) and 7' (number of measurements including baseline and follow-ups) at a given
cost. Alternatively, one could keep both n and T large but measure the relevant variables only for a
subset of subjects at each follow-up exactly like the prototypical multi-phase sampling.

Allcott and Rogers (2014) consider a treatment that was applied to subjects for varying duration.
Specifically, the treatment was applied, i.e., a “home energy report” (containing personalized energy
use, social comparisons, and energy conservation information) was sent to subjects, over a period
of time but was discontinued (and not reinstated) for subsets of subjects during the tenure. The
authors study the effect of this treatment on the energy consumption of the subjects. Note that, in
such cases, the treatment administrator need not choose the subset of subjects “exogenously” but
could conceivably incorporate the subjects’ past responses to the treatment in the choice decision.
Relation with our framework

While the details of estimation vary, all the studies cited above involve estimating expectations
and, sometimes, regression coefficients. For example, consider, without loss of generality, the in-

strumental variables (IV) regression in equation (2) (p. 1848) in Thornton (2008) (our Example
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(2a)) that was run on 75% of the full sample, namely, on the subjects from the districts of Rumphi

and Balaka and not from Mchinji [see their Tables 6 and 7]. Assume in the spirit of Table 7 that

the district-level heterogeneity is captured by the intercept, and extend this assumption to the full

sample so that the regression continues to hold in the population of the full sample simply by adding

a dummy D for Mchinji as a regressor. Denoting the instruments, endogenous regressors, exogenous

regressors and dependent variable by W, X, X9 and y respectively, define the (moment) function:
m(y, X1, X2, W; B1, B2) == (W', X3)'(y — X181 — X2f32).

The planned incompleteness due to the selective follow-up here is a case of missing y. Now, while
the coefficient of D (in X32) is unidentified, the results in our paper imply that if interest lies in the pop-
ulation of all three districts then the optimal use of the full sample is possible using the modified mo-
ment vector: %m(y,Xl,Xg, W; By, ﬁg)—l—(l — %) Elm(y, X1, Xo, W; p1, B2)| X1, X2, W]
instead of %m(y,)ﬁ,){g, W B1, B2) that is “close” to what was used in Table 7.1%:16 (Feasi-
bility issues of the modified moment vector, which also arise in Example 1 below (Appendix A.2),
are addressed in detail in the sequel and can be skipped for now in this introductory discussion.)

Our paper explores such optimal uses of the sample for efficient estimation in more general contexts.

A2. Planned incomplete design: examples of optimality of the design

Example 1: Minimizing variance of estimator subject to a given expected cost of survey

Let (Y, X) be scalar variables with finite means and variances. Let the parameter of interest be
B = E[Y — X]. Consider two random samples ST = {Yj,Xj};il and S = {Y;, D;, D; X;}"_, where D
is binary. We observe X in S only when D = 1. Assume that P(D = 1Y, X) = P(D = 1) = p.'"
The standard and, in this case, efficient estimator of 3 based on St is:

nt
Bt =3 "(v; - X;) /nt with Var(B") = A/n
j=1

where A := Var(Y — X). On the other hand, the result in this paper gives an infeasible version of

the efficient estimator of 8 based on S as:

5Standard IV conditions such as E[m(y, X1, X2, W; 87, 85)| X2, W] = 0 or E[m(y, X1, X2, W;5¢,69)] = 0 do not
imply that E[m(y, X1, X2, W; 8, 69)| X1, X2, W] = 0 where 8 and 83 are the true values of 81 and B2. Hence, the
modification in the moment vector is not moot, and it reduces the variability of the estimating function for 8, and ..

We say “close” to mean asymptotically equivalent. Note that, Tables 6 and 7 suggest that the first stage was run
on the full sample since only y is missing, while the second stage was run on the sample where D = 0. While this gives
more precise first stage estimates than what our latter representation above gives, under standard assumptions both
approaches actually give asymptotically equivalent estimates of the parameters of interest 81 and S that, in turn, are
less precise than what our former representation above with the modified moment vector does.

"While n' and n are non-random quantities, we allow, here and throughout, D to be random. Hence np :=
>, Di ~ Bin(n,p), i.e., the size of the complete sub-sample (the sub-sample containing all the variables required to
estimate ) is random. This is in spirit similar to the familiar relationship between multinomial sampling and standard
stratified sampling. It provides the technical convenience to consider a variety of cases under a unified framework.
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N

5= ié; {%(Yi ~ X))+ <1 - l;j) (v; E[Xm])} with Var (5) = % [A 4 1;pE[Var(X|Y)] |

3 is infeasible because E[X|Y] is unknown in practice. A feasible version of B plugs in an estimator
E[X|Y] for E[X|Y] in the expression for B. An important and desirable feature of our results that is
repeatedly emphasized in Appendix C is that as long as E [X|Y] is consistent for E[X|Y] uniformly
in Support(Y'), plugging E [X]Y] in the expression for B only makes the result asymptotic, i.e., (i)
what is referred to as Var(ﬁ) turns out to be (1/n) times the asymptotic variance of the feasible B,
and (ii) the feasible B is no longer unbiased but is asymptotically unbiased and normally distributed.
Now, let the cost of observing Y for a unit be 1 and that for X be ¢ where ¢ > 1. Let the allowed
expected total cost for the sample be ¢*. Thus, nf = [¢*/(14¢)] and n = |[c*/(1 +pc)| for a given c,
¢* and p, and where |a]| denotes the largest integer < a. Consider the problem of choosing p such that
Var(B) < Var(B!). By simple calculations: Var(B) < Var(B") < p > 1/(cq) provided that cq >
1 where ¢ = Var(Y — X)/E[Var(X|Y)] — 1. No solution exists if c¢¢ < 1. However, if ¢¢ > 1 and
p > 1/(cq), then the sample S is strictly advantageous over the sample ST under the premise of the
stated problem. (If Y and X are normally distributed with unit variance and correlation p then
g=(1-p)/(14p).) If cg>1and n=c*/(1+ pc), Var(3) is minimized when p = 1/\/cq.
Example 2: Variance reduction through dependent as opposed to independent sampling
Consider estimating the parameter § from a regression model Y = a + X + € where Y and X
are scalar random variables. For simplicity, let X ~ Bin(1,q) and let the model error € ~ (0,02)
be independent of X. Let S = {D;, D;Y;, X;}?' ; where D is a binary variable such that we observe
Y in § only when D = 1. (We switch the missing variable from X to Y in this example, unlike in
most of our paper, so that we can consider a simple unweighted estimator without bothering about
bias due to the possible non-representativeness of the units with D; = 1 [see Wooldridge (2007)].)
Let p(j) = E[D|X = j] for j = 0,1. Then, p := E[D] = gp(1) + (1 — q¢)p(0) and E[DX] = ¢p(1).
The ordinary least squares estimator B\ of 5, based on sample units with D; = 1, and the asymptotic

variance of 3 are, respectively:

n n n n n n
B=>"DX;|Yi-> D;v; /Y D;| /Y. DiX; | X, - D;x; /Y D
i=1 Jj=1 j=1 i=1 Jj=1 J=1

and
Avar = o* /EIDX] (1 — E[DX]/E[D]) = po® /[qp(1)(p — qp(1))] -
If P(D = 1|Y,X) = P(D = 1) = p, implying that p(1) = p(0) = p, then Avar = o2/pq(1 — q).

On the other hand, p(1) = p/(2¢) minimizes the general Avar and the minimized value is Avar
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= 402 /p, which is strictly smaller than 02/pq(1 — q) unless ¢ = 1/2. Hence, by virtue of making D
dependent on X, optimally, one could correct for the non-50-50 assignment of X in the population

— the essential idea behind stratification — to minimize variance.

A3. The equivalence relation in the MAR condition in (1)

Lemma 9 Let P(C =r|Tr(Z)) >0 for eachr =1,...,R. Then, P(C =r|C >r,Tr(Z)) = P(C =
r|C > r,T.(Z)) forr=1,...,R if and only if P(C =r|Tr(Z)) = P(C =r|T,(Z2)) forr=1,...,R.

Proof: We assume only P(C = r|Tr(Z)) > 0 for each r = 1,. .., R for simplicity to avoid cases with
0/0. The proof follows by induction. We first show the “if” part and then the “only if” part.

“if:” Let P(C = r|Tr(Z)) = P(C = r|T,(Z)) for r = 1,...,R. Therefore, P(C = 1|C >
1,Tr(Z)) = P(C = 1|Tr(Z)) = P(C = 1|T\(Z)) = P(C = 1|C > 1,T1(Z)). Now, suppose that
P(C = j|C > j,Tr(Z)) = P(C = j|C > j,Tj(2Z)) for j = 1,...,r for some r = 1,..., R — 1. This
will imply that P(C =r+1|C >r+1,Tr(Z)) = P(C =r+1|C > r+1,T,11(Z)) because:

P(C=r+1|Tr(Z2))  P(C=r+1|Tr(2))
P(C>=r+1TR(Z)) 1-35-, P(C =j|Tr(Z))
P(C=r+ 1\TT+1(Z)) _ PC=r+1T41(2))
1=3 751 P(C = jIT;
)
)

P(C=r+1|C>r+1,Tg(2) =

Z)) 1= P(C =j|T11(2))

P(C=r+1|T41(Z =P(C=r+1|C>r+1,T41(2))

P(C>r+1T1(Z

(
)
)

where all equalities on lines 1 and 3 follow by definition, and both equalities on line 2 follow from
the assumed conditions once we note that 7;(7) is nested by Tj;1(Z) for all j =1,..., R — 1.
“only if:” Let P(C = r|C > r,Tr(Z)) = P(C = r|C > r,T,(Z)) for r = 1,..., R. Therefore,
P(C =1|Tr(2)) = P(C =1|C > 1,Tr(Z)) = P(C = 1|C > 1,T1(Z)) = P(C = 1|T1(Z)). Now,
suppose that P(C = j|Tr(Z)) = P(C = j|Tj(Z)) for j = 1,...,r for some r = 1,..., R — 1. This
will imply that P(C =r+ 1|Tr(Z)) = P(C =r + 1|T;4+1(Z)) because:
P(C=r+1|Tr(Z)) = P(C=r+1,C>r+1|Tr(2))

= P(C=r+1|C>r+1,Tr(Z)P(C > 1+ 1|Tx(Z))

= P(C=r+1C>r+1,Tr(Z 1—213 = j|Tr(Z))

= P(C=r+1C>r+1,T(Z 1—ZP = j|T3(2))

= P(C=7r+1C>r+1,T41(2))P (02T+1|Tr( )

= P(C=r+1T4+1(2))
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where the first three equalities follow by definition, the fourth equality follows by the assumed
conditions, and the last two equalities are simply the reverse steps of the first three equalities coupled

with the fact that T;(Z) is nested by Tj11(Z) forall j=1,...,R—1. =

A4. The equivalence relation in the planned incompleteness condition in (2)
Lemma 10 Let (1) hold and also P(C = r|Tr(Z)) > 0 for each r =1,...,R. Then, P(C =r|C >

r,T.(Z)) is known for r =1,..., R if and only if P(C = r|T.(Z)) is known forr =1,...,R.

Proof: The proof follows by induction exactly like the proof of Lemma 9. For the “if” part, when

showing that the result holds for » + 1 assuming that it holds for j = 1,...,r, we have:

P(C =r +1|T141(2))
1- 57 P(C = j[T;(2))

P(C=r+1C>r+1,T1(2) =

as before due to (1). The RHS is known by the assumed conditions. Hence the LHS is known.
For the “only if” part, when showing that the result holds for » + 1 assuming that it holds for

7 =1,...,r, we have:
P(C=r+1|Tr41(Z2)=P(C=r+1C>r+1,T,.1(Z 1—ZP = j|Ty(2))

as before due to (1). The RHS is known by the assumed conditions. Hence the LHS is known. m

Remark: At this stage, it is important to list two useful relations that are both related to the steps

in the proofs of Lemmas 9 and 10, and also used repeatedly in the proofs in Appendices A and B.

Relation 1: (1) implies that
P(C >r|Tr(Z)) = P(C > r|T,—1(Z)). (18)
This follows by noting that:
P(C >2r|Tr(2)) = 1- ZP = j|Tr(Z))
= 1- ZP = j|T;(2))

-1 ZP(C — jITr1(2))

= 1-P(C<r—1T,_1(2)) = P(C > r|T,_1(Z2))
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where the first equality follows by definition, the second by (1), the third by (1) and the nested
structure of T;j(Z)’s, while the fourth and the fifth by definition.

Note that, taking R = 2 in (18) implies that P(C = 2|T>(Z)) = P(C = 2|T1(Z)), the conven-
tional MAR assumption found in the econometrics literature that has traditionally focused on
R =2 [see, e.g., Chen et al. (2005), Chen et al. (2008), Graham (2011), Graham et al. (2012)].
Looking at the complement events in (18) equivalently gives (18) as P(C < r — 1|Tr(Z)) =
P(C <r—1|T,_1(Z)), which perhaps better indicates the generality of the selection on variables
condition in our paper that can accommodate for all sorts of dimension reductions including

the extreme reduction CMAR in (10) and the no reduction in Barnwell and Chaudhuri (2018).

Relation 2: For any function v(Z) such that E|v(Z)| < oo, (1) implies that:

I(C=r) _ P(C>r|Z) _ [P(C >r|T(2)) B
b [P(C 2 7“|Tr(Z))V(Z)] B [P(C > r|Tr(Z))V(Z)} - [p(c > r\Tr(Z))V(Z)} = E[v(2)](19)

where the first equality follows by the law of iterated expectations and the second one by (1).

As a consequence of (18), one can instead write (19) as:

I(C >7) _p| PC21T(2) ] _
[p(o >t 2)" )} =F [P(o > 1T1(2)) (Z)} -

P(C >7r|T,-1(2)) o
[P(C > r!Tr_l(Z))V(Z)} = Elv(2)].

A5. Intermediate steps in equation (4)

- :p(CP ?nyenigzw - CI <:CR=| TI?( 77" ﬁ)]

= :P(C;JECAg 1;;2)) {P(CI (chIITZ)(Z)) TR(Z)} e 5)]
- [P 55

- E Ii((gii))m Z;ﬁ)}

— Em(Z8)|C € Al

The first and third equalities follow by the law of iterated expectations, and the rest by definition.
Importantly, note that, the MAR condition in (1) and the planned incompleteness condition in (2)

are not required for this relation in (4) to hold. However, as noted in the discussion around equations

(1) and (2) that led to (4), the MAR condition in (1), in particular, is required to implement this

relation in practice for the estimation of 8 by the IPW or the efficient estimator.
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A6. Relation of the framework in Section 2 with closely related technical papers

We delineate the framework in Section 2 from the following not-too-old representative examples under
the non-Bayesian paradigm. (a) Whittemore (1997) considers maximum likelihood and Horvitz-
Thompson estimators with data obtained by multi-phase sampling (and seems to prefer the latter)
where the target is the full population, i.e, A = C. (b) Robins and Rotnitzky (1995) and Holcroft
et al. (1997) consider optimally using all the sub-samples under a framework similar to ours but
with A = C. (c) Lee et al. (2012) consider efficient semiparametric likelihood-based estimation with
A = C in multi-phase case-control studies when Tr_1(Z) has a finite number of support points. (d)
While the multi-valued treatment framework with A = C considered in Cattaneo (2010) is generally
related, it also differs in an important way because we actually allow the entire random vector Z
to be the argument for each element of the vectorial moment function m(Z; ), and thus for each
element there can be R levels of hierarchy in observability. This creates a major difference in terms
of efficiency bounds, efficient influence functions, etc., and is discussed in details in Chaudhuri and
Guilkey (2016) (p. 686). (e) Dardanoni et al. (2011) consider a multiple regression framework
with regressors missing non-monotonically under an assumption that implies that the regression
coefficients do not vary across the populations of the sub-samples. So, they focus on A\ = C and,
unlike in our paper and the references cited in (a)-(d) and (f) (below), use of their complete sub-
sample without correction for selection does not cause any bias in estimation.'® Similarly, if one
extends Abrevaya and Donald (2017) to the case of multiple incomplete sub-samples, then each
sub-population would still be representative of A = C. (f) Finally, Chen et al. (2005) and Chen
et al. (2008) consider frameworks where ) is defined exactly as in (3) for R = 2 and A = {1}
(sub-population) and {1,2} (full population).

By contrast in one way or the other to (a)-(f), our setup: (i) allows for a general R, (ii) expands
the scope to all (2 — 1) sub-populations (including A = C), (iii) introduces a dynamically updated
sampling design via MAR, and (iv) provides the new insights available only from letting R > 2.

In this regard, it is also important to recall that the references in (d)-(f) above or the well-known
sampling designs like the SQD, PQD, etc. noted in Appendix A.l either do not consider or do
not have the scope to consider a key feature of our framework, namely, sampling designs that are

dynamically updated using the newly available information from more than one phase.

18Bias arises due to problems with the imputed values if the same estimation is done in the incomplete sub-samples by
replacing the missing regressors with their imputed values. To improve the precision of the unbiased estimator based on
the complete sub-sample, they recommend Bayesian model averaging using the unbiased and biased estimates. While
this approach should be very useful in many cases, it is a difficult proposition to compare it with the results in our
paper and the other references here that all solve a different optimization problem: minimize asymptotic variance for
asymptotically unbiased estimators. We thank a referee for pointing out this useful reference that we had missed earlier.
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A7. Intermediate steps for Remark 1 following Proposition 1

When R =2 and A = {1,2}, (5) and (6) give:

o 1C=2) . I(C>1) 1(C = 2) .
P12 (08) = T2 9) + (gt — ) ElnlT(2) AT (2)
__ Ie=2 , . I(C=2) . '
—pw:mz@»<ﬂwwﬂ+0 pw:mﬂw»>M(B@MMﬂ@H
__IC=2) | | |

where the second equality follows from (18). The last line is the expression from Chen et al. (2008).
When R =2 and A = {1}, (5) and (6) give:

e (0;8) = m(T>(Z); B)

¢21) I(C=2) P(C = 1|T5(2)) .
* (P C>1|T(2)) PC= 2,T2<Z))> B [ P(C :21) m(Tz(Z),B)‘TﬂZ)]

B I(C=2) P(C=1Ty(2))
= P(C=2T(2) P(C - 11) m(T2(2); )
I(C = 1\T1 Z)) .
I m(T:(2);5)| Tu(2)]
__I(Cc=2? (—uT ) |
= Fo—an@) Pe=1  M@2) - Em(B(2): HIT(2))

P(izlLTigz))E[m(TQ(z); B)IT(Z)]

where the second equality follows from (18) and (1). The RHS of the last equality is the expression
from Chen et al. (2008).

AS8. Proposition 2’s connection with the calibration and econometrics literature

The idea behind using the moment restrictions in (9) to augment the moment restriction (8), that
already identifies [32 and can be used to obtain a \/n-consistent estimator [see, e.g., Wooldridge
(2007)], and thus achieving efficiency gains is the same as the idea of calibration in the survey
sampling literature [see, e.g., Deville and Sarndal (1992)]. The same idea, in more economics-centric
ways, has appeared in the econometrics literature also: see Back and Brown (1993), Imbens and
Lancaster (1994), Hellerstein and Imbens (1999), Devereux and Tripathi (2009), Tripathi (2011),
Graham et al. (2012), etc. or Hellerstein and Imbens (1999), Nevo (2003), etc. in another context.
To see the connection, first note that under our setup this means estimating 59 by solving for

from ", wivrA(0i, ) = 0 where w; = I(C; = R)/P(C = R|Tr(Z;)) = wrpw,, say, (instead
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of 1/n to reflect the non-representativeness of the complete sub-sample) if only (8) is used. On
the other hand, if the calibration/augmenting/auxiliary restrictions in (9) are also utilized, then
w; = Wrpw, + Zf:_f ar,; where some appropriate (and complicated) set of random functions a,;’s.
For example, if R = 2, then a1; = wipw; Y, (T1(Z:)) (X271 Ty (T1(Z5)) T, (T (Z;) S, (1 —
wrpw) Yk, (T1(Z;)) where Y, (T1(Z)) is a K1 x 1 vector of some possibly orthogonalized series of
functions (e.g., power series, splines, etc.) of T1(Z) with possibly K1 — oo as n — oo [see Graham
et al. (2012)]. One could instead use w; = w;/ > ;w; as the weights so that they necessarily add
up to one. However, there is no guarantee that w; € [0, 1] for all ¢ (indeed it can be outside [0, 1]
for all 7), which is not a desirable characteristic for weights. We do not pursue corrections for this

undesirable characteristic of the weights since they are peripheral to the main message of our paper.

A9. The importance of the planned incompleteness condition (2) in Proposition 2

This importance becomes evident when the target is not the full population. Consider R = 2 and

A = {1}, and note that Proposition 2 gives:

013(0;8) = Projg, (¢2.1(0; B) ¢1) = ¢2.1(0; ) — Projp, (¢2.4(0; B)] 61)
(Cc=2 PC=1T(2)
@) pc=1 "%

P S Elm(Zi AT (2)] (1€ =) - P(C = 2T (2)

(C=2) PC=1Ti(2))
(

(m(Z; B) — Elm(Z; B)|T1(2)])

On the other hand, it is known from Case 1 in Theorem 1 of Chen et al. (2008) (or plugging in R = 2
and A = {1} in our Proposition 5, or, equivalently, Barnwell and Chaudhuri (2018)’s Proposition 1)

that the corresponding quantity without (2) would be:

PI0) = pri g e (22 ) ~ Elm( 2 T (2)
+ ﬁgjmm@ 8)IT1(2)]

Of course, ¢(1}4](O; ) # ¢(13(0; B), i.e., Proposition 2 does not generally apply when targets are

sub-populations unless the planned incompleteness condition in (2) holds.
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Appendix B: Proofs of the main results in Section 2 and 3

The proofs of Propositions 1, 3, 4 and 5 all involve obtaining the semiparametric efficiency bound
and the efficient influence function, under different assumptions, following the three steps in Chen
et al. (2008). Step 1 characterizes the tangent set for all regular parametric sub-models satisfying
the semiparametric assumptions on the observed data. Step 2 obtains the efficient influence function
for a given rotation of m(Z; 3). Step 3 obtains the optimal rotation and, thereby, gives the efficiency
bound as the expectation of the outer product of the efficient influence function. f and F' denote
the density and distribution functions, and the concerned random variables are specified inside

parentheses. L(Z) (F') denotes the space of mean-zero, square integrable functions with respect to F.

Proof of Proposition 1:
STEP - 1: Consider a regular parametric sub-model indexed by a parameter 6 for the distribution
of the observed data O = (C', T/ (Z))’. The log of the distribution can be expressed in terms of the

full data (C, Z’)" as:

R R

log fo(0) =1log fo(Z))+>_ I(C = r)log fo(Z)|Z), -, Zir-1))+D_ I(C =1)log P(C = r|Z), ...

r=2 r=1

To reflect our condition (2), i.e., P(C = r|Z,...,Z() is known for r = 1,..., R and hence need
not be accounted for in what follows, we do not index them by #. As in the proof of Theorem 2 in
Chen et al. (2008), these quantities do not play a role in the proof of the present proposition and
this is in contrast to the proof of our Propositions 4 and 5 where they are going to be key quantities.

6o is the unique value of 6 such that fy,(O) equals the true f(O), and accordingly for all the

quantities. The score function with respect to 6 can be written in terms of (C, Z')" as:

R
So(0) = s9(Z1y) + > _I(C > 1)s9(Z(r)| Z(1ys - -+ Zr—1))

r=2
where 89(2(1)) = % IOg fg(Z(l)) and SH(Z(T)‘Z(l)a ceey Z(rfl)) = % log fg(Z(r)‘Z(l), oo 7Z(r71))- We
will omit the subscript 8 from the quantities evaluated at # = 6. The tangent set is the mean square
closure of all dg dimensional linear combinations of Sp(O) for all such smooth parametric sub-models,

and it takes the form:
R

T = al(Z(l))+ZI(CZT)G/T(Z(I))""Z(T))) (20)
r=2

where a1(Z(1)) € L§(F(Z1)) and a,(Zqy, - -, Z(y) € L§(F(Z)| Zaays - -5 Zir—1)))-

STEP - 2: The moment conditions in (3) for a given A\ € A are equivalent to the requirement
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that for any dg x d,, matrix A, the following just-identified system of moment conditions holds:

P(C e NZ) I(C=R)
P(C e\ P(C=R|Z)

AE[m(Z; B3)|C € N = AE m(Z; 83)| =0

where the first equality follows from (4). Differentiating with respect to 6 under the integral, and
noting that P(C' € A|Z) (which is known) does not depend on 6 but P(C' € \) (which is unknown)

does, we obtain by using (3) and (1) that:

93 (6o)

BT Cell.

OZAM)\ + AFE

R
m(Z; B3) { )+ s( Z(r)|Z(1),-~,Z(7«_1))'}
r=2

Taking a full row rank A along with assumption (A3) gives:

983(%0) _

T —(AM,)*AE

Cell.

WE

m(Z7 Bg\)) {S(Z(l))/+ S(Z(T)’Z(l)aaz(r—l))/}

[|
)

T

Therefore, for the given A, any regular estimator for ﬁg will be asymptotically linear with influence
function of the form —(AM,)~tAm(Z; 3Y).

Now, for the given A, we can obtain the projection of this influence function on to the tangent
set T in (20) if we can find a (A, O) € T such that:

953 (6o)
o0

E[(A,0)5(0)] = (21)

Let us conjecture that ¢(A4, 0) = —(AM,) " Ap,(0; 8Y), and then verify (21) by equivalently show-

ing that:

E[px(0; 80)5(0)] = E Cel.

R
m(Z; 53) { Z(1)/+ZS "7Z(7"—1))/}
r=2

Consider the left hand side (LHS) and, in accordance with the partition of ¢)(O) (we work with the

alternative specification in (7) for convenience), write it as 25:1 B, where, for ¢ =2,..., R:

I(C > q)
P(C > ¢|Ty(2)

By:=E [0, (05 83) — 0q-1.2(0; B3)] S(O)' |, while By := E [1,,(0; 83)S(0)'] .

To avoid notational clutter, in the rest of STEP-2 we write m(Z; ﬁg) asm; Ty(Z) as Ty; wg 2 (O; ﬁ?\)

as pgx for ¢ =1,..., R; and also write s(Z,)|Z1y, ..., Z(—1)) as s(Z(y|[Tr-1) for r =2,..., R.
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Now, note that:

P(C € )\’TR)

BI:E[E{ P(CeN

o]+ S5 o[ E 20

Using MAR in (1) in the first equality of the last line below and the fact that s(Z)|T,—1) €

T1:| I(C Z ’I”)S(Z(T)‘Tr_l)/

L§(F(Z()|T,-1)) for 7 > 1 in the last equality of the last line below, we obtain that:

R B B -
ZE FE mm Ty I(C > T)S(Z(r)|Tr—1)/:|
r=2 L |

R r -
ZE ) mm T (1 — I(C <r-— ]‘))S(Z(r)|Tr1)/:|
r=2 L ]

R 1 [P(C e ATR)
>EE | Teen

m Tl- E[(l - I(C S r— 1))|Tr_1]E[S(Z(T)|T7«_1)/|TT_1]:| = 0.

This is the first observation. On the other hand, since T := Z(1), we have the second observation:

o2 [Ty | n) ] =2 [ ] = £ g sy

Combining the two observations it follows that By = E[ms(Z))'|C € A].

Now, we consider B,. (1) gives for ¢ =2,..., R:

K R
Z [é?;fj)“)(‘pm o @q—l,A)S(Z(T)‘TT—l)/:| +Z_: E [P(Iégzqqu)“%,)\ - SDq—l,A)S(Z(TﬂTT_l)/} .

Since Elpga|Tq—1] = @q-1,», it follows by conditioning on T,_; and from (19) that the first term on
the RHS is 0. On the other hand, (18) and the fact that s(Z()|T,—1) € L§(F(Z|T,-1)) imply that

the second term is:

I(C<r-1)
ZE el (s — a1 )s(Zi | = Bleass(Zig Taca) = Blms( 2 T,-1Y1C € 3,
Therefore, By = E[ms(Z|T;-1)'|C € ] for ¢ =2,..., R, combining which with B; verifies (21).

That ¥(A4,0) € T follows from matching terms as follows. (i) —(AM,) 1A , is only a function
of T := Z1y and E[p1,3] = 0 and, hence, satisfies the properties of a1(Z(;)) in (20). (ii) The r-th

term (r = 2,..., R, without the multiplier I(C > r)) on the RHS of ¥(4, O) can be written as:

1 1

PO > 1T (AM) " Alprn — @r—1] = PC<r—1T,) (AM)) ™" Alprn — pr_1]
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by (1) [also see (18)]. Hence, by definition of ¢,, taking expectation of the RHS of the above equation
conditional on T,y := (Z(y), .. -, Z(r,l))’ gives 0. Therefore, this term is only a function of 7, that
is also in L(Q)(F(Z(,,)|Z(1), -+, Z(y—1))), and hence satisfies the properties of a,(Z(y),. .., Z(,)) in (20).
STEP - 3: For a given A, we verified that the projection of the influence function —(AM)) =t Am(Z; Bg)
on to the tangent set T is (A4, 0) := —(AM,) " Ap,(0; ). The asymptotic variance of 1(A4, O)
is (AMy)~*A Vy A'(AM,)~" where V) := Var (eA(0;8Y)) = E[pa(0; 8 ¢r(0; 3)]. Therefore,
the efficient influence function is obtained by minimizing the above variance with respect to A.
Standard arguments give that the minimizer is A, = M j\V)\_l. Hence, the variance lower bound is

Q)= (M /’\V)\*lM %) ! and the efficient influence function with variance equal to the variance lower

bound is ¥(A., 0) = — MV, 1pr(0; 89). m

Proof of Proposition 2:

Let us start with » = 1, i.e., the residual from the projection, WojTRf1 (¢rA(B)| #R-1), inside
the innermost parenthesis on the RHS. We will also consider » = 2 so that the pattern in the form
of the residuals from the successive projections inside the first few innermost parentheses is clear to
all. Then we apply induction arguments. For brevity, write ¢ A(O; ) as ¢r  and T,.(Z) as T;.

First, note that direct computation and (1) along with (18) give:

IC=R IC>R-1
PrOjTR—l ((Z)R,A(/B” (Z)R—l) = P(C(1 — R|7)~vR) - P(C(Z ;_ 1|TI'21) E[QDR,)\|TT‘—1]7

which implies that:

- I(C =R IC>R—-1
Projr,  (0rA(B)| ¢r-1) = P(C(:R|T)R) (erA — ElprA|ITR-1]) +P(C(> ;_ HT;_I)E[SDR,AlTR—ﬂ-

Consider the under-braced part in the RHS of the expression for Projr, | (¢r(8)| #r-1). Using
Tr 1 \TR_Q = Z(Rfl) and (1), note that F [(‘PR,)\ — E[QOR”)\|TR_1]) ¢R—2|TR—2] is a d,, X 2 matrix
of zeros, and hence has no contribution in the successive projections. (Terms with no contribution

in the successive projections are marked by under-braces in this proof.) On the other hand,

I(C>R-1) P(C =R —2|Tg_o)

ElpralTr-1]0r—2| Tr—2| = ElpralTr-2].
[P(CZ R—1|Tp_1) [orATr-1]0R—2| TR 2] P(C > R— 2T ) [orA|TR-2]
Thus, similar computation as above (and the use of (18)) gives for r = 2:
. = I(C>R-1) I(C>R-2)
P P - ‘ -2) = - E Tr_
I0)1y_, ( YO)1,_4 (¢R,>\(5)| ¢r 1) R 2) [P(C SR_ 1|TR_1) P(C SR 2|TR_2) [‘PR,A| o 2]’
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which implies that:

Projr,, , <WOJ.TR,1 (orA(B)] ¢R—1)‘ ¢R—2)

I(C>R-5)
P(C Z R—8|TR_5)

I(C>R-2)
P(C > R—2[Tg_s

(ElorATR—s] — ElopA|TR-s-1]) +

] ElprA|Tr-2]-

1
s=0
To prove the proposition by induction, let us assume that the following holds for a general

re{2,...,R—2}:

Projr, . ( . Projr,  (¢r(B)|¢r-1) .. ’ ¢R—r>

I(C>R-r)
(C > R— T‘TR—’I‘)

- EgpxﬂjzR—s) (BleraTh-s] = ElpralTr-s-1]) + 5 ElprlTr_r)-

C Z R— S‘TR_S)

Now, once again using (18), note that:

P(C > R - T|TR_7~)P(C =R—r— 1‘TR—7‘—1)
P(C > R—1r— 1‘TR_7‘_1) ’

B¢}y 1|Tr-r-1] =

and

E[Projr,, ( . Projp,.  (¢r(B)| dr-1) - ‘ ¢R—r> ¢rR—r—1|TR—r-1]
P(C=R—r—1|Tp_r_1)
P(O > R—r— HTR—r—l)

[orATR—r—1]-

Hence, the proof follows by indiction since the form is also valid for r + 1, i.e.,

Projr,_,_, (- Projr,., (6rA(8) r-1) .| 6rr-1)

r

I(C>R-s)
; P(C >R — S|TR78) (E[()OR,)\’TRfs] - E[SOR,)\‘TRfsfl]) + Iz

I(C>R—-r—1)
(CZR*T*”TR,T,l

] ElorA|Tr—r-1]-

(ii) The proof follows in the same way as that of Theorem 1 in Chamberlain (1992) or, more
generally, as that of Theorem 1 of Ai and Chen (2012). Appendix C1 makes the connection with Ai
and Chen (2012) explicit. m

Proof of Proposition 3: This proof follows in the same way as that of Proposition 1. The efficient

influence turns out to be exactly the same as in Proposition 1 if CMAR is imposed on the latter. m

We present the proofs of Propositions 4 and 5 in reverse order because the latter makes a reference
to the former. Also, since the proof of Proposition 1 already considered the case d,, > dg in detail,

for brevity, we now take d,, = dg and primarily focus on the verifications involved in Step 2.
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Proof of Proposition 5:
STEP - 1: Consider a regular parametric sub-model indexed by 6 for the joint distribution of
the observed data O = (C,T(/(Z)). Because of CMAR in (10), the log of the distribution can be

expressed in terms of the full data (C, Z")" as

R R
log fo(0) = > I(C =r)log Py(C = r|Z1)) + > _I(C >r)log fo(Zn)| Z 1y, - - » Zir—1)) + log fo( Z(1))-
r=1

r=1

Let the true distribution be f(O) = fp,(O) for some 6y. Using the same notations as before, the

score function with respect to 6 can be written in terms of (C, Z’)" as

R R PQ(C:T‘Z(U)
$0(0) = $0(Zw) + 21O 2 1pso(Zp| 2wy - Zon) + 21O =) a3

where Py(C = r|Zy) = %Pg(C = r|Z(1)). Thus, the tangent space is characterized by functions of

the form:

. R
br(Zl )
T o= ax(Zw) + 3 1(C 2 Mar(Zay-- 1 ) + 2 1(C = g s,
r=1 "

r=2

(22)

where al(Z(l)) S L%(F(Z(l))), ar(Z(l),...,Z(T)) S L%(F(Z(T)‘Z(l),...,Z(rfl))) for r = 2,...,R;

br(Z
S b (Zy) = 0, S8 00 (Zy) = 1, and YF T(C = )i € L3(F(C1Z)).

To avoid notational clutter, in the rest of the proof we write m(Z;33) as m; T,(Z) as T, for

r=1,..., R; and also write s(Z(,y|Z(1), ..., Z(r—1)) as 8(Z(|T;—1) for r =2,...  R.

Unlike in Chen et al. (2008)’s proof we use the same factorization of the joint density of O for
all A. For a given A € A, the following relation obtained by two different factorization of the joint
distribution of (I(C € ), T1(Z) = Z(1)) helps us to switch between different factorizations:

P(C e ) (¢ )\)P(C ¢ ATh)
P(C € NTy) P(C ¢ \Th)

P(C e\
P(C e\

s(Th) + I(C € \)

= I(CeN +S(T1|C e N| +1(C ¢\ mﬂ(mcw) (23)

STEP - 2: [d,, = dg] Differentiating (3) with respect to 6 under the integral:

953 (6o)

BTl Cell.

-1
= -M;'E

R
m{ T1|C€)\/+ZS Z(r |Tr 1 }
r=2
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Then, as in the proof of Proposition 1, here we will need to correspondingly verify that:

Bl (0: 8)S(0) = E Cenl. (24)

R
{ T1’C€A/+ZS Z(r)‘Tr 1 }
r=2

We do this term by term for <pC[MAR(O 15} )\) and show equality of the terms on the LHS and RHS.
Consider the first term of @S%AR(O; BY). Since s(Zy|Tr-1) € L§(F(Z(y|Ty—1)) for r =2,...,R

by definition, we can use (10) to take conditional expectations and then write

g|1CEN E[m\TﬂS(oy]

P(C e \)
)

/ R P(C = r|T)
_ & mE[m|T1] {S(TO +ZI(C - T)m

_ | €A . ) P(C e \Ty) ,
= P\ pce )\)E[m|T1] {P(C =Y +s(DC e X - P(C e )\|T1)}

where the third line follows by using (23) to replace s(T3). The last line follows since, by using (10),

C:T|T1) _ ZP _T’Tl P( :T“Tl)

I(C e /\)XR:I(C = T)P(i T
v P(C=rT)|" g P(C = r|Ty)
= Y P(C=r|Ty) = P(C e NTY).
rEA

Hence, now by repeatedly using (10) (e.g., first term on RHS of second equality) we obtain that:

| ey BTl

(C e N
P(C e A)
P(C e \Ty)
P(CeN)
P(C e\
P(C e )
= 0+ E[ms(Ty|C € \)|C € \]+0 (25)

— E[E[m|T1]|C € N 52 + E [E[m|T1]s(T1|C € A)'|C € A]

P(C S )\‘Tl)/

- P(C e\

Elm|T] + E | E[m|Ty]

= E[m|C e ) + E [Em|Ty]s(T1|C € A)'|C € A] +0

where the first zero in last line follows from (3). The second term follows by using (10) and noting that
E[Em|Ti]s(Th|C € N)|C € X] = E[E[ms(Th|C € N)|T1,C € N||C € X\] = E[ms(T1|C € X\)|C € Al

Now consider the r-th term of QDS[IZI]AR(O; ﬁg) for r = 2,..., R. By taking expectation conditional
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on T,—1 = (Zny,- -, Z(—1)), and using (10) we obtain that:

_P(C S )\|T1) /
[P 208 i) Bl )50
_ R
= F ]DJ(DCEC?E)\’)\Z)I)(E[mVTr] = Elm|T,a]) Y s(Z(5)|Ts)
[I(C € N , :
- E _WE[m\Tr]S(Z(r)!Tr—l)]
= E[ms(Z)|T,-1)'|C € A] (26)

by using that s(Zy)|Ts—1) € L§(F(Z()|Ts-1)) for s =r,..., R by definition, and by (10).
Therefore, (25) and (26) verify (24). That @E%AR(O;ﬁg) belongs to 7 in (22) can be shown as
follows. (Recall that, in light of the proof of Proposition 1 we are now letting d,,, = dg for brevity.) (i)
Match the term a(Z(y), ..., Z()) in T with the r-th term of QDS%AR(O; BY) for r > 1. (ii) Distribute
the first term s(Z(;)) in 7 according to the relation (23) and match the term I(C € \)s(Z(1)|C € ))
with the first term of gpg[lq\f]AR(O; 3Y) while keeping in mind that, by definition, s(Z;)|C € \) €
LA(F (Z1)|C € N)). It is straightforward to verify that all the corresponding conditional expectations,
as required by the definition in (22) and also (23), are zeros. Rest of the terms in 7 (including the

one due to the distribution of terms in (ii)) are represented in @SMI\/I]AR(O; 3Y) by zeros. m

Proof of Proposition 4: The references in the steps of this proof are to mainly to that of Propo-
sition 3 (i.e., effectively to that of Proposition 1) and to that of Proposition 5. To avoid notational
clutter, when convenient, we write m(Z;3Y) as m; T,(Z) as T, for r = 1,..., R; and also write
s(ZlZay, s Zr—1y) as s(Zy|Tr—1) for r=2,..., R.

As before, we obtain the score function for a parametric sub-model indexed by 6 as:

& —r — Ty A0) §AON
Sp(0) = s9(T1) + Y _I(C = 1)s9(Z()|Tro1) + Y Pé.((;‘cz_rﬂ)}) <8P(C 67”T1’7 wgé/) .

r=2 r=1

Recall that S,(C|T1) := 25:1 %%P(C = 7|T1;7%). Let b denote constant matrices of
dimension same as that of %?. Then, the tangent set for the model is characterized by the set of

functions:
R

T :=a1(Th) + V'S, (C|Ty) + Y _I(C > r)a,(Ty),
r=2

where a1 (1) € L§(F(T1)), S4(C|T1) € L§(F(C|T1)) and a,(T;.) € L§(F(Z(|Tr-1)).

Recognizing that P(C = r|Ty) = P(C = r|T1;7") is known up to the finite (d,) dimensional
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parameter ~, alters the relationship in (23) as follows:

o % P(C € NT1i;7) 5 P(C ¢ NTi;7°)
M)+ 55 | CeEN=Feaam TN s
— [(Cen ]Jjggii; +s(MICeN| +1(C ¢ N igg;i; +S(TU|C ¢ N)

As before, differentiating (3) (equivalently, (4)) under the integral with respect to 6, and using

the above relationship give:

93 (6o)

o0
= e |PCD, S szt | - w220 ST 00
- A P(Cen M\TVY TEAAmE A TR R e ey oo

Therefore, utilizing the expression of the efficient influence function in Proposition 3 and its relation

to that in Proposition 4, the verification of pathwise differentiability boils to verifying that:

2 P(C € A\[Ti;7°) 940
P(Cer oo

B |1 (G BImIn(2)|5,(CIT(2))) 5(0) | = £ | BT

P(C e\

Note that E [SV(C|T1) {s(Tl)’ + Zf:z 5(Z \Tr,l)’H = 0 by using (term by term) that E[S,(C|T1)|T1] =
0 for term one; s(Zy|Tv-1) € L§(F(Z(|Ty—1), and then using (10) for the rest. Therefore, in the

above equation (that contains the equality relationship to be verified), the LHS simplifies as:

[ (I(CeN )] 97°
B I(C e\ )] 07°
- | pG e Emims, cny| 5
B R _ _ . A0 0
_ p|iCen [Ty I(C=r) oP(C=r|T1;7")| Iy
P(C e\ — P(C=rlTh) oy 06’
I P(C = r|Ty) OP(C = r|Ty;7°) | 97°
= b (P(Ce /\)E[mm] < P(C =r|T) o' o6’
1 OP(C € NTy;7°)] 97°
- E E
e oy a0’
— RHS. m

Proofs of Corollary 6, 7, 8: Straightforward but tedious manipulations of the results of Proposi-
tions 3 and 5 give Corollaries 7 and 8 respectively [see Chaudhuri (2014) for the proof of the latter].

Corollary 6 follows by imposing INDEP on the result of either Proposition 3 or Proposition 5. =
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Appendix C: GMM estimation of ) defined in (3)
C.1 This GMM estimation is a special case of Ai and Chen (2012)

Recall that Proposition 2 shows that under (1), (2) and assumption A, the efficient influence function
and the efficiency bound for the estimation of 8 based (3) are identical to those based on the
sequential moment restrictions (8)-(9). This is why we noted in Section 4 that the efficient GMM
estimation of 59\ can be performed simply as a special case of the optimally weighted orthogonalized
sieve minimum distance (SMD) estimator proposed by Ai and Chen (2012) in a more general context.

To see the connection with Ai and Chen (2012) more clearly, note that our unconditional moment
restriction in (8) corresponds to equation (1) in Ai and Chen (2012) with their conditioning variable

X @ taken as a constant. Now, the simplifications for our setup follows because, unlike Ai and Chen

(2012), we do not have any unknown nuisance parameters (thanks to (2)) and because in our setup
B only enters the unconditional moment restrictions. That is, in our setup the moment restrictions
in (9) turn out to be truly auxiliary whose sole purpose is to assist in obtaining efficiency gains.

This results in equation (10) of Ai and Chen (2012) (using their notation) to become:

ap = ingE{ml(X“),a)’zm(X(l))*lml(X(l),a)}, (27)
ac
where mi (XM, a) = E [al(Z, a)|X(1)} =Ele1(Z,a)],
Sor(XM) == E [61(Z, ap)e1(Z, OCO)I\X(U} = E [e1(Z, a0)e1(Z, o0)']
ie.,
—1
a = inf E[s1(Z.a)] (B [a1(Z.a0)e1(Z.ao) IXV]) T Ela(Z.a)).

Now, note that €1(Z, «) is Ai and Chen (2012)’s sequentially orthogonalized moment vector, i.e.,

e1(Z,a) == p1(Z;a) ZF“ (t) )ee(Z, o)

where ep(Z; ) := pr(Z,a) and for t =2,...,T — 1, ¢,(Z, ) are the orthogonalized residuals:

e(Z,a) = Z Iy (X 55 (Z, ),
s=t+1
-1
where T (X®) = E[pt(Z;ao)Es(Z;ao)/|X(s)] (E [63(2;040)55(2;(10)/‘)((8)})
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Therefore, thanks to our Proposition 2, £1(Z, ) and Xo;(X™) in Ai and Chen (2012) are our
o (0; B) and Vy, := Var(px(0; B°)) respectively. Accordingly, the optimally weighted orthogonalized
SMD estimator in equation (11) of Ai and Chen (2012), that is based on the sample counterpart of
(27), is identical to the GMM estimator that uses the average estimated ¢, (O; ) as the moment
vector and an estimator of V>\_1 as the weighting matrix. We say “estimated ¢)(O;3)” because, as
is clear from the definition of £1(Z, a) entering m (X, a) := E[e1(Z, a)], this contains unknown
conditional expectations (covariance and variances) as nuisance parameters that need to be estimated
and, thereby, profiled out from the criterion function of the estimation of the parameter of interest.

The purpose of Section C.2 and C.3 below is to point out with some details that under this special
case of Ai and Chen (2012) that is our setup, a key feature of ¢, (O; ) provides practically useful

flexibility in the parametric or nonparametric estimation of these nuisance parameters.

C.2 Estimation framework and the key feature

To consolidate notation following Chen et al. (2003), and guided by (6), define a d,,, x 1 function:

1(C = R) Rl I(C >7) I(C>r41)
9(0; B,h(B)) := P(C = R|Tr(Z ))QOR’\ (0:6) +; [ P(C>7T.(2)) P(C>r+1T41(2)) )
(28)

where h(B8) = (h}(8),...p_1(B))" are the unknown nuisance parameters, and h,(8)’s belongs to a
class of functions (Z, 3) ++ R call it H,.(8), forr =1,...,R—1. Let H := {H1(B) x...xHr_1(B) :
B € B} be a vector space endowed with a pseudo-metric |||, which is the sup-norm metric with
respect to the argument [ and a pseudo-metric with respect to the other arguments.

9(0; B,h(B)) = ¢a(O; B) defined in (6) if h.(8) = ¢, A(O0; ) for r = 1,..., R — 1. Denote the
true h,(8) as h2(B) := p,A(O;B) for r = 1,...,R — 1. While this suggests restricting h,(3) as
(T,(Z),B) — R for r = 1,..., R—1, it turns out that letting h,.(3) instead be a function of Z and
B does not affect either consistency or asymptotic normality of the GMM estimator defined below.

In light of this discussion, now define the GMM average moment vector and its expectation as:

Gn(B, Zg 5B, (M3(B), - Wp—1,4(B))') and G(B, h(B)) = E [Gu(B, h(8))]
Then, given any standard parametric or nonparametric estimator ﬁ(ﬁ) for h(B) and any d,, x d,
symmetric weighting matrix W,, (possibly efficient), the GMM estimator 3y(W,) of Y is defined as:

~

BA(Wn) = argmin Gy (8, h(8)) WaGn(B, h(5)). (29)

BeB
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The key feature of our setup is the identity that for any 8 € B and any h(.) € H (that need not
be h(p3)):
G(B,h(.)) = Elpra(0; B)] = E[m(Z; B)|C € A] (30)

by (4), (1) and (28). That is, G(53, h(.)) does not depend on h(.) € H. Its main implications are:

(F1) G(B8Y,h(.)) = 0 for any h(.) € H by also using (3). Also, for any 3 € B and any h(.), h(.) € H:
G(B,h()) = G(BY, h(-)) = 0 = E[m(Z;B)|C € N = B[m(Z; B)|C € A =0 «= 5= 5.

(F2) The partial derivative of G(3,h(5)) with respect to 8, denote it by Gg(B,h(5)), satisfies
Gp(B,h(B)) = M\(B) := 8%,]5’ [m(Z; B)|C € A], and it exists whenever M) () exists.

(F3) G(B,h(.)) — G(B,h(.)) = 0 for any 8 € B and h(.),h(.) € H. Thus, the pathwise derivative of
G(B, h(.)) with respect to h(.), denote it by Gx(8,h(.)), exists at all h(.) € H, in all directions

[h(.) — h(.)] for {h(.) +7(h(.) = h(.)) : 7 €[0,1]} C H, and satisfies G4 (B, h(.))[h(.) — h(.)] = 0.

(F1) helps to verify the well-separability (of the true 8) assumption for consistent estimation of 33 by
B A(Wh). It is even stronger since it indicates that ﬁ(ﬁ) need not converge in probability to the true
h9(B) but can converge to any hi(3) € interior(#) without affecting the consistency of By(Wy) for
Y [see Proposition 11]. (F2) simplifies the Jacobian formula (and its estimation) in the asymptotic
variance of EA(Wn) since it implies that Gg(8%, h(8%)) = M,. Finally, while it was already clear
from (F1) that the asymptotic orthogonality condition, Assumption N(c), in Andrews (1994) is
satisfied following his equations (4.9)-(4.11) if |h(8) — ht(8)|jx = op(1) for any hf(B) € interior(H);
(F3) is still stated in a way that makes it more convenient for us to verify condition (4.1.4) in
Theorem 4.1 of Chen (2007). (Proofs of the results stated below proceed by verifying the conditions
in Chen et al. (2003) or Chen (2007).) Hence, the asymptotic variance of By(W,) is unaffected by
the estimation of h(f) even if E(ﬁ) converges at a rate slower than Hﬁ(ﬂ) — W(B)|ln = op(n=1/4);
for example, ||h(8) — hi(B)|lx = op(1) will suffice. See Remark 2(iii) in Chen et al. (2003) and
Theorem 5 in Cattaneo (2010). The scenario is actually stronger here since we do not even require
that hf(B8) = hO(B), the truth [see Proposition 12]. Of course, semiparametric efficiency for BA(Wn)
requires that hT(8)) = h%(3)), but the rate of convergence of the consistent ﬁ(ﬁ) is still of no
consequence as far as the first-order asymptotic properties of GMM estimators are concerned [see
Corollary 13]. Naturally, all these nice implications of (30) also provide flexibility in estimating the
nuisance parameters — (i) parametrically based on misspecified models, e.g., giving linear projections
rather than conditional expectations or (ii) nonparametrically under less than satisfactory conditions

that might prevent a faster than n!/4-rate convergence of the estimator.
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C.3 Asymptotic properties of the GMM estimator in (29)

For simplicity we follow Chen et al. (2003) and write (3, h(53)) as (5, h) unless confusing. Also, define
|Al|p := \/trace(A’BA) for conformable matrices A and B. Write ||A| = ||A||p if B is identity.

Proposition 11 Let (3), (1), and assumptions (A1) and (A2) hold. Let {W,} be a dy, X dp,, positive

semidefinite matriz such that Wy, = W + op(1) where W is a constant positive definite matriz.

Assume:

(B1) ||Gn(BA(Wn)aﬁ)”Wn <infgep HGH(B,/H)HWn + 0p(1) where B is a compact subset of R ;

(B2) |[h(B)—hi(B)|ln = 0,(1) for some hi(B) € interior(H) for all B, and h(B) not necessarily equal
to hY(B);

(B3) for all sequences of positive numbers {6, } with §, = o(1),

= 1).
PRt AU wrey e B (1 51 IR e R T At

Then By(Wy) — BY = o0p(1).

Proposition 12 Let (3), (1) and assumptions A hold. Let {W,} be a d, X dy, positive semidefinite
matriz such that Wy, = W+o0,(1) where W is a constant positive definite matriz. Let 33 € interior(B)
and h1(B) € interior(H) for all B, but hT(B) not necessarily equal to h°(B). For a small § > 0 define
the neighborhoods Bs := {3 € B: || — B3| < 8} and Hs := {h € H : |h — hT(B)|% < §}. (Nothing
changes if the sup-norm with respect to 5 in ||.|y is alternatively defined to be taken locally over
B € By instead 8 € B; see Chen et al. (2003).) Let BO(Wy)—B9 = 0,(1) and |[h(8)—hT(B)[|% = 0p(1).
Assume:

(C1) NIGa(BAWa), 1) lw,, < infaes | Gn(B, 1), + op(n™"/2);

(C2) Gg(B,hl) exists for B € Bs and is continuous at 8 = B (Gs(BY, h') is full column rank by (A3)

and (F2));

(C3) for all sequences of positive numbers {9} with 6, = o(1),

ses P n R [RGB W

(C4) /nGn (89, hY) 4 N(0,%) where % := E [g(O; (8%, h1))g(O; (83, h1))] is finite.

Then, for My := M(BY) defined in assumption (A3), Ry :== M\W M), and Sy := M\WIW M,

Vi(Ba(Wy) — B3) = =Ry UMW /nG (B, hT) + 0,(1) 4N (0, RyMS\RYY).
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Remark: Propositions 11 and 12 respectively establish the consistency and asymptotic normality of
the GMM estimator defined in (29). We focus on showing how the key feature (30) helps to satisfy
some of the conditions from Theorem 1 in Chen et al. (2003) and Theorem 4.1 in Chen (2007). We
assume their other conditions. Through its condition (4.1.4), as opposed to (4.1.4)’, Theorem 4.1
in Chen (2007) broadens the scope of Theorem 2 in Chen et al. (2003). This is useful to highlight
that Propositions 11 and 12 (and the subsequent results) do not depend on the rate of convergence
R(B) = h1(B) || = 0p(1). Importantly, we allow h'(8) # h°(3) to emphasize that consistency and
asymptotic unbiasedness of B,\(Wn) are robust to the estimation of the nuisance parameters h(3)
parametrically under misspecification or nonparametrically under less than satisfactory conditions.

Thus, the theoretical results confirm the intuitions from our discussion of the implications of the

key feature, with the final bit, i.e., on efficiency, to be confirmed by the following result.

Corollary 13 Under the assumptions of Proposition 12:
(1) if W = %71 then

-1

VR(BAWa) = ) = = (M{=7100) ™ MIE T VG (83, 1) + 0,(1) % N (0, (M5=7100) ™)

(2) if, additionally, hT(ﬁg) = h9(BY) then X = V) as in Proposition 1, and letting B\A = B)\(Wn),
~ _ -1 _ d _ -1
V(B =) = — (MRV3 My) ™ MRV nGa (83, 1) +0,(1) & N (0,05 = (VM) )
i.e., by Proposition 1, the estimator ,/B\A becomes semiparametrically efficient.

Estimation of asymptotic variance: Consistent estimation of M) is simplified due to (F2) be-
cause one could completely ignore the unknown nuisance parameters and obtain an estimator by
taking analytical derivative (if it exists) or numerical derivative only for the first term of G, (5, h).
Consistency of M, A(B) for My(B) with numerical derivatives follows by Theorem 7.4 in Newey and
McFadden (1994). Also see Section 5.3 of Cattaneo (2010).

Standard conditions, e.g., g(O;; (5, h)) is continuous with probability approaching one in a neigh-
borhood N of (8Y,h") and E [sup(ﬁ,h)eNHg(Oi;(B,h))\|2 < o0 [see Lemma 4.3 in Newey and
McFadden (1994)], ensure that for any 8 = BY + 0,(1) and h(8) such that [|h(B) — hT(B)|xn =
op(1) (suffices if the sup-norm in .||y with respect to 3 is only local), the estimator ‘A/)\(B,h) =
15 9(0y; (B,h))g(Oi; (B, h)) = S+0,(1). Thus, the estimator O (B, ) := (M;(EA)@*(BA,E)MA(EA)) -
is consistent for the asymptotic variance in Corollary 13(1). If hT(8Y) = h%(8Y) then ¥ = Vj, and
now ), (B\A,ﬁ) will be consistent for the asymptotic variance €2 in Corollary 13(2). Any consistent

(for the appropriate limit) estimator (E , %) ensures consistency of all these quantities.
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C.4 One step from the IPW estimator gives efficiency

The presence of 5 in possibly highly nonlinear form in all the R additive terms of the average
moment vector Gn(ﬁ,/ﬁ(ﬁ)) should not ideally be a drawback for computational purpose. If the
GMM estimator has a closed form (e.g., Illustration 1 below) then this is not an issue. However,
if there is no closed form expression (e.g., Illustration 2 below), one could start with an easy to
compute /n-consistent estimator for Bg and then update it in one step to obtain an estimator with
the same asymptotic distribution as the efficient estimator in Corollary 13. For example, an IPW
estimator based on the complete sub-sample {i = 1,...,n: C; = R} and with the identity (or some

simple) weighting matrix is relatively easy to compute:

1 & I(C; = R)
S P(C = R|Tg(Z;

n -
1=

= argmin
B gmin

@R,A(Oi;ﬂ)H

~—

)
1
;z”: I(C; =R) P(C e \Z)
P(C=R|Z;)) P(Ce N

n -
1=

—

= argmin
BeB

m(Zi; ﬂ)H : (31)

1

It is consistent under the assumptions of Proposition 11 [see, e.g., Wooldridge (2002)]. Built-in
routines in standard statistical softwares can be directly used or slightly modified to obtain this
estimator for a wide variety of the moment vector m(Z; ) (e.g., Illustration 2 below). Now a one

step estimator of ﬁg can be obtained by updating E,\ as:
Bisep = Br = 2 (Bx h(Br) MA(BA) V5 (Brs h(B)) G (B, B(B)) (32)

where (3, is a consistent estimator of hO(Y), and ]\/ZA(BA), VA(Ba, h(By)) and Q5 (B, h(By)), defined
below Corollary 13, are consistent estimators for M), V) and €2y respectively under the conditions
noted therein. (Allowing for consistency of h(3,) for ht (1Y) instead of h%(BY) will entail according

change in the probability limit for VA(B )\,/H(BA)) as noted at the end of the last section.)

Proposition 14 Let all the conditions of Corollary 13(2) hold for BA; i.e., for the efficient GMM
estimator with the efficient weighting matriz. Additionally, let there be a first step estimator 5,\ satis-
fying: /n(Br—B3) = Op(1), Mx(Bx) = My +0,(1), VA(Br, h(Br)) = Vi +0,(1) and Qx(Bx, h(By)) =
Q\ + 0p(1). For simplicity, assume a slightly stronger version of the stochastic equicontinuity con-
dition (C3) [see Proposition 12] as: subgep, news, VPGn(B,h) — G(B,h) — Gn (B, h0)|| = 0,(1).
Then, Blstep defined in (32) is asymptotically efficient since it satisfies: \/n </§1$t6p — B)\> = op(1).
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C.5 Illustration of the GMM estimator when R = 3

To focus on the main components, we abstract from the weighting matrix W,, by taking d,, = dg.
We consider two cases where the moment vector respectively corresponds to: (1) a linear regression
giving a closed form expression for the efficient estimator, and (2) a linear quantile regression where
the efficient estimator is computed in one step as in (32). As for a concrete scenario with R = 3, it
may be useful to keep in mind the setup of our Monte Carlo experiment in Section 4.
Illustration 1: Linear regression in the target population A

Consider a moment vector of the form m(Z; 3) = X(y — X'B). Fori=1,...,n, let T}; := T;(Z;)
for j =1,2,3, a3 :=I(C; = 3)/P(C = 3|T3;), ag; := I(C; > 2)/P(C > 2|T5;)—as;, a1; := 1—ag;—as;,
q:=P(C € \NT3(Z)) and ¢; := P(C € \T3;). Simple computations give a closed form expression for

the estimator 3y in (29) as:

-1
n
/3/\ = (Z {G3iQiXiXZ{ + GZiE [qXX"TQZ'] + aliE [qXX/‘TM] })

i=1
n
Xy {a3iQiXiyi +ag, B [qXy|Tyi] + a, B [qu|T1i]}

i=1
where E denotes the estimated conditional expectation. While one could factor out y; from all three
terms inside the last pair of braces, our experience is that estimating the conditional expectations,
e.g., FqXy|Ty] directly instead of using the form E [¢X|T%;]y; leads to smaller variance of the
estimator B,\ in small samples.
Illustration 2: Linear quantile regression in the target population A

Consider a moment vector of the form m(Z;3) = X (r — I(y — X'8 < 0)) for some fixed 7 €

(0,1). (The notation as;, ag;, a1;, q; and ¢ remain the same as in Illustration 1.) For any (3, h) define:

9(0i; (B, b)) = aziqim(Ts; B) + agi Elgm(Ts; B)|Tai] + a1 Elgm(T3; 8)[T1al,
and accordingly define g(O;; (3, iAL)) and G, (3, ﬁ) replacing the conditional expectations in g(O;; (5, h))
by their estimators. (The ignored common denominator P(C' € \) will be adjusted for in the fi-
nal step.) Let B denote the inefficient but \/n-consistent estimator of Y obtained from (31) by
using this particular choice of the moment vector m(Z; /). It is simple to obtain E,\ since com-
monly used statistical softwares provide built-in routine for weighted quantile regression which au-
tomatically gives the estimator with (asigi/ > ; as;jq;)i, as weights. Estimate M) where M)(3) =
—(0/0B)E[XI(y — X'B < 0)|C € A using S [see below Corollary 13]. Therefore, since dy, = dg,

by using (32) we obtain the one-step estimator as: Blstep =By — M\Il(EA)Gn(g,\,ﬁ(g)\))/ﬁ(C €N).
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C.6 Simulation evidence from Section 4 of the finite-sample properties of B\A

Besides the efficient estimators based on various sub-samples, we also consider the complete case
(CC) and IPW [see (31)] estimators. The CC estimator is the default in the statistical softwares and
is based only on the complete sub-sample ignoring its likely unrepresentative of the target population.

We consider certain finite-sample properties of all these estimators and report them in Table 4
under INDEP, Tables 5 for Intercept and 6 for Slope under CMAR, and Tables 7 for Intercept and
8 for Slope under MAR. We focus on the following quantities computed as averages over the 10,000

Monte Carlo trials: Mbias (deviation from the true values), Abias (absolute deviation from the true

values), Std (standard deviation obtained as \/(estimated Avar)/(size of the used sample)) and IQR
(interquartile range). Mean squared error is not reported but follows directly as Mbias?+ Std?.

The CC and IPW estimators are numerically equivalent if A = {3} or under INDEP. Otherwise,
as expected, CC can be badly biased (Mbias) since it does not recognize the sample-selection.

The other estimators are consistent under our assumptions, and their small Mbias and decreasing
(with n) Std support this. The ordering of the variability of the estimators, as measured by Abias,
Std and IQR, are as expected: always the largest when the used sample is {3}, and the smallest
when the used sample is {1, 2, 3}.

Comparison between the two estimators based on the used samples {1,3} and {2, 3} is possible
under INDEP or under CMAR and MAR if A = {3} or A = {1,2,3}. In these cases, it seems that in
spite of the poorer quality of information in the units of {1, 3}, its larger sample size makes it more
desirable than {2,3}. (Under our premise, {1, 3} could still be less expensive than {2, 3} to observe.)

Overall, under our simulation design all the estimators display good properties in finite samples,

and thus lend credibility to the encouraging simulation results on the efficiency loss in Section 4.

Used n = 600 n = 1200 n = 1800
Sample | Mbias Abias Std IQR | Mbias Abias Std IQR | Mbias Abias Std IQR
{3} -.0002 .0748 .0933 .1250 | .0011 .0529 .0661 .0895 | -.0003 .0436 .0540 .0739
{1,3} .0005 .0560 .0667 .0947 | .0007 .0388 .0473 .0666 | .0002 .0313 .0388 .0530
{2,3} | -.0001 .0584 .0673 .0986 | .0008 .0392 .0475 .0661 | .0003 .0317 .0388 .0534
{1,2,3} | .0003 .0523 .0584 .0878 | .0006 .0346 .0411 .0589 | .0003 .0278 .0337 .0475
{3} .0004 .0773 .0927 .1296 | .0001 .0527 .0659 .0885 | .0002 .0434 .0539 .0737
{1,3} .0090 .0641 .0714 .1069 | .0038 .0425 .0510 .0715 | .0028 .0345 .0418 .0579
{2,3} .0062 .0667 .0720 .1106 | .0019 .0432 .0507 .0739 | .0013 .0347 .0415 .0586
{1,2,3} | .0082 .0631 .0649 .1044 | .0030 .0403 .0458 .0686 | .0021 .0320 .0377 .0545

Table 4: Bias (Mbias), absolute bias (Abias), standard deviation (Std) and interquartile range (IQR) of the
estimators under INDEP sampling are reported based on the average over 10,000 Monte Carlo trials. Target
population A = {1,2,3}. Top panel: Intercept parameter 3, 1. Bottom panel: Slope parameter ) .
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C.7 Proofs

For simplicity, we write 8y as 5. We follow the steps of the proof for Theorems 1 and 2 in Chen et al.
(2003) with adjustments for the weaker conditions that are consequences of (30) [see (F1)-(F3)]. The

main adjustment is that we allow |[h — hf|j = op(1) where h' € H need not be hP.

Proof of Proposition 11: (F1) already implies the standard well-separability of 5° by virtue of

(3). Hence, for all § > 0 there exists €(8) > 0 such that P(||3 — 8% > &) < P(|G(3, h1)|| > €(5)).
Therefore, to establish that 3 T Y, it is sufficient to show that |G (3 ,h1)|| = 0,(1). Assumption

(B2) implies that P(h(8) € H) — 1 uniformly in 3 € B as n — co. The rest of the proof works

conditional on the sequence of events {ﬁ(ﬁ) € H}, i.e., we use the fact that:

P(|G(B, n1)|| < €(5))
= P(|G(B, 1| < e(®)[h(B) € H)P(h(B) € H) + P(|G(B. h1)|| < e(8)[1(B) ¢ H)P(h(B) ¢ H)

= P(|G(B,h)|| < e(8)[1(B) € H) + o(1) (33)

as n — oo and, instead, show that ||G(B, k)| = op(1) conditional on {h(B) € H}.

To this end, first note that:

IGB, BN <GB, k") =GB, k)| + |G(B, h) — Gu(B, h)|| + |Gu (B, B

= ||G(B,h) — Gu(B, R)|| + |G (B, )| (34)

The inequality holds by the triangle inequality (kept implicit hereafter). The equality holds by (F3).
Using (B3) and then (F3), we obtain:

IG(B, ) = Gu(B, )| < 0p(V{1 + |G (B, W) | + |G(B, W) [} < 0p({1 + |G (B, )| + G (B, 1)1}
Using this along with (34) gives:

IG(B, k)| x (1 = 0,(1))

< 0p(1) + [1Ga(B, W) x (14 0,(1))

< 0p(1) +IGn(B W) lw,, x (L4 Wyt = W[+ (W = I, [}) % (14 0,(1)

= 0p(1) + [|Gu(B, D) |w,, % (¢ + 0p(1))

< 0p(1) + It [|Gu(B, 1) lwi, x (¢ +0p(1)) (35)
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where ¢ = 1+ |[W~1 — I, ||. The equality in the above equations follows since (i) W,, — W = 0,(1)
for a constant positive definite matrix W implies that W, ! exists with probability approaching one
and W,; 1 — W~1 = 0,(1), and hence ||[W,; ! — W~1|| = 0,(1) as d, is finite, (ii) a finite and positive
definite W and a finite d,,, imply that ¢(> 1) is finite. The last inequality in (35) is due to (B1).

Following similar steps again and letting d =1+ ||[W — I, || (> 1 and finite), note that:

G (B, 1)l
< IGa(B, )] % (d+ 0p(1))
< A{IGn(8,h) =GB R)|| + |G(B, 1) — G(B, || + |G(8, ht) — G(B°, h1)[|} x (d + 0,(1))(36)

by using (30), i.e., G(8° h) = 0 for all h € H (in the last term inside the braces). This is the special
feature of our setup; whereas this holds only at h = h® in Chen et al. (2003). On the other hand,

IG(B, ) — G(B,h1)|| = 0 by (F3). Lastly, using (B4) as before:

IGa(B, 1) =GB, 1) < 0p(1){1 + |Gu(B, D)l + [IG(B, k1) || + 0p(1)} = 0p(1) + |G (B, 1)|| X 0p(1)

= 0p(1) + [[Gu(B, 1)llw,, x (c+ 0p(1)) x 0p(1)

where the second line follows by the same argument as in (35). Therefore, (36) gives:

1Ga (B W)llw, < {op(1) + 1Gu (B W), X (4 0,(1)) X 0p(1) + |G(8,hT) = G(B% T} x (d + 0p(1))

= 0p(1) + [Gu(B, 1)llw,, x 0p(1) + |G (B, hT) — G(B%, A x (d + 0p(1))

and hence [|Go(8, 1) |lw,, x (1 — 0p(1)) < 0,(1) + [|G(8, A1) — G(B°, )| x (d + 0,(1)) where all the

0p(1) terms are uniform with respect to § € B. This implies that:
inf |G (8, 1)|lw,, < supoy(1) + inf [|G(8, A1) = G(8°, hf)[lw x (d+ supoy(1)) = op(1)
BEB BeB BeB BeB

since infgeg |G(B, hT) — G(B°, hT)|lw = 0. So, by (33) and (35) it follows that ||G(§7 RY)|| = 0p(1). m
Proof of Proposition 12: First, we show /n-consistency of B , and then its asymptotic normality.

Since 8° € interior(B), hi(B) € interior(H), B — 8 = op(1) and [R(B) — BT(B)||% = op(1), we
can choose a positive sequence d,, = 0,(1) such that P((B,h) € Bs, x Hs,) — 1 as n — oo. For

the ¢ in the statement of the proposition, P(Bs, x Hs, C Bs x Hs) — 1 as n — oco. While to

avoid repetition we do not make it explicit, it is important to keep in mind that as in the proof of
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Proposition 11, here also we work conditional on the event {(3,h) € Bs, x Hs} which occurs with
probability approaching one, i.e., we implicitly use arguments similar to (33) throughout the proof.

(C2) implies that there exists a constant a > 0 such that P(a||,§— B < ||G(B, Y — 1 as
n — co. Therefore, \/n-consistency of 3 follows if we can establish that ||G(3, h1)| = 0,(n=1/2).

To this end, note that:

IGB, BN < |GB, k) =GB R)| + |G(B, h) — Gu(B, ) + Gu(B° 1| + |Ga(B, B)|| + [ Gn (8% A1)

= 0+[IG(B,h) = Gu(B, ) + (B, A1) + |G (B, B)[| + Op(n~?) (37)

where the first 0 follows from (F2) and the last O,(n~'/2) from (C4). Now, by (C3) for the first

inequality below,

IG(B, 1) — G(B, 1) + Gn(B°, WD) | < 0p(1) x {n ™2 + || Gu(B, W)l + |G(B, h)||}
< 0p(1) x {n V2 4+ |Gu(B. R + IG(B, B) — G(B, k1| + |G (B, hh)||}

= op(1) x {n™2 4 |Gu(B. )| + G5, 1)1}
where the last line follows by (F3). Therefore, this along with (37) imply that:
IGB,ANI < 0p(1) x {n™2 + |G (B, B)[| + | G(B, NI} + G (B, B)| + Op(n~/?)

which, further implies that (second inequality below follows using same arguments as in (35) with

c=1+[W=—1Iq,l)

IG(B, R % (1= 0,(1)) < Op(n™%) +[|Gu(B, W) x (14 0p(1)

IN

Op(n™"/%) + |G (B, W) lw, x (¢ + 0p(1))

IN

Op(n™2)+ fnf [1Gu(B, W, X (¢ +op(1) (38)

where the last line follows by (C1). Now, for d = 1 + ||W — I, ||, recall from the first line of (36)
that [|Gn(8,2)|lw, < [|Gn(B,h)| % (d+ 0p(1)). On the other hand,

IGa(B, W)l < [Gn(B.R) — G(B,h) — Gu(B°, KN | + 1G(B, 1) — G(8, A1) + |G(8, )| + [|Gn(8°, 11|

< 0p(1) x {n 2+ GBI+ G (B, R} + 0 + IG(B, )| + Op(n~/?)

where the first term in the last line follows from (C3), the third term, i.e., the 0, from (F3), and the
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last one from (C4). Therefore,

IN

IGa(B. W) % (1= 0,(1)) IG(B, 1)|| % 0p(1) + |G(B, h) || + Op(n~*/?)

IN

IG(8, ) = G(B, )| x 0p(1) + [G(B, A1) x (1 + 0p(1)) + Op(n~?)
= |G, A1) % (1+0p(1)) + Op(n~"/?) [by (F3)]
< IG(B. hT) = G, AN x (1 + 0p(1)) + [G(8%, AT x (1 + 0p(1)) + Op(n™"7?)

=GB, A1) = G(B° A1) x (14 0y(1)) + Op(n~'7?)

since G(8°, ht) = 0. Therefore, |Gn (3, h)|lw, < ||G(8,h1)—G(B8°,h1)]| x (d+0p(1))+0,(n"1/2) where
all the o, and O, terms are uniform with respect to 8 € Bs. Hence, as in the proof of Proposition
11, noting that infseg |G (B, RT) — G(B°, hT)|| = 0, it follows that infgep, G (B, B) I, = O,(n=1/?)
and, therefore, (38) gives ||G(B, Ah)|| = O,(n~1/2) and, subsequently, B—p0= O, (n=1/2).

To establish asymptotic normality, define the linearization L, (8) = G,(8°, h) + M\(8 — p°).

Note that the differences from the linearization in Chen et al. (2003) arise due to (F2) and (F3).

This gives:
G (B, h) = La(B)ll
= [|Gn(B, ) — Gu(B°, 1) — My(B — %)
= ||Gn(B,h) = Gu(8°, 1) = G(B, h) + G(B, h) + G(B,hT) — G(B, hT) — Mx(B - B)|
< |Ga(B,h) = Gu(B%,hT) = G(B,h)|| + | G(B, h) — G(B, h1)|| + [|G(B, hT) = Mx(B — B)|
< |Ga(B,h) = Gu(B%,hT) = G(B, )| + | G(B, hT) — MA(B — 8°)|| [by (F3)]

IN

0p(1) x {1+ [|Gn(B, R)|| + IG(B, R)|1} + IG(B, h') — G(B°, hT) — MA(B — %)

where the term inside braces follows from (C3) and the inclusion of G(3°, A) in the last term is
innocuous since G(3°, ht) = 0. Now, by the definition of My, assumptions (C2), (A3) and (F2), it
follows that ||G(3, ht) — G(8°, h) — Mx(B — 8°)|| = 0,(||8 — B°|)), which is 0,(n/2) since B — 8° =
O,(n~%/2). On the other hand, the same steps from the top line of (38) until (almost) the end of the
first part of the proof give |Gy (B, h)|| < infgeg, [|Gn (B, h)|| + 0p(n~1/2) = O,(n=1/2). Finally, since
IG(B, )| < |G(B,h) — G(B, 1| + ||G(B, h1)| = O,(n~1/?) because the first term is 0 by (F3) and
the second term is O,(n~'/?) from the first part of the proof, we obtain that |Gn(B,h) — Ln(B)|| <
op(n~1/2). Similarly, for B := argming||L,(8)|w, that, by construction, satisfies y/n(8 — °) =

— (MW M)~ MW /nG (8%, A1), we can show that IGn(B,h) — La(B)| < 0,(n~2). Now that
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the proximity of Gn(B,?L) and L, () has been established at B and [ respectively, the rest of the
proof is to show that v/n(j3 — 3) = 0p(1). As was the case in Chen et al. (2003), this does not involve
anything particularly related to the key feature of our setup (it only works with the linearization),

and hence follows exactly in the same way as in the proof of Theorem 3.3 and Lemma 3.5 in Pakes

and Pollard (1989). =

Proof of Corollary 13:
(1) This is standard and hence the proof is omitted.
(2) This follows by noting that g(O; 8, h%(O; 8)) = ¢(O; 8) defined in (6). =

Proof of Proposition 14: Define Ly,(3) := G, (8°, k%) + My (8 — 8°) and note that /nL,(By) =
O,(1) by assumptions (A3), (C4) and since V(B — BY) = O,(1). Therefore, using (F1), (F3) and

also the stochastic equicontinuity condition from the statement of the proposition, we obtain that:

VAl Gr(Bx, 1) — Ln(B)]]
= Vi{Gn(Br, h) — G(Br, h) — Gu(BY, hO)} + {G(Br, h) — G(Br, hO(B°))} + {G(Bxr, h°(8°) — Mr(Br — BY)]|
< TR Val|G(B,h) — G(B,h) — Gu(BY, hO)|| + v/nl|G (B, h) — G(Bx, B°(B%))]]

+ [VRG (B, B°) + (M + 0p(1) — Ma)v/n(Br — B

= 0p(1) + 0+ (0 +0p(1)) = 0p(1).
Now, the proof completes since under the conditions of the proposition, the definition in (32) gives:

Vi (Bisien = Br) = = (03" + 0p(1) (M + 0p(1)) (Vi + 05(1)) (VALn(Br) + 0p(1))
= 0 MV (VAG (%, 1) + Mav/a(Br — %)) + 0p(1)
= Vn (BA - ﬁg) —-vn (ﬁx - 53) +op(1) =v/n (B\A - g,\) +op(l). w
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