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Abstract

Cost-effective survey methods such as multi(R)-phase sampling typically generate samples that are collec-

tions of monotonic sub-samples, i.e., the variables observed for the units in sub-sample r are also observed for

the units in sub-sample r + 1 for r = 1, . . . , R − 1. These sub-samples represent sub-populations that can be

systematically different if the selection of a unit in each phase of sampling depends on the observed variables

for that unit from past phases. Our paper is about optimally combining all the sub-samples for the efficient

estimation of a finite dimensional parameter defined by moment restrictions on a generic target population

that is an arbitrary union of these sub-populations. Only the R-th sub-sample is assumed to contain all the

variables that are arguments of the moment function. Semiparametric efficiency bounds for estimation are

obtained under a unified framework allowing for full generality of the selection on observables in the sampling

design. Contribution of each sub-sample toward efficient estimation is analyzed; and this turns out to differ

fundamentally from that in setups where the same collection of sub-samples are instead generated unplanned

by unknown sampling. Uniquely, our setup enables all the sub-samples to contribute to the efficient estimation

for all the target populations, which we show is not possible in other setups. Efficient estimation is standard.

Simulation evidence of substantive efficiency gains from using all the sub-samples is provided for all the targets.
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1 Introduction

Planned incompleteness in the data can be useful when conducting surveys under budget constraints.

The basic idea behind planned incompleteness is that: when it is expensive to collect all the variables

for all the units in the sample, the next best alternative could be to collect the less expensive variables

for all the units in the sample but the more expensive variables only for a subset of these units.

A variable may be more expensive to collect for numerous reasons; e.g., a correct measurement

may be expensive, it may require intensive follow-ups, it may require tracking of or offering incentives

to respondents, etc. In all such cases, planned incompleteness cuts the cost of surveys by generating a

sample in which only a subset of the units contains all the intended variables, while the rest contains

various collections of only the less expensive variables. This happens by plan, i.e., sampling design,

and, thus, the targeted use of survey resources eliminates or at least reduces unplanned non-response

or mismeasurement that could have otherwise complicated subsequent analyses of the data.1

The idea of planned incompleteness is not new, and is more frequently employed in fields of

research where the use of primary data is more prevalent than what has been typical in economics.

(Appendix A.1 provides specific examples from economics and other fields.) However, while the loss

of information due to the incompleteness in the sample makes it imperative that any estimator using

such data be as precise as possible, efficient estimation in such contexts is rarely considered.2

Our paper seeks to address this issue of efficient estimation using planned incomplete data by

taking the sampling design as given. We focus on monotonic multi-phase samplings and, for full

flexibility in the design of the multiple phases, we maintain a general selection on observables, i.e.,

the missing at random (MAR), assumption. Close attention is paid to special cases of MAR.

To fix ideas consider the prototypical multi(R)-phase sampling that, along with its variations,

falls under the premise of our paper. Suppose that a researcher intends to collect R sets of variables

Z(1), . . . , Z(R). In phase one she collects Z(1) for a random selection of units. Then, recursively, at

each phase r = 2, . . . , R, she collects Z(r) for a subset of the units from phase r − 1, selecting the

subset randomly with or without regard to the already available information on Z(1), . . . , Z(r−1).
3

The resulting sample consists of R groups of units such that the r-th group contains only Z(1), . . . , Z(r)

(these are the units followed until phase r but dropped after that) where r = 1, . . . , R. We refer to

1See Carroll et al. (1995), Little and Rubin (2002), etc. for methods of dealing with mismeasured or missing data.
2An exception is Chatterjee and Li (2010) who consider efficiency under a specific type of planned incompleteness

design known as the partial questionnaire designs of Wacholder et al. (1994) [also see Chaudhuri and Guilkey (2016)].
3The two-phase sampling is a special case where Z(3), . . . , Z(R) would also be collected with Z(2) in phase two, and

the survey would end there. In turn, the variable probability (VP) sampling studied in Wooldridge (1999), Wooldridge
(2007), etc. is a special type of two-phase sampling that would discard all the units for whom only Z(1) was collected.
Thus, VP sampling unnecessarily losses information that has already been collected (paid for). The loss is naturally
more severe if such a strategy is extended to multiple phases. Hence, we do not consider VP sampling in this paper.
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these R groups as R sub-samples. Only the R-th sub-sample is complete in the sense that it contains

all the intended variables Z(1), . . . , Z(R). These sub-samples are monotonic, i.e., variables observed

for the units in sub-sample r are also observed for the units in sub-sample r+1 for r = 1, . . . , R− 1.

Note that, the underlying populations for the sub-samples, call them sub-populations, can differ

systematically in terms of the joint distribution of the intended variables Z(1), . . . , Z(R) if the selection

of the units for any phase takes into account any information that is already available by then.

In this paper we consider efficient estimation of a finite dimensional parameter defined by generic

moment restrictions on the joint distribution of Z(1), . . . , Z(R) in a generic target population that is

an arbitrary union of these sub-populations. Special cases of the target include the sub-populations

and the full population (union of all sub-populations). We provide a unified presentation of all cases.

The main contribution of our paper is twofold. First, we obtain the efficient influence function

and efficiency bound for the generic parameter of interest and analyze them closely to make explicit

the role of each sub-sample toward efficient estimation. Second, we express the problem of efficient

estimation in an alternative, equivalent way in the spirit of Brown and Newey (1998) and Graham

(2011) rendering the actual efficient estimation a simple special case of Chamberlain (1992), Ai and

Chen (2012), etc. Both contributions are driven by the two key features of our paper — planned

incompleteness and monotonicity — and, throughout, we emphasize the novelty of their implications

with respect to the literature, e.g., Robins et al. (1994), Robins and Rotnitzky (1995), Rotnitzky and

Robins (1995), Hahn (1998), Chen et al. (2008), Graham (2011), Barnwell and Chaudhuri (2018).4

Our paper proceeds as follows. Section 2 describes our theoretical framework and presents our

main theoretical results under MAR. Section 3 takes a closer look at two important special cases of

MAR that could be more relevant in practice, and provides auxiliary results along with an analytical

demonstration of efficiency gained from the optimal use of all the sub-samples for efficient estimation.

Section 4 demonstrates this efficiency gain in finite samples using a Monte Carlo experiment.

There is a Supplemental Appendix (referred to as Appendix for brevity). Appendix A elaborates

on statements from the main text when they require longer explanations. Appendix B presents

proofs of the theoretical results from Sections 2 and 3. Appendix C describes efficient estimation,

presents the formal statements and proofs of the asymptotic properties of the efficient estimator, and

also Monte Carlo evidence of its good finite-sample properties under the setup of Section 4.

4It must also be noted here that our presentation in the sequel is incomplete in the following sense. While the
idea of planned incompleteness to reduce survey cost and the unintended consequences of unplanned incompleteness is
intuitively appealing, our paper is silent about the optimality of such survey designs and instead takes a generic design
as given. Indeed, to our knowledge, a general optimality theory is yet to be developed for survey designs with planned
incompleteness and this perhaps needs to be addressed on a case-by-case basis [see Reilly (1996)]. While a broader
exploration of optimality is the topic of our ongoing research, at this point we only present in Appendix A.2 simple
and illustrative examples of the optimality of a planned incomplete survey design in two-phase (double) sampling.
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Lastly, we note that recent contributions to data combination in economics include, e.g., Ichimura

and Martinez-Sanchis (2005), Ridder and Moffitt (2007), Devereux and Tripathi (2009), Tripathi

(2009), Dardanoni et al. (2011), Muris (2016), Graham et al. (2016), Abrevaya and Donald (2017),

and the many references therein. It is our focus on: (i) planned incompleteness, (ii) the allowance for

a dynamically updating MAR condition, and (iii) the allowance for the parameter of interest to be

defined in terms of arbitrary unions of sub-populations, that distinguishes our paper from the rest.

2 Framework and the Combination of Sub-samples

2.1 Framework

Let Z := (Z ′
(1), . . . , Z

′
(R))

′ where Z(r) is a dr × 1 random vector for r = 1, . . . , R, and
∑R

r=1 dr is

finite. Following Tsiatis (2006), consider a scalar variable C with support C := {1, . . . , R} and

a transformation TC(Z) defined as Tr(Z) := (Z ′
(1), . . . , Z

′
(r))

′ of dimension (
∑r

s=1 ds) × 1 for r =

1, . . . , R. The value of C determines TC(Z), i.e., how much of Z is observed for a sample unit.

Let O := (C, T ′
C(Z))

′ denote what is observable for a unit. The observed sample is {Oi :=

(C ′
i, T

′
Ci
(Zi))

′}ni=1. The r-th sub-sample is the collection of units for whom Tr(Z) is observed; it is of

size nr :=
∑n

i=1 I(Ci = r) for r = 1, . . . , R. Only the R-th sub-sample is complete, i.e., TR(Z) = Z.

A natural consequence of our description of the multi-phase sampling is that it involves selection

on observables. Note that, at the end of phase r = 1, . . . , R− 1, the researcher is left with the units

{i = 1, . . . , n : Ci ≥ r} and has observed Tr(Zi) for each of them. Now, the researcher decides the

probability with which each such eligible unit continues to phase r+1. This probability can be equal,

say 1−pr, for all eligible units, in which case P (C = r|C ≥ r, Tr(Z)) = pr; or it can be more involved

if it depends on Tr(Z). Regardless, the researcher cannot possibly incorporate in this decision the

knowledge of Z(r+1), . . . , Z(R) since she does not observe them by the end of phase r. We formalize

this statement by maintaining a general selection on observables, i.e., the MAR condition that:

P (C = r|C ≥ r, TR(Z)) = P (C = r|C ≥ r, Tr(Z)), equivalently, P (C = r|TR(Z)) = P (C = r|Tr(Z)) (1)

for r = 1, . . . , R. The equivalence in (1) follows from the invertible relation between hazard and

probability mass functions [see Appendix A.3]. The second relation in (1) is the MAR condition in

the sense of Rubin (1976) [see, e.g., Robins and Rotnitzky (1995), Tsiatis (2006)] and generalizes to

the case of R > 2 the MAR assumption found in econometrics where the focus has traditionally been

on R = 2 [see, e.g., Chen et al. (2005), Chen et al. (2008), Graham (2011), Graham et al. (2012)].
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To signify that the incompleteness in the data is by plan/design, we maintain under (1) that:

P (C = r|C ≥ r, Tr(Z)), equivalently, P (C = r|Tr(Z)) is known for each r = 1, . . . , R. (2)

The equivalence in (2) follows under (1) [see Appendix A.4]. The condition in (2) is a formality in

this context since the researcher actually decides these probabilities as part of the sampling design.

Now, to define the parameter value of interest, consider a generic functionm(Z;β) : Support(Z)×

B 7→ Rdm of the parameter β ∈ B ⊂ Rdβ where dβ ≤ dm. For a given target population λ ∈ Λ where

Λ := Power-Set(C) excluding the empty set, define the parameter value of interest β0λ as:

E[m(Z;β)|C ∈ λ] = 0 for β ∈ B ⇐⇒ β = β0λ. (3)

β0λ is defined as a function of λ and may differ across targets λ ∈ Λ if C and Z are dependent.

For a given β, the function m(Z;β) can be evaluated from the observed sample only for the nR

units in the complete sub-sample, i.e., I(C = R)m(Z;β). However, point identification of β0λ is still

possible by the Horvitz-Thompson re-weighting provided that P (C = R|TR(Z)) > 0 almost surely.

This is due to the following relation that holds identically in β [see Appendix A.5 for details]:

E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)

I(C = R)

P (C = R|TR(Z))
m(Z;β)

]
= E[m(Z;β)|C ∈ λ]. (4)

All the terms inside the expectation on the left hand side (LHS) of (4) will be feasible under our

assumptions because P (C ∈ λ) will be trivially identified by the observed data under assumption

(A1) below, whereas (1) and (2) already imply that P (C ∈ λ|TR(Z)) and P (C = R|TR(Z)) are

known. Hence, the LHS of (4) can serve as the estimating function for β0λ. However, such estimation

will be based solely on the complete sub-sample. We will focus on exploring the information contained

in the incomplete sub-samples and demonstrating how that information can be combined with the

information in the complete sub-sample for the purpose of efficient estimation of β0λ defined in (3).

The discussion of our framework concludes by listing an assumption that we maintain hereafter.

Assumption A

(A1) The observed sample units {Oi := (Ci, T
′
Ci
(Zi))}ni=1 are i.i.d. copies of O := (C, T ′

C(Z))
′.

(A2) (P (C = r|TR(Z)))R−1
r=1 > 0 and P (C = R|TR(Z)) > p almost surely in TR(Z) for a fixed

p ∈ (0, 1).

(A3) Mλ :=
{

∂
∂β′E [m(Z;β)|C ∈ λ]

}
β=β0

λ

is a dm × dβ finite matrix of full column rank.

Remark: (A1) is a standard assumption [see, e.g., Tsiatis (2006), Devereux and Tripathi (2009),
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Tripathi (2011), etc.]. P (C = R|TR(Z)) > p > 0 in (A2) is a strict version of the overlap assumption

[see Khan and Tamer (2010)]. The restrictions P (C = r|TR(Z)) > 0 for r = 1, . . . , R − 1 are not

strictly required but help to avoid more involved proofs peripheral to the main message. However,

P (C = r) > 0 for r = 1, . . . , R is intrinsic to the R-level missing data model. (A3) allows for

moment vectors m(Z;β) that are not differentiable in β. We do, however, impose differentiability of

E[m(Z;β)|C ∈ λ] as in, e.g., Chen et al. (2003), Chen et al. (2008), Cattaneo (2010), etc.

The theoretical framework above is closely related to several well-known papers such as Robins

and Rotnitzky (1995), Whittemore (1997), Holcroft et al. (1997), Chen et al. (2005), Chen et al.

(2008), Cattaneo (2010), Dardanoni et al. (2011), Lee et al. (2012) and Abrevaya and Donald (2017).

In Appendix A.6 we discuss in detail where we actually differ from them. Broadly speaking, the

differences are one or more of the following: (i) allowance for a general R, (ii) expansion of the scope

to all (2R− 1) sub-populations (including λ = C), (iii) introduction a dynamically updated sampling

design via MAR, and (iv) emphasis on the new insights available only from letting R > 2.

2.2 Optimally combining the sub-samples for efficiency

To state our main result in Proposition 1 let us first, for a given λ ∈ Λ, define the following dm × 1

functions of the observed data O and the dβ × 1 parameter β as:

φr,λ(O;β) := E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)
m(TR(Z);β)

∣∣∣∣Tr(Z)] for r = 1, . . . , R, (5)

φλ(O;β) :=
I(C = R)

P (C = R|TR(Z))
φR,λ(O;β)

+

R−1∑
r=1

[
I(C ≥ R− r)

P (C ≥ R− r|TR−r(Z))
− I(C ≥ R− r + 1)

P (C ≥ R− r + 1|TR−r+1(Z))

]
φR−r,λ(O;β).(6)

Proposition 1 Let (1), (2), (3) and assumption A hold. Let the dm×dm matrix Vλ := V ar(φλ(O;β0λ))

be finite and positive definite where φλ(O;β) is defined in (6) and β0λ is defined in (3). Then, the

asymptotic variance lower bound for any regular estimator of β0λ is given by Ωλ := (M ′
λV

−1
λ Mλ)

−1. A

regular estimator whose asymptotic variance equals Ωλ has the asymptotically linear representation:

√
n(β̂λ − β0λ) = −ΩλM

′
λV

−1
λ

1√
n

n∑
i=1

φλ(Oi;β
0
λ) + op(1).

Remarks:

1. Chen et al. (2008)’s results are for R = 2 with λ = {1} and λ = {1, 2}. Proposition 1

generalizes Theorem 2 of Chen et al. (2008) to the case of a generic R and a generic target λ. To see

6



this, let R = 2. Then, under (1), equations (5) and (6) imply that for λ = {1, 2} and {1} respectively:

φ{1,2}(O;β) =
I(C = 2)

P (C = 2|T1(Z))
(m(T2(Z);β)−E[m(T2(Z);β)|T1(Z)]) + E[m(T2(Z);β)|T1(Z)],

φ{1}(O;β) =
P (C = 1|T1(Z))

P (C = 1)
φ{1,2}(O;β),

giving exactly the same expressions as in Chen et al. (2008) (p. 830) [see Appendix A.7 for details].

Interestingly, however, pointing to the crux of the matter related to the planned incompleteness

condition (2) is the case where R = 2 and λ = {2}. (This case is not considered in Chen et al.

(2008).) In this case, our Proposition 1 implies that (following steps as in Appendix A.7):

φ{2}(O;β) =
I(C = 2)

P (C = 2)
m(T2(Z);β) +

(
P (C = 2|T1(Z))

P (C = 2)
− I(C = 2)

P (C = 2)

)
E[m(T2(Z);β)|T1(Z)],

i.e., all the sub-samples still contribute toward efficient estimation (as evident from the first term

inside parentheses on the RHS), a phenomenon that holds for the other targets (λ’s) too. On the other

hand, the generic result for unplanned incompleteness (i.e., without (2)) under MAR in Proposition

1 of Barnwell and Chaudhuri (2018) would imply that, when R = 2 and λ = {2}, then:

φ{2}[u](O;β) =
I(C = 2)

P (C = 2)
m(T2(Z);β),

rendering the incomplete sub-sample useless. (The subscript [u] stands for unknown/unplanned.)

This comparison makes evident the important benefit of the planned incompleteness approach that

makes all the sub-samples always usable irrespective of λ. It is also straightforward to see that:

V ar
(
φ{2}(O;β0{2})

)
= V ar

(
φ{2}[u](O;β0{2})

)
−E

[
P (C = 1|T1(Z))P (C = 2|T1(Z))

P 2(C = 2)
q(T1(Z))q

′(T1(Z))

]
.

where q(T1(Z)) := E[m(T2(Z);β
0
{2})|T1(Z)]. Hence, in this case, the difference between planned and

unplanned incompleteness in terms of the efficiency bound boils down to the additional (relevant)

information brought by the incomplete sub-sample, which is reflected by the last term on the RHS.

2. When R > 2, Chen et al. (2008)’s selection on observables assumption (Assumption 2) can be

generalized as MAR in (1) (or its special cases noted in Section 3). Proposition 1 works under MAR.

The result for a generic R under MAR and when the target is λ = C has been known since Robins

and Rotnitzky (1995), Rotnitzky and Robins (1995), Robins et al. (1995), Holcroft et al. (1997).

On the other hand, the novelty in Proposition 1 is that it allows for any target λ. The key

to obtaining this result under a unified framework is how we treat the term P (C ∈ λ|TR(Z)) in
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(5) (immaterial when λ = C since P (C ∈ C|TR(Z)) ≡ 1). Our treatment simplifies to Chen et al.

(2008)’s treatment when considering their verify-out-of-sample case, i.e., when R = 2 and λ = {1},

from which, however, an extension to the general case in our paper may not seem obvious ex ante.

3. φλ(O;β) in (6) belongs to the class of AIPW (Augmented Inverse Probability Weighted)

estimating functions of Robins et al. (1994). The first term φR,λ(O;β) is the IPW term based on

the complete sub-sample. The rest are the augmentations due to the incomplete sub-samples: the

r-th term represents the contribution of the (R − r + 1)-th sub-sample. Each of these R terms are

themselves unbiased estimating function for β0λ but only the first one, i.e., the IPW term, is known

without further assumptions [see below (4)]. The augmentation terms reduce the variability of the

IPW estimating function and thereby deliver the efficient AIPW estimating function. More precisely:

Cov(term1, termr) = −V ar(termr) for r = 2, . . . , R

Cov(terms, termr) = 0 for s ̸= r ̸= 1,

and hence Vλ = V ar

(
R∑

r=1

termr

)
= V ar(term1)−

R∑
r=2

V ar(termr).

The (R − r + 1)-th sub-sample’s contribution to the efficiency of estimation for β0λ rises with

V ar(termr) for r > 1, countering V ar(term1) to decrease the variance of the estimating function.5

2.3 Contribution of the observability of the Z(r)’s toward efficiency

Let us now look into combining the sub-samples from an alternative viewpoint that stresses on how

the observability of each Z(r) contributes toward efficiency. To this end, rearrange the terms on the

RHS of (6) and rewrite φλ(O;β) as:

φλ(O;β) = φ1,λ(O;β) +
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr(Z))
[φr,λ(O;β)− φr−1,λ(O;β)] (7)

to slice the contribution of the sub-samples differently. (Note that, I(C ≥ R) ≡ I(C = R).) Consider

the r-th term on the RHS. φr,λ(O;β) and φr−1,λ(O;β) differ due to Z(r), which is only observed for

all the (R − r + 1) sub-samples (i.e., for all the units i = 1, . . . , n : Ci ≥ r) as is signified by the

multiplier I(C ≥ r). Thus, the contribution of all the R sub-samples toward estimation is represented

in this r-th term in an incremental fashion according to their ability in delivering an observable Z(r).

5While V ar(φR−r+1,λ(O;β)) ≥ V ar(φR−r,λ(O;β)) (in a matrix sense), the order is not always preserved when
comparing the relative contribution of V ar(termr) and V ar(termr+1) for r > 1 because these latter variances are
affected by certain conditional probabilities in a nontrivial way as evident from the expression that V ar(termr) =

E
[

P (C=R−r+1|TR−r+1(Z))

P (C≥R−r+1|TR−r+1(Z))P (C≥R−r+2|TR−r+2(Z))
φR−r+1,λ(O;β0

λ)φ
′
R−r+1,λ(O;β0

λ)
]
for r = 2, . . . , R. This is what com-

plicates a general optimality theory for the survey design, which is the topic of our ongoing work [see footnote 4].
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This holds for each r = 1, . . . , R, i.e., including the first term on the RHS of (7). Note that, the R

terms on the RHS of (7) are uncorrelated. Therefore, Vλ is the sum of the variances of the R terms:

Vλ = V ar(φ1,λ(O;β0λ)) +
R∑

r=2

E

[
V ar(φr,λ(O;β0λ)|Tr−1(Z))

P (C ≥ r|Tr(Z))

]
.

The variance inflation factor 1/P (C ≥ r|Tr(Z)) accounts for the observability of Z(r) by varying

inversely with the conditional probability of observing Z(r). Naturally, there is no such variance

inflation for the first term on the RHS of (7) since Z(1) is always observed.

Yet another way of looking at these incremental contributions is to design a set of extended

moment restrictions whose information content, when combined optimally, equals that in Proposition

1. Accordingly, consider the estimation of β0λ based on the moment restrictions:

E [ϕR,λ(O;β)] = 0 for β ∈ B ⇐⇒ β = β0λ, (8)

E [ϕR−r(O)|TR−r(Z)] = 0 almost surely TR−r(Z) for r = 1, . . . , R− 1; (9)

where:

ϕR,λ(O;β) :=
I(C = R)

P (C = R|TR(Z))
φR,λ(O;β) [the IPW term from (6)],

ϕR−r(O) := I(C ≥ R− r) [I(C ≥ R− r + 1)− P (C ≥ R− r + 1|C ≥ R− r, TR−r(Z))]

for r = 1 . . . , R − 1. When considering the expression for ϕR−r(O), note that, by definition, I(C ≥

R− r) = I(C ≥ 1) ≡ 1 when r = R− 1, and I(C ≥ R− r+1) = I(C ≥ R) ≡ I(C = R) when r = 1.

Under (1) and (2), the moment restriction in (8) already identifies β0λ [see below (4)], and GMM

estimation based on it using the complete sub-sample is the GMM-version of the Horvitz-Thompson

method of obtaining IPW estimators [see, e.g., Wooldridge (2007)].

The key to our following discussion, on the other hand, is the moment restrictions in (9). These

restrictions do not involve β but bring additional information due to the observability of the Z(r)’s

in the sub-samples. Under the monotonic structure of the observed data, this information is usable

due to the MAR condition (1) and, importantly, the planned incompleteness condition (2).

(2) did not play a role in similar discussions in the literature, e.g., Graham (2011), Chaudhuri and

Guilkey (2016), etc., since they focused on the full population, i.e., λ = C, for which the efficiency

bound is the same irrespective of (2). However, we also consider sub-populations; and, hence, (2) will

play an important role here without which the contribution of the Z(r)’s would be further attenuated.

Additionally, the monotonic structure also plays an important role in our discussion, as is apparent

from a comparison with the results in pp. 686-687 of Chaudhuri and Guilkey (2016). The monotonic-
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ity is captured by the multiplier I(C ≥ r) for the r-th moment function ϕr(O) for r = 1, . . . , R − 1.

This multiplier ensures that the corresponding moment restriction reflects the additional information

that becomes available due to the observability of Z(r), which is observed if and only if C ≥ r.

Proposition 2 Denote ϕr(O) by ϕr for r = 1, . . . , R−1, and define ProjTr
(Y |ϕr) := Y−ProjTr

(Y |ϕr)

and ProjTr
(Y |ϕr) := E [Y ϕr|Tr(Z)]

(
E
[
ϕ2r|Tr(Z)

])−1
ϕr for any random variable Y whenever the

relevant terms in the definition exist. Then, the following results hold.

(i) If (1) and assumptions (A1) and (A2) hold, then φλ(O;β) defined in (6) satisfies:

φλ(O;β) = ProjT1

(
ProjT2

(
. . .ProjTR−2

(
ProjTR−1

(ϕR,λ(O;β)|ϕR−1)
∣∣∣ϕR−2

)
. . .
∣∣∣ϕ2)∣∣∣ϕ1) .

(ii) Let (1), (2) and assumption A hold. Then, the asymptotic variance lower bound under (8) and

(9) for any regular estimator of β0λ is Ωλ as defined in Proposition 1. A regular estimator with

asymptotic variance Ωλ has the same asymptotically linear representation as that in Proposition 1.

Remarks:

1. The results in (ii) under the moment restrictions (8)-(9) and the conditions (1) and (2) follow

directly as a special case of Chamberlain (1992) and Ai and Chen (2012).6

2. The result in (i) is essentially a repeated application of equation (15) in Brown and Newey

(1998) [see also Theorem 2.1 of Graham (2011)] facilitated by the monotonicity (Tr(Z) nests Tr−1(Z))

of the conditioning sets in (9). As noted in pp. 686-687 of Chaudhuri and Guilkey (2016), who also

refer to an earlier version of our current paper, a similar exercise under a non-monotonic structure

would not lead to the efficient influence function except in very special cases [see their footnote 5].

3. The broad message of Proposition 2 is that the original problem of optimally combining the

sub-samples can be boiled down to an equivalent problem of optimally combining a set of carefully

chosen moments restrictions, a problem/idea that is perhaps more common in economics [see Ap-

pendix A.8 for further discussion and its relation with the calibration literature in survey sampling].

Graham (2011) was first to establish a similar result for the case where R = 2 and the target was

λ = C. Our setup is more involved and thus requires condition (2) and an adequately rich choice for

the sequence of functions (ϕR−r(O))R−1
r=1 in (9) to establish this equivalence result that provides the

alternative viewpoint to appreciate the contribution of the sub-samples toward efficient estimation.

4. It is important to note that the more involved nature of our setup is not just that we allow for

R > 2, but also because we allow for the sub-populations to be the target λ. This latter feature helps

6To match the sequential moment restrictions in Chamberlain (1992) and Ai and Chen (2012), define T0(Z) as a
constant and consider the unconditional expectation in (8) equivalently as the expectation conditional on T0(Z).
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to highlight a pertinent implication of the planned incompleteness condition in (2). To make this

point, take R = 2 to match the setup of Hahn (1998), Chen et al. (2008), and, importantly, Graham

(2011). Now, note that, under assumption (A2) (that now becomes Graham (2011)’s Assumption 1.4)

our augmenting moment restriction (9) becomes E[I(C = 2) − P (C = 2|T1(Z))|T1(Z)] = 0 almost

surely in T1(Z), i.e., the same as Graham (2011)’s [equation (5)] augmenting (auxiliary) moment

restriction. However, when λ = {1}, Proposition 2 gives the efficiency result only under (2) but not

under unplanned incompleteness, and this can be seen simply by comparing Case 1 in Theorems

1 and 2 of Chen et al. (2008) [see Appendix A.9 for details]. This point was moot in Graham

(2011) because the efficiency results are identical under planned or unplanned incompleteness when

λ = C (≡ {1, 2}). Therefore, it is important to recognize that, in general, equivalence results such as

Proposition 2 hold only under planned incompleteness (along with monotonicity; see Remark 2).

3 A closer look at two special cases of MAR: CMAR and INDEP

It is instructive to observe the simplifications in the efficient influence function and, thus, the efficiency

bound if instead of the general MAR condition in (1), one maintains the following stronger conditions

that rule out dynamically updated survey designs and makes it easier to plan ahead with the survey:

CMAR: P (C = r|TR(Z)) = P (C = r|T1(Z)) for r = 1, . . . , R, (10)

INDEP: P (C = r|TR(Z)) = P (C = r) for r = 1, . . . , R. (11)

Convenient MAR (CMAR) sampling happens if the sampling design for the later phases is based

only on the observed variables from the first phase (baseline). CMAR and MAR are trivially the

same in the commonly studied case of R = 2, i.e., both generalize Chen et al. (2008). Independent

(INDEP) sampling happens if the sampling design is independent of Z. λ = C is the only target of

interest under INDEP since β0λ does not vary with λ; however, that is not the case under CMAR.

Given the results in Barnwell and Chaudhuri (2018), it is also instructive to compare the results

thus obtained with those where one cannot maintain or, as in our paper, enforce by design the

condition of planned incompleteness in (2). Both issues will be extensively analyzed in this section.

Under CMAR and INDEP, P (C ∈ λ|TR(Z)) becomes P (C ∈ λ|T1(Z)) and P (C ∈ λ) respectively

for all λ ∈ Λ. Since all sub-populations λ’s are the same under INDEP but not under CMAR, the

discussion under CMAR is going to be more involved. Hence, in the sequel, we primarily focus on

the discussion under CMAR while complementing it with the associated results under INDEP.
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3.1 Efficient influence functions and efficiency bounds

For brevity, we follow the spirit of the equivalent form of φλ(O;β) in (7) and define, for all λ ∈ Λ,

φCMAR
λ (O;β) :=

P (C ∈ λ|T1(Z))
P (C ∈ λ)

{
q(T1(Z);β) +

R∑
r=2

I(C ≥ r)

P (C ≥ r)
[q(Tr(Z);β)− q(Tr−1(Z);β)]

}
(12)

where:

q(Tr(Z);β) := E [m(TR(Z);β)|Tr(Z)] for r = 1, . . . , R. (13)

It is straightforward to see using (7) that φλ(O;β) in (6) boils down to φCMAR
λ (O;β) under CMAR.

(While this seems trivial, we will later point out by appealing to Barnwell and Chaudhuri (2018)

that such nesting does not hold in general if the planned incompleteness condition in (2) is relaxed.)

Proposition 3 Let (2), (3), (10) and assumption A hold. Let the dm×dm matrix Vλ := V ar(φCMAR
λ (O;β0λ))

be finite and positive definite where φCMAR
λ (O;β) is defined in (12) and β0λ is defined in (3). Then, the

asymptotic variance lower bound for any regular estimator of β0λ is given by Ωλ := (M ′
λV

−1
λ Mλ)

−1. A

regular estimator whose asymptotic variance equals Ωλ has the asymptotically linear representation:

√
n(β̂λ − β0λ) = −ΩλM

′
λV

−1
λ

1√
n

n∑
i=1

φCMAR
λ (Oi;β

0
λ) + op(1).

Proposition 4 Let (3), (10) and assumption A hold. Assume P (C = r|T1(Z)) = P (C = r|T1(Z); γ0)

for some γ0 ∈ Γ ⊂ Rdγ where P (C = r|T1(Z); γ) is known up to the finite-dimensional unknown γ for

r = 1, . . . , R. Let Sγ(C|T1(Z)) :=
∑R

r=1
I(C=r)

P (C=r|T1(Z))
∂
∂γP (C = r|T1(Z); γ0) denote the score function

for γ evaluated at γ = γ0, and assume that E [Sγ(C|T1(Z))Sγ(C|T1(Z))′] is positive definite. Define

φCMAR
λ[pu] (O;β) := φCMAR

λ (O;β) + Π

(
I(C ∈ λ)

P (C ∈ λ)
E[m(TR(Z);β)|T1(Z)]

∣∣∣∣Sγ(C|T1(Z)))
where the subscript [pu] represents that P (C = r|T1(Z)) is partially unknown, i.e., the finite dimen-

sional parameter γ is unknown; φCMAR
λ (O;β) is as in (12); and for any variables Y and X, let

Π(Y |X) := E[Y X ′](E[XX ′])−1X denote the population least squares projection when it exists.7 Let

Vλ[pu] := V ar(φCMAR
λ[pu] (O;β0λ)) be a dm×dm finite positive definite matrix. Then, the asymptotic vari-

ance lower bound for any regular estimator of β0λ is given by Ωλ[pu] :=
(
M ′

λV
−1
λ[pu]Mλ

)−1
. A regular

estimator whose asymptotic variance equals Ωλ[pu] has the asymptotically linear representation:

√
n(β̂λ − β0λ) = −Ωλ[pu]M

′
λV

−1
λ[pu]

1√
n

n∑
i=1

φCMAR
λ[pu] (Oi;β

0
λ) + op(1).

7In terms of the notation for the conditional projection Proj. ( .| .) in the statement of Proposition 2, Π(Y |X) ≡
ProjT0(Z)(Y |X) where T0(Z) is defined as any constant, which makes the conditional projection an unconditional one.
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Proposition 5 Let (3), (10) and assumption A hold. Define

φCMAR
λ[u] (O;β) :=

I(C ∈ λ)

P (C ∈ λ)
q(T1(Z);β)+

P (C ∈ λ|T1(Z))
P (C ∈ λ)

R∑
r=2

I(C ≥ r)

P (C ≥ r)
[q(Tr(Z);β)− q(Tr−1(Z);β)]

where the subscript [u] represents that P (C = r|T1(Z)) is unknown; and q(Tr(Z);β) is as defined in

(13) for r = 1, . . . , R. Let Vλ[u] := V ar(φCMAR
λ[u] (O;β0λ)) be a dm × dm finite positive definite matrix.

Then, the asymptotic variance lower bound for any regular estimator of β0λ is given by Ωλ[u] :=(
M ′

λV
−1
λ[u]Mλ

)−1
. A regular estimator whose asymptotic variance equals Ωλ[u] has the asymptotically

linear representation:

√
n(β̂λ − β0λ) = −Ωλ[u]M

′
λV

−1
λ[u]

1√
n

n∑
i=1

φCMAR
λ[u] (Oi;β

0
λ) + op(1).

Remarks:

1. Proposition 3 turns out to be a special case of Proposition 1. Proposition 5 fully relaxes the

planned incompleteness condition (2). Proposition 4 is an intermediate result partially relaxing (2).

2. It is straightforward to see (after some algebra) from Propositions 3-5 that:

Vλ[u] = E

[
P (C ∈ λ|T1(Z))
P 2(C ∈ λ)

q(T1(Z);β
0
λ)q

′(T1(Z);β
0
λ) +

P 2(C ∈ λ|T1(Z))
P 2(C ∈ λ)

R∑
r=2

V ar
(
q(Tr(Z);β

0
λ)|Tr−1(Z)

)
P (C ≥ r|T1(Z))

]

Vλ = Vλ[u] − E

[
P (C ∈ λ|T1(Z))(1− P (C ∈ λ|T1(Z)))

P 2(C ∈ λ)
q(T1(Z);β

0
λ)q

′(T1(Z);β
0
λ)

]
Vλ[pu] = Vλ +B

(
E
[
Sγ(C|T1(Z))Sγ(C|T1(Z))′

])−1
B′

= Vλ[u] − V ar

(
I(C ∈ λ)

P (C ∈ λ)
q(T1(Z);β

0
λ)−Π

(
I(C ∈ λ)

P (C ∈ λ)
q(T1(Z);β

0
λ)

∣∣∣∣Sγ(C, T1(Z))))

where B := E
[
I(C∈λ)
P (C∈λ)q(T1(Z);β

0
λ)Sγ(C|T1(Z))′

]
= E

[
q(T1(Z);β0

λ)

P (C∈λ)
∑

r∈λ
∂
∂γ′P (C = r|T1(Z); γ0)

]
(= 0

if λ = C). Therefore, Vλ = Vλ[pu] = Vλ[u] if λ = C. Otherwise Vλ ≤ Vλ[pu] ≤ Vλ[u] in the matrix sense.

(Proposition 4 is presented only for the purpose of this remark.) This ordering of the asymptotic

variances shows that this well-known result for R = 2 and λ = {1}, λ = {1, 2} from Chen et al. (2008)

and Hahn (1998) also holds under CMAR for a generic R and a generic target (sub-)population λ.

3. For a generic R > 2, CMAR is essentially an extreme dimension reduction assumption that

helps to preserve the similarities of the results under planned and unplanned incompleteness. Of

course, as we already saw, the forms of the efficient influence functions are different under these two

cases; and there are still other important dissimilarities that we will note in the corollaries below.

However, all these dissimilarities are substantively mild compared to what would be the case under

the general MAR condition in (1). Relaxing the planned incompleteness condition (2) and imposing
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restrictions on dimension reduction in MAR in (1), it follows from Proposition 1 in Barnwell and

Chaudhuri (2018) that for sub-populations of interest such as λ = {a, a+1, . . . , b} where a ∈ {2, . . . , b}

and b ∈ {2, . . . , R}, the units from sub-samples 1, . . . , a−1 are not at all usable for efficient estimation.

By contrast, under planned incompleteness, units from all the sub-samples are usable for efficient

estimation for any target λ irrespective of whether dimension reduction assumptions such as CMAR

are allowed. In this sense, MAR in (1) properly nests all dimension reduction assumptions, with

CMAR in (10) being the extreme one, only under planned incompleteness. On the other hand, in

contrast to Remark 1 above, our Proposition 5 (under CMAR) is not a special case of Barnwell and

Chaudhuri (2018) (under MAR) since neither imposes the planned incompleteness condition (2).

4. Lastly, note that if INDEP in (11) holds, then P (C ∈ λ|TR(Z)) = P (C ∈ λ) for all λ. In this

case, all the sub-populations are the same and hence there is only one population of interest λ = C,

for which our Proposition 1 (or Proposition 3 or 4 or 5, i.e., irrespective of (2)) implies that:

φλ=C(O;β) = φINDEP(O;β) := q(T1(Z);β) +

R∑
r=2

I(C ≥ r)

P (C ≥ r)
[q(Tr(Z);β)− q(Tr−1(Z);β)] . (14)

3.2 Efficiency gains from the existence of additional incomplete sub-samples

The efficiency gain for a generic target λ from using all the sub-samples instead of — (i) only the

complete sub-sample, or (ii) the complete sub-sample and some but not all incomplete sub-samples —

was evident from Remark 3 following Proposition 1 (and also from Proposition 2).8 The underlying

premise in that discussion is that all R − 1 incomplete sub-samples exit and, hence, not using any

sub-sample cannot be more beneficial (asymptotically) than using all the sub-samples.

The question that we ask in this subsection is different because it changes this premise. More

precisely, we ask what is, if any, the benefit from having an additional incomplete sub-sample?

Care is required to avoid trivially positive answers by ensuring that the benefit is not entirely

driven by the increase in sample size from the additional incomplete sub-sample, but rather incorpo-

rates the quality of information in this sub-sample that is actually relevant to the target population

of interest (leading to zero benefits in certain cases). Accordingly, for a precise measure of “bene-

fit”, define the efficiency loss associated with the j-th element βλ,j from estimating βλ based on a

collection of sub-samples denoted by s instead of another collection of sub-samples denoted by s′ as:

Loss(βλ,j ; s, s
′) = lim

n→∞

1
n{s}

Avar(β̂sλ,j)−
1

n{s′}
Avar(β̂s

′
λ,j)

1
n{s′}

Avar(β̂s
′

λ,j)
where λ, s, s′ ∈ Λ and j = 1, . . . , dβ. (15)

8If the (R − r + 1)-th sub-sample is not used then Remark 3 made it evident that the variance Vλ increases by
V ar(termr) for r = 2, . . . , R. Similar conclusions would follow from Propositions 3 and 5.
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n{l} :=
∑

r∈l nr =
∑

r∈l
∑n

i=1 I(Ci = r) is the size of the combined sub-samples in l for l = s, s′. β̂lλ,j

is the j-th element of β̂lλ for j = 1, . . . , dβ and l = s, s′.

Crucially for the question posed here, β̂lλ is the efficient estimator of βλ based on the sub-samples

in l. Hence, Avar(β̂lλ,j) is the asymptotic variance ignoring the existence of the sub-samples not in

l. For example, if λ = {1} and s = {1, R}, then we replace P (C = 1|T1(Z)) and P (C = 1) in the

result of Proposition 3 or 5 by P (C = 1|T1(Z), C ∈ {1, R}) and P (C = 1|C ∈ {1, R}) respectively,

as if only two sub-samples 1 and R exit (a substitution pattern as in multinomial/conditional logit).

Thus, the estimators not using all the sub-samples are not penalized for the sub-optimal use of

the (available) information since they are actually efficient if the sub-samples they use were the only

available sub-samples. Letting s be included in s′, the loss in (15) thus reflects the usable incremental

information brought in by the additional sub-samples that are included in s′ but not in s.

Analytical expressions for this loss under INDEP in (11) and CMAR in (10) are intuitive, and are

provided as corollaries to (14) and Proposition 3 in Corollaries 6 and 7. Analogous results without

the planned incompleteness condition (2) are provided as corollary to Proposition 5 in Corollary 8.

We take R = 3 and always include {R} in s, s′ for identification [see (4)]. Unless λ = C, we

include λ in s, s′ as a convention. Unless λ = {3}, we do not consider s = {3} for brevity (but do so

in the Monte Carlo study in Section 4).9

For simplicity, let dβ = dm = 1. For l = s, s′, let V l
λ denote V ar(φλ(O;β0λ)) when the latter is

modified according to the discussion below (15). To avoid clutter, we write: q(Tr(Z);β
0
λ) in (13) as

qr where λ is omitted from the latter but will be clear from the context; Tr(Z) as Tr; P (C = r) as pr;

P (C = r|T1(Z)) as pr(T1); P (C ∈ {r, t}) as prt; and P (C ∈ {r, t}|T1(Z)) as prt(T1) for r, t = 1, 2, 3.

Corollary 6 Let (3), (11) (i.e., INDEP) and assumption A hold. Under INDEP in (11): (i) β0λ

is the same for all λ ∈ Λ, and (ii) pr(T1) = pr for all r = 1, . . . , R. Thus, there is no distinction

between planned versus unplanned incompleteness [see (14)], and hence (2) plays no role. Taking

λ = C := {1, 2, 3}, and assuming that the concerned variances exist, the following hold as n→ ∞:

(a) Loss(βλ; s = {3}, s′ = {1, 3})× V
{1,3}
λ = p1

p3
E
[
q21
]
.

(b) Loss(βλ; s = {3}, s′ = {2, 3})× V
{2,3}
λ = p2

p3
E
[
q22
]
.

(c) Loss(βλ; s = {1, 3}, s′ = {1, 2, 3})× V
{1,2,3}
λ = p2

p13
E
[
q21
]
+ p2

p3p23
E [V ar(q2|T1)].

(d) Loss(βλ; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
λ = p1

p23
E
[
q21
]
.

9This is because the relevant comparison in such cases is rooted in the study of the sub-optimality of the asymptotic
variance of standard IPW estimators that has already been studied extensively in the literature. On the other hand,
our focus below is the comparison between two asymptotic variances each of which is optimal under its own assumption
on the availability of the sub-samples as discussed in and around the definition of the loss in (15).
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Corollary 7 Let (2), (3), (10) (i.e., CMAR) and assumption A hold. Assuming that the concerned

variances exist, the following hold as n→ ∞:

(a) Loss(β{1}; s = {1, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{1} = E

[
p1(T1)p2(T1)

p1

{
q21

p13(T1)
+ V ar(q2|T1)

p3(T1)p23(T1)

}∣∣∣C = 1
]
.

(b) Loss(β{2}; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{2} = E

[
p1(T1)p2(T1)
p2p23(T1)

q21

∣∣∣C = 2
]
.

(c1) Loss(β{3}; s = {3}, s′ = {1, 3})× V
{1,3}
{3} = E

[
p13
p3

p1(T1)
p13(T1)

q21

∣∣∣C = 3
]
.

(c2) Loss(β{3}; s = {3}, s′ = {2, 3})× V
{2,3}
{3} = E

[
p23
p3

p2(T1)
p23(T1)

q22

∣∣∣C = 3
]
.

(c3) Loss(β{3}; s = {1, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{3} = E

[
p2(T1)p3(T1)

p3

{
q21

p13(T1)
+ V ar(q2|T1)

p3(T1)p23(T1)

}∣∣∣C = 3
]
.

(c4) Loss(β{3}; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{3} = E

[
p1(T1)p3(T1)
p3p23(T1)

q21

∣∣∣C = 3
]
.

(d) Loss(β{1,3}; s = {1, 3}, s′ = {1, 2, 3})×V {1,2,3}
{1,3} = E

[
p2(T1)p13(T1)

p13

{
q21

p13(T1)
+ V ar(q2|T1)

p3(T1)p23(T1)

}∣∣∣C ∈ {1, 3}
]
.

(e) Loss(β{2,3}; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{2,3} = E

[
p1(T1)
p23(T1)

q21

∣∣∣C ∈ {2, 3}
]
.

(f1) Loss(β{1,2,3}; s = {1, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{1,3} = E

[
p2(T1)
p13(T1)

q21 +
p2(T1)

p3(T1)p23(T1)
V ar(q2|T1)

]
.

(f2) Loss(β{1,2,3}; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{2,3} = E

[
p1(T1)
p23(T1)

q21

]
.

Remarks: Complementing the discussion on efficiency in Section 5 of Wooldridge (2007), let us note

here that Corollaries 6 and 7 imply that there may not always be a loss in efficiency in the sense of

(15) when one does not use the sub-samples that have been assumed in (15) to not exist (i.e., those

in s′ but not in s; see the discussion below (15)). For example, if q2 := E[m(Z;β0λ)|Z(1), Z(2)] = 0,

then there is never any loss in all the above cases. Similarly, there is no loss in Corollary 6 (a), (d)

and Corollary 7 (b), (c1), (c4), (e), (f2) under a weaker condition that q1 := E[m(Z;β0λ)|Z(1)] = 0.10

Corollary 8 Let (3), (10) (i.e., CMAR) and assumption A hold, but (2), i.e., planned incomplete-

ness, does not hold. Assuming that the concerned variances exist, the following hold as n→ ∞:

(a) Loss(β{1}; s = {1, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{1} = E

[
p1(T1)p2(T1)

p1p3(T1)p23(T1)
V ar(q2|T1)

∣∣∣C = 1
]
.

(b) Loss(β{2}; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{2} = E

[
p3(T1)

p2p23(T1)
V ar(q2|T1)

∣∣∣C = 2
]
.

(c1) Loss(β{3}; s = {3}, s′ = {1, 3})× V
{1,3}
{3} = 0.

(c2) Loss(β{3}; s = {3}, s′ = {2, 3})× V
{2,3}
{3} = 0.

(c3) Loss(β{3}; s = {3} or s = {1, 3} or s = {2, 3}, s′ = {1, 2, 3})×V {1,2,3}
{3} = E

[
p2(T1)

p3p23(T1)
V ar(q2|T1)

∣∣∣C = 3
]
.

10A similar analysis of the loss in (15) with MAR in (1) under the premise of Section 4.2 is theoretically problematic.
To see this, consider comparing the two cases s = {1, 3} and s′ = {1, 2, 3}. For MAR in (1) to hold, a similar analysis
demands P (C = 3|Z) = 1 − P (C = 1|Z) = 1 − P (C = 1|Z(1)) = P (C = 3|Z(1)) in the former case (i.e., if {2}
does not exist), whereas the latter case can still accommodate for P (C = 3|Z) = P (C = 3|Z(1), Z(2)) ̸= P (C = 3|Z(1))
contradicting the requirement in the former. This obstructs our intended analytical comparison in a strict sense. Hence,
such comparisons are not done here. Nevertheless, if one still proceeds with a similar, albeit theoretically problematic,
comparison under MAR, then the way P (C ∈ λ|TR(Z)) enters (5) and (6) [also see Remark 2 below Proposition 1]
suggests that a zero loss under CMAR in Corollary 7 may not imply a zero loss under MAR.
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(d) Loss(β{1,3}; s = {1, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{1,3} = E

[
p2(T1)p13(T1)

p13p3(T1)p23(T1)
V ar(q2|T1)

∣∣∣C ∈ {1, 3}
]
.

(e) Loss(β{2,3}; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{2,3} = 0.

(f1) Loss(β{1,2,3}; s = {1, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{1,3} = E

[
p2(T1)
p13(T1)

q21 +
p2(T1)

p3(T1)p23(T1)
V ar(q2|T1)

]
.

(f2) Loss(β{1,2,3}; s = {2, 3}, s′ = {1, 2, 3})× V
{1,2,3}
{2,3} = E

[
p1(T1)
p23(T1)

q21

]
.

Remarks: First, it is not surprising that Corollaries 7 and 8 give identical results in (f1) and (f2)

since, as evident from Propositions 3 and 5, there is no difference between planned and unplanned

incompleteness when λ = C. Second, the results in (a), (b), (c3) and (d) imply that leaving out

incomplete sub-samples now results in zero loss under weaker conditions, i.e., V ar(q2|T1) = 0 as

opposed to the dual requirement of V ar(q2|T1) = 0 and q1 := E[q2|T1] = 0 under Corollary 7. Third,

we note that such differences between planned and unplanned incompleteness can manifest more

prominently if the additional sub-samples in s′ that are not in s are of worse quality (in terms of the

observability of the elements of Z) than each sub-sample in s. This is evident from comparing (c1),

(c2) and (e) in Corollaries 7 and 8 respectively. Consequently, a comparison of (c1) or (c2) with (c3)

in Corollary 8 shows that an identically zero loss when R = 2 need not imply the same when R = 3.

4 Simulation Study

Now we numerically study the benefit, if any, of using all the sub-samples for efficient estimation of βλ

by estimating (15) in a standard linear regression setup using a small scale Monte Carlo experiment.

The following observation motivates our experiment. In their editorial introduction, McKenzie

and Rosenzweig (2012) note how the different measurements of the same variables (e.g., consumption)

can dramatically alter the conclusion of analyses using survey data. But, the “good” measures can

be substantially more expensive.11 Hence, under budget constraint, one could obtain the good but

expensive measures for only subsets of units, and the other measures for larger subsets or everyone.

Accordingly, consider a linear regression of a random variable y on a constant and another random

variable X. Let Xc and Xe be mismeasured X, possibly dependent also on y. Let Z(1) = (y,X ′
c)

′,

Z(2) = Xe and Z(3) = X, a data structure that can be justified if y and Xc (“c” for cheap) are cheap

to observe, while Xe (“e” for expensive) is more expensive but still cheaper to observe than X (e.g.,

11For example, collecting consumption data through maintaining a personal diary can be 6 to 10 times more expensive
than a 7-day recall [see the last 3 rows of column 6 in Table 10 of Beegle et al. (2012)]. On the other hand, the 7-day
recall with a short list of aggregated consumption items can understate food consumption by 30% as compared to
personal diaries [compare rows 4 and 8 of column 2 in Table 2 of Beegle et al. (2012)]. These figures are based on eight
different measures of consumption, with accuracy varying inversely with cost, collected for non-monotonic sub-samples
of 4029 sample units in Tanzania. For simplicity, and similarity with Section 3.2, we will consider (i) only three different
measures and (ii) monotonic sub-samples. (ii) helps us to focus on efficient estimation and avoid ad hoc comparisons.
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where X is true consumption). Now, defining X⃗ := (1, X)′ and βλ := (βλ,1, βλ,2)
′, our experiment

involves efficient estimation of βλ by taking the moment vector in (3) as m(Z;β) = X⃗(y − X⃗ ′β).

The underlying efficient estimator is a special case of Ai and Chen (2012) [also see Chamberlain

(1992) and Hahn (1997)]. Hence, we do not describe it in the main text but refer to Appendix C for:

(i) a self contained description of the estimator for a generic β0λ defined by (3) based on a generic

moment vector, (ii) its connection with the literature, (iii) its asymptotic properties (highlighting

the key features) and proofs, (iv) a simulation study of its finite-sample properties, and (v) a simple

one-step updating efficient estimator in contexts that are more complicated than that of this section.

The generic expression of the efficient estimator for any target λ relevant for this section is given

in Illustration 1 in Appendix C.5. However, when using the collection of sub-samples in s, i.e., the

nested collection, these estimators need to be adapted to the premise of the discussion in Section 3.2

[see below (15)]. Let us give an example to make this adaption clear. Consider λ = {1}, s′ = {1, 2, 3}

and s = {1, 3}. Then, the efficient estimators using s′ and s are as in (16) and (17) respectively.

β̂
s′={1,2,3}
λ={1} =

(
n∑

i=1

qi

{
a3iX⃗iX⃗

′
i + a2iÊ

[
X⃗X⃗ ′|T2(Zi)

]
+ (1− a2i − a3i)Ê

[
X⃗X⃗ ′|T1(Zi)

]})−1

×
n∑

i=1

qi

{
a3iX⃗i + a2iÊ

[
X⃗|T2(Zi)

]
+ (1− a2i − a3i)Ê

[
X⃗|T1(Zi)

]}
yi (16)

where Ê[.|.] denotes the estimated conditional expectation.12 Under MAR, a3i := I(Ci = 3)/P (C =

3|T2(Zi)), a2i := [1 − I(Ci = 1)]/[1 − P (C = 1|T1(Zi))] − a3i and qi := P (C = λ|T3(Zi) = P (C =

1|T1(Zi)) for i = 1, . . . , n. The only difference under CMAR is that a3i := I(Ci = 3)/P (C = 3|T1(Zi))

for i = 1, . . . , n. Under INDEP, a3i := I(Ci = 3)/P (C = 3), a2i := I(Ci ∈ {2, 3})/P (C ∈ {2, 3})−a3i,

whereas qi := P (C = 1) (a constant, which cancels out making λ moot) for i = 1, . . . , n. ((16) is

simplified from the generic expression in Illustration 1 in Appendix C.5 that provides further details.)

β̂
s={1,3}
λ={1} =

(
n∑

i=1

qi

{
a3iX⃗iX⃗

′
i + (1− a3i)Ê

[
X⃗X⃗ ′|T1(Zi)

]})−1 n∑
i=1

qi

{
a3iX⃗i + (1− a3i)Ê

[
X⃗|T1(Zi)

]}
yi.

(17)

a3i := I(Ci = 3)/P (C = 3|C ∈ {1, 3}, T1(Zi)) and qi := P (C = 1|C ∈ {1, 3}, T1(Zi)) for i = 1, . . . , n

under MAR and CMAR. While this conditioning does not affect the terms with qia3i, this does affect

the terms with qi(1− a3i). Under INDEP, a3i := I(Ci = 3)/P (C = 3|C ∈ {1, 3}) for i = 1, . . . , n (qi

is moot as before). Conditioning on the event C ∈ {1, 3} adapts (17) to the premise of Section 3.2.

12In our simulation experiment below, these Ê[.|Tr(Z)]’s are series estimators for which we always use cubic polyno-
mials of the elements of (1, Tr(Z)′)′ irrespective of the sample size n. Hence, the resulting estimators for the parameters
of interest βλ’s can alternatively be considered parametric in the sense of Ackerberg et al. (2012).
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4.1 Simulation Design

We draw n i.i.d. copies of the concerned variables Z = (y,X,Xc, Xe)
′ defined as follows.

yi = α+ δXi + ϵi, Xci = Xi + I(yi > 0)
√
2ϵci, Xei = Xi + I(yi > 0)ϵei

where ϵi, ϵci, ϵei, Xi are mutually independent and i.i.d. N(0, 1) for all i = 1, . . . , n. We take α = δ =

1. While E[X] = E[Xe] = E[Xc], Xe is relatively less variable than Xc as a measure of X because

the former has smaller variance when y > 0 (precisely, V ar(Xc)−V ar(Xe) = P (y > 0) = Φ(1/
√
2)).

The specification is arbitrary except only to motivate the data structure from a multi-phase sampling

design — Z(1) = (y,Xc)
′, Z(2) = Xe and Z(3) = X — because the relative accuracy of Xe helps to

envision Xe as more expensive to observe than Xc but less expensive to observe than X.

In the context of dependent sampling, without regard to the optimality of the sampling design,

we generate the variable Ci ∈ C := {1, 2, 3} for i = 1, . . . , n as i.i.d. copies of C such that:

P (C = 1|Zi) = Ft1(γc(Xci + yi − 1)), P (C = 2|Ci ≥ 1, Zi) = 1− Ft1(γeXei + γc(Xci + yi − 2)),

and P (C = 3|Zi) = 1 − P (C = 1|Zi) − P (C = 2|Zi) where Ft1(a) is the cumulative distribution

function of a t1-distributed random variable evaluated at a ∈ R. (The fat tail of the t1 distribution

helps to partly offset problems with limited overlap [see assumption (A2) and Chaudhuri and Hill

(2016)].) We design the selection mechanisms MAR in (1) and CMAR in (10) by taking γc = γe =

.25 and γc = .25, γe = 0 respectively. Although γc = γe = 0 gives INDEP in (11), this hinders

comparability with MAR and CMAR since this results in P (C = 2) = P (C = 3) = .25 while MAR

and CMAR give P (C = 2) ≈ n2/n ≈ .31 and P (C = 3) ≈ n3/n ≈ .19 (obtained as average over

10,000 Monte Carlo trials). Hence, we directly design INDEP as (n1, n2, n3) ∼ Trinomial(n, .5, .31).

The sub-samples are made incomplete by deleting Xi if Ci ̸= 3 and Xei if Ci = 1 for i = 1, . . . , n.

We take n = 600, 1200, 1800.

The true value of the parameters of interest β1 (Intercept) and β2 (Slope) is (1, 1)′, i.e., (α, δ)′,

under INDEP. The same holds under CMAR and MAR when λ = {1, 2, 3}. However, it is difficult

to analytically obtain the true values under CMAR and MAR when λ ̸= {1, 2, 3}. Since the study of

bias is not our focus, we take the values listed in Table 1 as (roughly) the truth for the other βλ’s.

Target CMAR Sampling MAR Sampling
λ {1} {2} {3} {1, 3} {2, 3} {1} {2} {3} {1, 3} {2, 3}

Intercept 1.1375 0.7602 1.0087 1.1006 0.8652 1.1375 0.7624 0.9991 1.0985 0.8652
Slope 0.9630 0.9318 0.9562 0.9675 0.9685 0.9630 0.9239 0.9473 0.9628 0.9685

Table 1: Obtained as averages over 10,000 Monte Carlo trials of ordinary least squares estimates of Intercept
and Slope from the regression of y on X using the correct (infeasible) sub-sample (s = λ) when n = 1 million.
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4.2 Simulation Results

Tables 2 and 3 list the estimated loss (in percent) defined in (15) for various s with respect to s′ =

{1, 2, 3} under INDEP, and CMAR and MAR respectively. Although, this particular demonstration

may not be strictly correct theoretically under MAR [see footnote 10], we nevertheless report the

MAR results to get a sense of the concerned loss. Incidentally, here the losses under MAR turn out

to be quite close to those under CMAR, and hence are not given much special attention.

If all the sub-samples contained the same variables then these losses should more or less reflect

the smaller than n size of the collection of sub-samples in s. For example, the first row of Table 2

would be 100× (1/n3 − 1/n)/(1/n) ≈ 100× (1/P (C = 3)− 1) ≈ 426, and similarly the second and

third rows would be approximately 45 and 100 respectively. The actual loss will invariably be much

smaller in the first and third rows because the units in the additional sub-samples in s′ = {1, 2, 3}

that are not in s = {3} and s = {2, 3}, i.e., the sub-samples {1, 2} and {1} respectively, are uniformly

worse in terms of their information content than those in s. This is however not true for the second

row since the extra sub-sample in s′ is {2}, and a unit in it is more informative than a unit in the

sub-sample {1} but less so than a unit in the other sub-sample {3} in s. Thus, it is not clear a priori

in this case, i.e., s = {1, 3}, if the actual loss will also be much smaller. All these intuitions are

reflected in the tables, not only for INDEP (Table 2) but also for CMAR and MAR (Table 3).

INDEP Sampling
Target Popln. Used Sample Intercept Slope

λ s n = 600 n = 1200 n = 1800 n = 600 n = 1200 n = 1800

{1, 2, 3} {3} 155 159 157 104 107 104
{1, 2, 3} {1, 3} 30 32 33 21 24 23
{1, 2, 3} {2, 3} 33 34 33 23 23 21

Table 2: Estimated Loss(βλ,j ; s, s
′ = {1, 2, 3}) (in percent) defined in (15) for j = 1 (Intercept) and j = 2

(Slope). Results are based on the analytically estimated Avar averaged over 10,000 Monte Carlo trials.

There are cases like λ = {2}, s = {2, 3} under CMAR and MAR sampling where the loss for

the Slope estimator is minimal and close to zero, and this is in spite of the fact that the estimator

based on s = {2, 3} uses roughly half the number of observations used by the estimator based on

s′ = {1, 2, 3}. The loss can, however, be quite substantial in many cases and would be even larger if

we had not restricted the definition of loss in (15) from penalizing the sub-optimal use of information

by the sub-samples in s. Taken together, these simulation results show the obvious benefit of using

all the sub-samples for estimation. Furthermore, comparing the first three (i.e., the only comparable)

rows of Tables 2 and 3, it is evident that such benefits could be more under dependent sampling.

Appendix C.6 reports simulation evidence of reasonably good finite-sample properties of the
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CMAR Sampling MAR Sampling
Target Used Intercept Slope Intercept Slope
Popln. Sample n n n n
λ s 600 1200 1800 600 1200 1800 600 1200 1800 600 1200 1800

{1, 2, 3} {3} 156 160 159 123 128 125 165 168 167 134 139 136
{1, 2, 3} {1, 3} 37 38 39 43 41 39 40 42 42 47 46 44
{1, 2, 3} {2, 3} 47 44 43 47 45 44 49 45 43 54 48 48
{1} {3} 126 129 127 103 110 107 134 135 133 105 111 109
{1} {1, 3} 24 26 26 17 18 17 29 31 30 18 20 19
{2} {3} 168 174 173 120 136 135 165 174 172 139 152 151
{2} {2, 3} 24 25 25 1 5 5 22 23 21 2 4 4
{3} {3} 151 156 155 102 107 104 148 155 153 95 101 99
{3} {1, 3} 35 37 37 32 32 30 33 36 36 25 26 25
{3} {2, 3} 42 41 41 35 33 32 41 41 40 40 36 34
{1, 3} {3} 134 137 136 105 110 108 140 142 140 104 110 109
{1, 3} {1, 3} 28 29 30 21 21 20 30 32 32 20 22 21
{2, 3} {3} 170 176 175 123 134 132 176 184 184 142 151 149
{2, 3} {2, 3} 35 35 35 14 16 16 36 36 36 16 17 17

Table 3: Estimated Loss(βλ,j ; s, s
′ = {1, 2, 3}) (in percent) defined in (15) for j = 1 (Intercept) and j = 2

(Slope). Results are based on the analytically estimated Avar averaged over 10,000 Monte Carlo trials.

efficient estimator used here under all the cases considered.13 This lends credibility to the above

simulation results on efficiency loss. In turn, the simulation results help to appreciate our detailed

analytical exposition of efficiency gain/loss (from Section 3.2) by quantifying them numerically.

We conclude with the hope that the analytical and simulation evidence of efficiency gains from

the optimal use of the sub-samples, and the simplicity of efficient estimation would encourage further

research to facilitate the adoption of planned incomplete surveys in the face of budget constraints.
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Supplemental Appendix to “A Note on Efficiency Gains from Mul-

tiple Incomplete Sub-samples” by Saraswata Chaudhuri

Brief description of the content:

• Appendix A (A.1-A.9) contains clarifying or descriptive endnotes from Sections 1-3.

• Appendix B contains the proofs of all the propositions from the paper in Sections 2 and 3.

• Appendix C (C.1-C.7) provides formal statements and their proofs for the asymptotic properties

of the general efficient estimator, whose special case was referred to in Section 4. It also

reports simulation results describing the finite-sample properties of the efficient estimator in

the context of the Monte Carlo experiment in Section 4. Additionally, Appendix C describes

a simple one step updating of any
√
n-consistent estimator (e.g., IPW estimator) to obtain

an estimator that is asymptotically equivalent to the efficient GMM estimator. A sketch of

the proof for this efficiency is provided under standard regularity conditions. This updating is

computationally convenient and can be easily performed following the first step estimation (e.g.,

weighted quantile regression) in standard statistical softwares such as STATA. We provide two

illustrations of the efficient estimator: (i) a linear regression as in Section 4 where a closed form

efficient estimator is available (so, no updating is required), and (ii) a linear quantile regression

where the one step updating is useful due to the unavailability of closed form expressions.
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• Appendix A: Descriptive endnotes: pp. 26-36

A.1 Planned incomplete design: examples from economics and other fields: pp. 26-29
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Appendix A: Descriptive endnotes

A1. Planned incomplete design: examples from economics and other fields

Examples from other fields

The adoption of the planned incomplete survey design is common in other fields to the extent that

there are even established terminologies to refer to the different types of planned incompleteness.

The two/many-measurement-design is used in psychology where it is common to encounter an

expensive “gold standard” measure and other inexpensive but less accurate measures for behavioral

traits [see, e.g., Graham et al. (2006)]. Then, the gold standard measure is typically employed only

on a subset of the study subjects while the other measures are employed on all. In other contexts,

planned missing waves for pre-selected sample units in a panel have been extensively used since

MacArdle and Woodcock (1997) to cut the cost of estimation of key quantities in psychology.14 In

yet other contexts, the multiple matrix sampling of Shoemaker (1973), that requires most units to

respond only to parts of the full survey questionnaire, was extended as the split-questionnaire design

(SQD) by Raghunathan and Grizzle (1995) in statistics, as the partial questionnaire design (PQD) by

Wacholder et al. (1994) in biostatistics and epidemiology, and as the multi-forms surveys discussed

by Graham et al. (1996), Graham et al. (2006), and others in psychology and behavioral research.

Examples from economics

The common theme in all these references is the cost cutting of surveys, which also applies to

the field of economics. This is even more relevant now as the use of primary data, often under tight

budgets, gets more common among economists. However, in spite of the promising early work of

DiNardo et al. (2006) who point to the benefits of planned incompleteness, systematic adoption of

14While this example may appear less familiar than the other two types of examples, note that the structure of the
sample due to missing waves is actually similar to that from rotating panels with a single rotation. Rotating panels
such as the Current Population Survey are common in economics [see Nijman et al. (1991) for an influential study].
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planned incompleteness seems nonexistent in economics. Ad hoc adoptions can be found in laboratory

and field experiments, and we list below a small number of representative examples of both types.

(1) In a highly cited paper in experimental economics, Holt and Laury (2002) run a laboratory

experiment to elicit risk aversion for studying its dependence on the size of the stake. The experiment

involved planned incompleteness whereby the low-stake experiments were first run on all subjects

(phase one) and then the high-stake experiments were run on subsets of these subjects.

(2) Field experiments also typically involve follow-up rounds. We provide three recent examples:

(2a) Thornton (2008) studies an experiment in rural Malawi where the subjects where tested for

their HIV status and given incentives to learn the results from a nearby centre. After the respondents

had a chance to learn about the result (some did not), a follow-up interview was conducted on 75%

(so, 25% incompleteness by plan) of the original subjects to record their sexual behavior and their

response to an offer to buy up to 5 packages of 3 condoms using the .30 USD that was paid to them.

(2b) Ashraf et al. (2010) run an experiment in Zambia to differentiate between the screening

and sunk-cost effects measured by the usage of clorin (purchased from the experimenter) to purify

drinking water. In the first phase (baseline), the experimenter measures, among other variables, the

chemical concentration of clorin in the households’ drinking water. In the second phase (marketing),

the experimenter offers to sell a bottle of clorin to the concerned households at less than market

price. In the third phase (follow-up), the experimenter again measures, among other things, the

clorin concentration. The data are monotonic in terms of incompleteness — the third phase was

conducted only on those households who could be reached in the second phase (planned incomplete)

and there was also high attrition, particularly, in the third phase (unplanned incomplete).

(2c) Ashraf et al. (2014) run an experiment in Zambia to study household bargaining power in

terms of eventual fertility and usage of contraceptives when women were given access to contraceptives

in the presence and absence of their husbands. The first phase is a baseline survey on women that also

provided them with information on contraception and prevention of STD, and distributed condoms.

In the second phase (experiment) the respondents were reached either in the presence or absence

of their husbands (reflecting two types of treatments) and vouchers for injectable contraceptives

were provided. In the third phase (follow-up) information was collected on the women’s use of

contraceptives, sexual behavior, fertility, etc. Interestingly, beside a small number of rather balanced

attrition (unplanned incompleteness), the monotonicity in this data resulted primarily from planned

incompleteness because the second phase was conducted on a much smaller subset of the respondents

from the first phase owing, in the authors’ words, to “overwhelmingly...resource constraints on the

part of the investigators and a strict timeline for completion of the study”/“Not enough budget”.
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Other types of planned incompleteness in economics

Another source of planned incompleteness (and eventual monotonicity) in Ashraf et al. (2014)’s

data is the decision to collect new variables during the follow-up and an additional round but only

in focus groups with subsets of participants. In other words, now the full data set contains a subset

of units with the original variables, while the rest with the original plus new variables. Relatedly,

there can be cases where such new variables might have less accurate counterparts in the original

variables, making the latter subset (in the last sentence) a validation sample. An example is Beaman

et al. (2015) who use an input survey to obtain such data. An important consequence of this that

we highlight in our paper is that the joint distribution of the more and less accurate variables that

are jointly observed in the validation sample can often be useful for efficiency gains in subsequent

estimation (although Beaman et al. (2015) did not need to exploit it). A similar example with more

and less accurate measures of consumption, but unfortunately no joint observability (not needed for

the stated purpose of their paper), is Beegle et al. (2012) [see our Section 4 for more on it]. This is

also an example that does not involve a time dimension unlike the other references presented here.

Other types of cases where planned incompleteness could be useful include McKenzie (2012) and

Allcott and Rogers (2014). Monotonicity is natural (at least, not unnatural) in both types of cases.

McKenzie (2012) draws on the clinical trial literature and provides an analysis of the benefit in

precision gains from multiple follow-up measurements in field experiments over the standard practice

of a single baseline and a single follow-up. His discussion focuses on the tradeoff in the choice of n

(number of subjects) and T (number of measurements including baseline and follow-ups) at a given

cost. Alternatively, one could keep both n and T large but measure the relevant variables only for a

subset of subjects at each follow-up exactly like the prototypical multi-phase sampling.

Allcott and Rogers (2014) consider a treatment that was applied to subjects for varying duration.

Specifically, the treatment was applied, i.e., a “home energy report” (containing personalized energy

use, social comparisons, and energy conservation information) was sent to subjects, over a period

of time but was discontinued (and not reinstated) for subsets of subjects during the tenure. The

authors study the effect of this treatment on the energy consumption of the subjects. Note that, in

such cases, the treatment administrator need not choose the subset of subjects “exogenously” but

could conceivably incorporate the subjects’ past responses to the treatment in the choice decision.

Relation with our framework

While the details of estimation vary, all the studies cited above involve estimating expectations

and, sometimes, regression coefficients. For example, consider, without loss of generality, the in-

strumental variables (IV) regression in equation (2) (p. 1848) in Thornton (2008) (our Example
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(2a)) that was run on 75% of the full sample, namely, on the subjects from the districts of Rumphi

and Balaka and not from Mchinji [see their Tables 6 and 7]. Assume in the spirit of Table 7 that

the district-level heterogeneity is captured by the intercept, and extend this assumption to the full

sample so that the regression continues to hold in the population of the full sample simply by adding

a dummy D for Mchinji as a regressor. Denoting the instruments, endogenous regressors, exogenous

regressors and dependent variable by W,X1, X2 and y respectively, define the (moment) function:

m(y,X1, X2,W ;β1, β2) := (W ′, X ′
2)

′(y −X1β1 −X2β2).

The planned incompleteness due to the selective follow-up here is a case of missing y. Now, while

the coefficient ofD (inX2) is unidentified, the results in our paper imply that if interest lies in the pop-

ulation of all three districts then the optimal use of the full sample is possible using the modified mo-

ment vector: (1−D)
1−P (D=1)m(y,X1, X2,W ;β1, β2)+

(
1− (1−D)

1−P (D=1)

)
E[m(y,X1, X2,W ;β1, β2)|X1, X2,W ]

instead of (1−D)
1−P (D=1)m(y,X1, X2,W ;β1, β2) that is “close” to what was used in Table 7.15,16 (Feasi-

bility issues of the modified moment vector, which also arise in Example 1 below (Appendix A.2),

are addressed in detail in the sequel and can be skipped for now in this introductory discussion.)

Our paper explores such optimal uses of the sample for efficient estimation in more general contexts.

A2. Planned incomplete design: examples of optimality of the design

Example 1: Minimizing variance of estimator subject to a given expected cost of survey

Let (Y,X) be scalar variables with finite means and variances. Let the parameter of interest be

β = E[Y −X]. Consider two random samples S† = {Yj , Xj}n
†

j=1 and S = {Yi, Di, DiXi}ni=1 where D

is binary. We observe X in S only when D = 1. Assume that P (D = 1|Y,X) = P (D = 1) = p.17

The standard and, in this case, efficient estimator of β based on S† is:

β̂† =

n†∑
j=1

(Yj −Xj) /n
† with V ar(β̂†) = ∆/n†

where ∆ := V ar(Y −X). On the other hand, the result in this paper gives an infeasible version of

the efficient estimator of β based on S as:

15Standard IV conditions such as E[m(y,X1, X2,W ;β0
1 , β

0
2)|X2,W ] = 0 or E[m(y,X1, X2,W ;β0

1 , β
0
2)] = 0 do not

imply that E[m(y,X1, X2,W ;β0
1 , β

0
2)|X1, X2,W ] = 0 where β0

1 and β0
2 are the true values of β1 and β2. Hence, the

modification in the moment vector is not moot, and it reduces the variability of the estimating function for β1 and β2.
16We say “close” to mean asymptotically equivalent. Note that, Tables 6 and 7 suggest that the first stage was run

on the full sample since only y is missing, while the second stage was run on the sample where D = 0. While this gives
more precise first stage estimates than what our latter representation above gives, under standard assumptions both
approaches actually give asymptotically equivalent estimates of the parameters of interest β1 and β2 that, in turn, are
less precise than what our former representation above with the modified moment vector does.

17While n† and n are non-random quantities, we allow, here and throughout, D to be random. Hence nD :=∑n
i=1 Di ∼ Bin(n, p), i.e., the size of the complete sub-sample (the sub-sample containing all the variables required to

estimate β) is random. This is in spirit similar to the familiar relationship between multinomial sampling and standard
stratified sampling. It provides the technical convenience to consider a variety of cases under a unified framework.
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β̂ =
1

n

n∑
i=1

{
Di

p
(Yi −Xi) +

(
1− Di

p

)
(Yi − E[X|Yi])

}
with V ar

(
β̂
)
=

1

n

[
∆+

1− p

p
E[V ar(X|Y )]

]
.

β̂ is infeasible because E[X|Y ] is unknown in practice. A feasible version of β̂ plugs in an estimator

Ê[X|Y ] for E[X|Y ] in the expression for β̂. An important and desirable feature of our results that is

repeatedly emphasized in Appendix C is that as long as Ê[X|Y ] is consistent for E[X|Y ] uniformly

in Support(Y ), plugging Ê[X|Y ] in the expression for β̂ only makes the result asymptotic, i.e., (i)

what is referred to as V ar(β̂) turns out to be (1/n) times the asymptotic variance of the feasible β̂,

and (ii) the feasible β̂ is no longer unbiased but is asymptotically unbiased and normally distributed.

Now, let the cost of observing Y for a unit be 1 and that for X be c where c > 1. Let the allowed

expected total cost for the sample be c∗. Thus, n† = ⌊c∗/(1+ c)⌋ and n = ⌊c∗/(1+pc)⌋ for a given c,

c∗ and p, and where ⌊a⌋ denotes the largest integer ≤ a. Consider the problem of choosing p such that

V ar(β̂) < V ar(β̂†). By simple calculations: V ar(β̂) < V ar(β̂†) ⇐⇒ p > 1/(cq) provided that cq >

1 where q = V ar(Y − X)/E[V ar(X|Y )] − 1. No solution exists if cq ≤ 1. However, if cq > 1 and

p > 1/(cq), then the sample S is strictly advantageous over the sample S† under the premise of the

stated problem. (If Y and X are normally distributed with unit variance and correlation ρ then

q = (1− ρ)/(1 + ρ).) If cq > 1 and n = c∗/(1 + pc), V ar(β̂) is minimized when p = 1/
√
cq.

Example 2: Variance reduction through dependent as opposed to independent sampling

Consider estimating the parameter β from a regression model Y = α + βX + ϵ where Y and X

are scalar random variables. For simplicity, let X ∼ Bin(1, q) and let the model error ϵ ∼ (0, σ2)

be independent of X. Let S = {Di, DiYi, Xi}ni=1 where D is a binary variable such that we observe

Y in S only when D = 1. (We switch the missing variable from X to Y in this example, unlike in

most of our paper, so that we can consider a simple unweighted estimator without bothering about

bias due to the possible non-representativeness of the units with Di = 1 [see Wooldridge (2007)].)

Let p(j) = E[D|X = j] for j = 0, 1. Then, p := E[D] = qp(1) + (1 − q)p(0) and E[DX] = qp(1).

The ordinary least squares estimator β̂ of β, based on sample units with Di = 1, and the asymptotic

variance of β̂ are, respectively:

β̂ =

n∑
i=1

DiXi

Yi − n∑
j=1

DjYj

/
n∑

j=1

Dj

/ n∑
i=1

DiXi

Xi −
n∑

j=1

DjXj

/
n∑

j=1

Dj


and

Avar = σ2 /E[DX] (1− E[DX]/E[D]) = pσ2 /[qp(1)(p− qp(1))] .

If P (D = 1|Y,X) = P (D = 1) = p, implying that p(1) = p(0) = p, then Avar = σ2/pq(1 − q).

On the other hand, p(1) = p/(2q) minimizes the general Avar and the minimized value is Avar
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= 4σ2/p, which is strictly smaller than σ2/pq(1− q) unless q = 1/2. Hence, by virtue of making D

dependent on X, optimally, one could correct for the non-50-50 assignment of X in the population

– the essential idea behind stratification – to minimize variance.

A3. The equivalence relation in the MAR condition in (1)

Lemma 9 Let P (C = r|TR(Z)) > 0 for each r = 1, . . . , R. Then, P (C = r|C ≥ r, TR(Z)) = P (C =

r|C ≥ r, Tr(Z)) for r = 1, . . . , R if and only if P (C = r|TR(Z)) = P (C = r|Tr(Z)) for r = 1, . . . , R.

Proof: We assume only P (C = r|TR(Z)) > 0 for each r = 1, . . . , R for simplicity to avoid cases with

0/0. The proof follows by induction. We first show the “if” part and then the “only if” part.

“if:” Let P (C = r|TR(Z)) = P (C = r|Tr(Z)) for r = 1, . . . , R. Therefore, P (C = 1|C ≥

1, TR(Z)) ≡ P (C = 1|TR(Z)) = P (C = 1|T1(Z)) ≡ P (C = 1|C ≥ 1, T1(Z)). Now, suppose that

P (C = j|C ≥ j, TR(Z)) = P (C = j|C ≥ j, Tj(Z)) for j = 1, . . . , r for some r = 1, . . . , R − 1. This

will imply that P (C = r + 1|C ≥ r + 1, TR(Z)) = P (C = r + 1|C ≥ r + 1, Tr+1(Z)) because:

P (C = r + 1|C ≥ r + 1, TR(Z)) =
P (C = r + 1|TR(Z))
P (C ≥ r + 1|TR(Z))

=
P (C = r + 1|TR(Z))

1−
∑r

j=1 P (C = j|TR(Z))

=
P (C = r + 1|Tr+1(Z))

1−
∑r

j=1 P (C = j|Tj(Z))
=

P (C = r + 1|Tr+1(Z))

1−
∑r

j=1 P (C = j|Tr+1(Z))

=
P (C = r + 1|Tr+1(Z))

P (C ≥ r + 1|Tr+1(Z))
= P (C = r + 1|C ≥ r + 1, Tr+1(Z))

where all equalities on lines 1 and 3 follow by definition, and both equalities on line 2 follow from

the assumed conditions once we note that Tj(Z) is nested by Tj+1(Z) for all j = 1, . . . , R− 1.

“only if:” Let P (C = r|C ≥ r, TR(Z)) = P (C = r|C ≥ r, Tr(Z)) for r = 1, . . . , R. Therefore,

P (C = 1|TR(Z)) ≡ P (C = 1|C ≥ 1, TR(Z)) = P (C = 1|C ≥ 1, T1(Z)) ≡ P (C = 1|T1(Z)). Now,

suppose that P (C = j|TR(Z)) = P (C = j|Tj(Z)) for j = 1, . . . , r for some r = 1, . . . , R − 1. This

will imply that P (C = r + 1|TR(Z)) = P (C = r + 1|Tr+1(Z)) because:

P (C = r + 1|TR(Z)) = P (C = r + 1, C ≥ r + 1|TR(Z))

= P (C = r + 1|C ≥ r + 1, TR(Z))P (C ≥ r + 1|TR(Z))

= P (C = r + 1|C ≥ r + 1, TR(Z))

1−
r∑

j=1

P (C = j|TR(Z))


= P (C = r + 1|C ≥ r + 1, Tr+1(Z))

1−
r∑

j=1

P (C = j|Tj(Z))


= P (C = r + 1|C ≥ r + 1, Tr+1(Z))P (C ≥ r + 1|Tr(Z))

= P (C = r + 1|Tr+1(Z))
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where the first three equalities follow by definition, the fourth equality follows by the assumed

conditions, and the last two equalities are simply the reverse steps of the first three equalities coupled

with the fact that Tj(Z) is nested by Tj+1(Z) for all j = 1, . . . , R− 1.

A4. The equivalence relation in the planned incompleteness condition in (2)

Lemma 10 Let (1) hold and also P (C = r|TR(Z)) > 0 for each r = 1, . . . , R. Then, P (C = r|C ≥

r, Tr(Z)) is known for r = 1, . . . , R if and only if P (C = r|Tr(Z)) is known for r = 1, . . . , R.

Proof: The proof follows by induction exactly like the proof of Lemma 9. For the “if” part, when

showing that the result holds for r + 1 assuming that it holds for j = 1, . . . , r, we have:

P (C = r + 1|C ≥ r + 1, Tr+1(Z)) =
P (C = r + 1|Tr+1(Z))

1−
∑r

j=1 P (C = j|Tj(Z))

as before due to (1). The RHS is known by the assumed conditions. Hence the LHS is known.

For the “only if” part, when showing that the result holds for r + 1 assuming that it holds for

j = 1, . . . , r, we have:

P (C = r + 1|Tr+1(Z)) = P (C = r + 1|C ≥ r + 1, Tr+1(Z))

1−
r∑

j=1

P (C = j|Tj(Z))


as before due to (1). The RHS is known by the assumed conditions. Hence the LHS is known.

Remark: At this stage, it is important to list two useful relations that are both related to the steps

in the proofs of Lemmas 9 and 10, and also used repeatedly in the proofs in Appendices A and B.

Relation 1: (1) implies that

P (C ≥ r|TR(Z)) = P (C ≥ r|Tr−1(Z)). (18)

This follows by noting that:

P (C ≥ r|TR(Z)) = 1−
r−1∑
j=1

P (C = j|TR(Z))

= 1−
r−1∑
j=1

P (C = j|Tj(Z))

= 1−
r−1∑
j=1

P (C = j|Tr−1(Z))

= 1− P (C ≤ r − 1|Tr−1(Z)) = P (C ≥ r|Tr−1(Z))
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where the first equality follows by definition, the second by (1), the third by (1) and the nested

structure of Tj(Z)’s, while the fourth and the fifth by definition.

Note that, taking R = 2 in (18) implies that P (C = 2|T2(Z)) = P (C = 2|T1(Z)), the conven-

tional MAR assumption found in the econometrics literature that has traditionally focused on

R = 2 [see, e.g., Chen et al. (2005), Chen et al. (2008), Graham (2011), Graham et al. (2012)].

Looking at the complement events in (18) equivalently gives (18) as P (C ≤ r − 1|TR(Z)) =

P (C ≤ r−1|Tr−1(Z)), which perhaps better indicates the generality of the selection on variables

condition in our paper that can accommodate for all sorts of dimension reductions including

the extreme reduction CMAR in (10) and the no reduction in Barnwell and Chaudhuri (2018).

Relation 2: For any function ν(Z) such that E|ν(Z)| <∞, (1) implies that:

E

[
I(C ≥ r)

P (C ≥ r|Tr(Z))
ν(Z)

]
= E

[
P (C ≥ r|Z)

P (C ≥ r|Tr(Z))
ν(Z)

]
= E

[
P (C ≥ r|Tr(Z))
P (C ≥ r|Tr(Z))

ν(Z)

]
= E[ν(Z)](19)

where the first equality follows by the law of iterated expectations and the second one by (1).

As a consequence of (18), one can instead write (19) as:

E

[
I(C ≥ r)

P (C ≥ r|Tr−1(Z))
ν(Z)

]
= E

[
P (C ≥ r|Tr(Z))
P (C ≥ r|Tr−1(Z))

ν(Z)

]
= E

[
P (C ≥ r|Tr−1(Z))

P (C ≥ r|Tr−1(Z))
ν(Z)

]
= E[ν(Z)].

A5. Intermediate steps in equation (4)

E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)

I(C = R)

P (C = R|TR(Z))
m(Z;β)

]
= E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)
E

[
I(C = R)

P (C = R|TR(Z))

∣∣∣∣TR(Z)]m(Z;β)

]
= E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)
m(Z;β)

]
= E

[
I(C ∈ λ)

P (C ∈ λ)
m(Z;β)

]
= E[m(Z;β)|C ∈ λ].

The first and third equalities follow by the law of iterated expectations, and the rest by definition.

Importantly, note that, the MAR condition in (1) and the planned incompleteness condition in (2)

are not required for this relation in (4) to hold. However, as noted in the discussion around equations

(1) and (2) that led to (4), the MAR condition in (1), in particular, is required to implement this

relation in practice for the estimation of β by the IPW or the efficient estimator.
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A6. Relation of the framework in Section 2 with closely related technical papers

We delineate the framework in Section 2 from the following not-too-old representative examples under

the non-Bayesian paradigm. (a) Whittemore (1997) considers maximum likelihood and Horvitz-

Thompson estimators with data obtained by multi-phase sampling (and seems to prefer the latter)

where the target is the full population, i.e, λ = C. (b) Robins and Rotnitzky (1995) and Holcroft

et al. (1997) consider optimally using all the sub-samples under a framework similar to ours but

with λ = C. (c) Lee et al. (2012) consider efficient semiparametric likelihood-based estimation with

λ = C in multi-phase case-control studies when TR−1(Z) has a finite number of support points. (d)

While the multi-valued treatment framework with λ = C considered in Cattaneo (2010) is generally

related, it also differs in an important way because we actually allow the entire random vector Z

to be the argument for each element of the vectorial moment function m(Z;β), and thus for each

element there can be R levels of hierarchy in observability. This creates a major difference in terms

of efficiency bounds, efficient influence functions, etc., and is discussed in details in Chaudhuri and

Guilkey (2016) (p. 686). (e) Dardanoni et al. (2011) consider a multiple regression framework

with regressors missing non-monotonically under an assumption that implies that the regression

coefficients do not vary across the populations of the sub-samples. So, they focus on λ = C and,

unlike in our paper and the references cited in (a)-(d) and (f) (below), use of their complete sub-

sample without correction for selection does not cause any bias in estimation.18 Similarly, if one

extends Abrevaya and Donald (2017) to the case of multiple incomplete sub-samples, then each

sub-population would still be representative of λ = C. (f) Finally, Chen et al. (2005) and Chen

et al. (2008) consider frameworks where β0λ is defined exactly as in (3) for R = 2 and λ = {1}

(sub-population) and {1, 2} (full population).

By contrast in one way or the other to (a)-(f), our setup: (i) allows for a general R, (ii) expands

the scope to all (2R − 1) sub-populations (including λ = C), (iii) introduces a dynamically updated

sampling design via MAR, and (iv) provides the new insights available only from letting R > 2.

In this regard, it is also important to recall that the references in (d)-(f) above or the well-known

sampling designs like the SQD, PQD, etc. noted in Appendix A.1 either do not consider or do

not have the scope to consider a key feature of our framework, namely, sampling designs that are

dynamically updated using the newly available information from more than one phase.

18Bias arises due to problems with the imputed values if the same estimation is done in the incomplete sub-samples by
replacing the missing regressors with their imputed values. To improve the precision of the unbiased estimator based on
the complete sub-sample, they recommend Bayesian model averaging using the unbiased and biased estimates. While
this approach should be very useful in many cases, it is a difficult proposition to compare it with the results in our
paper and the other references here that all solve a different optimization problem: minimize asymptotic variance for
asymptotically unbiased estimators. We thank a referee for pointing out this useful reference that we had missed earlier.
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A7. Intermediate steps for Remark 1 following Proposition 1

When R = 2 and λ = {1, 2}, (5) and (6) give:

φ{1,2}(O;β) =
I(C = 2)

P (C = 2|T2(Z))
m(T2(Z);β) +

(
I(C ≥ 1)

P (C ≥ 1|T1(Z))
− I(C = 2)

P (C = 2|T2(Z))

)
E[m(T2(Z);β)|T1(Z)]

=
I(C = 2)

P (C = 2|T1(Z))
m(T2(Z);β) +

(
1− I(C = 2)

P (C = 2|T1(Z))

)
E[m(T2(Z);β)|T1(Z)]

=
I(C = 2)

P (C = 2|T1(Z))
(m(T2(Z);β)− E[m(T2(Z);β)|T1(Z)]) + E[m(T2(Z);β)|T1(Z)]

where the second equality follows from (18). The last line is the expression from Chen et al. (2008).

When R = 2 and λ = {1}, (5) and (6) give:

φ{1}(O;β) =
I(C = 2)

P (C = 2|T2(Z))
P (C = 1|T2(Z))

P (C = 1)
m(T2(Z);β)

+

(
I(C ≥ 1)

P (C ≥ 1|T1(Z))
− I(C = 2)

P (C = 2|T2(Z))

)
E

[
P (C = 1|T2(Z))

P (C = 1)
m(T2(Z);β)

∣∣∣∣T1(Z)]
=

I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
m(T2(Z);β)

+

(
1− I(C = 2)

P (C = 2|T1(Z))

)
E

[
P (C = 1|T1(Z))

P (C = 1)
m(T2(Z);β)

∣∣∣∣T1(Z)]
=

I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
(m(T2(Z);β)− E[m(T2(Z);β)|T1(Z)])

+
P (C = 1|T1(Z))

P (C = 1)
E[m(T2(Z);β)|T1(Z)]

where the second equality follows from (18) and (1). The RHS of the last equality is the expression

from Chen et al. (2008).

A8. Proposition 2’s connection with the calibration and econometrics literature

The idea behind using the moment restrictions in (9) to augment the moment restriction (8), that

already identifies β0λ and can be used to obtain a
√
n-consistent estimator [see, e.g., Wooldridge

(2007)], and thus achieving efficiency gains is the same as the idea of calibration in the survey

sampling literature [see, e.g., Deville and Sarndal (1992)]. The same idea, in more economics-centric

ways, has appeared in the econometrics literature also: see Back and Brown (1993), Imbens and

Lancaster (1994), Hellerstein and Imbens (1999), Devereux and Tripathi (2009), Tripathi (2011),

Graham et al. (2012), etc. or Hellerstein and Imbens (1999), Nevo (2003), etc. in another context.

To see the connection, first note that under our setup this means estimating β0λ by solving for β

from
∑n

i=1 ωiφR,λ(Oi, β) = 0 where ωi = I(Ci = R)/P (C = R|TR(Zi)) = ωIPW,i, say, (instead
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of 1/n to reflect the non-representativeness of the complete sub-sample) if only (8) is used. On

the other hand, if the calibration/augmenting/auxiliary restrictions in (9) are also utilized, then

ωi = ωIPW,i +
∑R−1

r=1 ar,i where some appropriate (and complicated) set of random functions ar,i’s.

For example, if R = 2, then a1,i = ωIPW,iΥ
′
K1

(T1(Zi))(
∑n

j=1ΥK1(T1(Zj))Υ
′
K1

(T1(Zj)))
−1
∑n

l=1(1 −

ωIPW,l)ΥK1(T1(Zl)) where ΥK1(T1(Z)) is a K1 × 1 vector of some possibly orthogonalized series of

functions (e.g., power series, splines, etc.) of T1(Z) with possibly K1 → ∞ as n → ∞ [see Graham

et al. (2012)]. One could instead use ω̄i = ωi/
∑

j ωj as the weights so that they necessarily add

up to one. However, there is no guarantee that ω̄i ∈ [0, 1] for all i (indeed it can be outside [0, 1]

for all i), which is not a desirable characteristic for weights. We do not pursue corrections for this

undesirable characteristic of the weights since they are peripheral to the main message of our paper.

A9. The importance of the planned incompleteness condition (2) in Proposition 2

This importance becomes evident when the target is not the full population. Consider R = 2 and

λ = {1}, and note that Proposition 2 gives:

φ{1}(O;β) = ProjT1
(ϕ2,λ(O;β)|ϕ1) = ϕ2,λ(O;β)− ProjT1

(ϕ2,λ(O;β)|ϕ1)

=
I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
m(Z;β)

−
{

P (C = 1|T1(Z))
P (C = 1)P (C = 2|T1(Z))

E[m(Z;β)|T1(Z)]
}
(I(C = 2)− P (C = 2|T1(Z)))

=
I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
(m(Z;β)− E[m(Z;β)|T1(Z)])

+
P (C = 1|T1(Z))

P (C = 1)
E[m(Z;β)|T1(Z)].

On the other hand, it is known from Case 1 in Theorem 1 of Chen et al. (2008) (or plugging in R = 2

and λ = {1} in our Proposition 5, or, equivalently, Barnwell and Chaudhuri (2018)’s Proposition 1)

that the corresponding quantity without (2) would be:

φ{1}[u](O;β) =
I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
(m(Z;β)− E[m(Z;β)|T1(Z)])

+
I(C = 1)

P (C = 1)
E[m(Z;β)|T1(Z)].

Of course, φ{1}[u](O;β) ̸= φ{1}(O;β), i.e., Proposition 2 does not generally apply when targets are

sub-populations unless the planned incompleteness condition in (2) holds.
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Appendix B: Proofs of the main results in Section 2 and 3

The proofs of Propositions 1, 3, 4 and 5 all involve obtaining the semiparametric efficiency bound

and the efficient influence function, under different assumptions, following the three steps in Chen

et al. (2008). Step 1 characterizes the tangent set for all regular parametric sub-models satisfying

the semiparametric assumptions on the observed data. Step 2 obtains the efficient influence function

for a given rotation of m(Z;β). Step 3 obtains the optimal rotation and, thereby, gives the efficiency

bound as the expectation of the outer product of the efficient influence function. f and F denote

the density and distribution functions, and the concerned random variables are specified inside

parentheses. L2
0(F ) denotes the space of mean-zero, square integrable functions with respect to F .

Proof of Proposition 1:

STEP - 1: Consider a regular parametric sub-model indexed by a parameter θ for the distribution

of the observed data O = (C ′, T ′
C(Z))

′. The log of the distribution can be expressed in terms of the

full data (C,Z ′)′ as:

log fθ(O) = log fθ(Z(1))+
R∑

r=2

I(C ≥ r) log fθ(Z(r)|Z(1), . . . , Z(r−1))+
R∑

r=1

I(C = r) logP (C = r|Z(1), . . . , Z(r)).

To reflect our condition (2), i.e., P (C = r|Z(1), . . . , Z(r)) is known for r = 1, . . . , R and hence need

not be accounted for in what follows, we do not index them by θ. As in the proof of Theorem 2 in

Chen et al. (2008), these quantities do not play a role in the proof of the present proposition and

this is in contrast to the proof of our Propositions 4 and 5 where they are going to be key quantities.

θ0 is the unique value of θ such that fθ0(O) equals the true f(O), and accordingly for all the

quantities. The score function with respect to θ can be written in terms of (C,Z ′)′ as:

Sθ(O) = sθ(Z(1)) +

R∑
r=2

I(C ≥ r)sθ(Z(r)|Z(1), . . . , Z(r−1))

where sθ(Z(1)) :=
∂
∂θ log fθ(Z(1)) and sθ(Z(r)|Z(1), . . . , Z(r−1)) :=

∂
∂θ log fθ(Z(r)|Z(1), . . . , Z(r−1)). We

will omit the subscript θ from the quantities evaluated at θ = θ0. The tangent set is the mean square

closure of all dβ dimensional linear combinations of Sθ(O) for all such smooth parametric sub-models,

and it takes the form:

T := a1(Z(1)) +
R∑

r=2

I(C ≥ r)ar(Z(1), . . . , Z(r)), (20)

where a1(Z(1)) ∈ L2
0(F (Z(1))) and ar(Z(1), . . . , Z(r)) ∈ L2

0(F (Z(r)|Z(1), . . . , Z(r−1))).

STEP - 2: The moment conditions in (3) for a given λ ∈ Λ are equivalent to the requirement
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that for any dβ × dm matrix A, the following just-identified system of moment conditions holds:

AE[m(Z;β0λ)|C ∈ λ] = AE

[
P (C ∈ λ|Z)
P (C ∈ λ)

I(C = R)

P (C = R|Z)
m(Z;β0λ)

]
= 0.

where the first equality follows from (4). Differentiating with respect to θ under the integral, and

noting that P (C ∈ λ|Z) (which is known) does not depend on θ but P (C ∈ λ) (which is unknown)

does, we obtain by using (3) and (1) that:

0 = AMλ
∂β0

λ(θ0)

∂θ′
+AE

[
m(Z;β0λ)

{
s(Z(1))

′ +
R∑

r=2

s(Z(r)|Z(1), . . . , Z(r−1))
′

}∣∣∣∣∣C ∈ λ

]
.

Taking a full row rank A along with assumption (A3) gives:

∂β0λ(θ0)

∂θ′
= −(AMλ)

−1AE

[
m(Z;β0λ)

{
s(Z(1))

′ +

R∑
r=2

s(Z(r)|Z(1), . . . , Z(r−1))
′

}∣∣∣∣∣C ∈ λ

]
.

Therefore, for the given A, any regular estimator for β0λ will be asymptotically linear with influence

function of the form −(AMλ)
−1Am(Z;β0λ).

Now, for the given A, we can obtain the projection of this influence function on to the tangent

set T in (20) if we can find a ψ(A,O) ∈ T such that:

E[ψ(A,O)S(O)′] =
∂β0λ(θ0)

∂θ′
. (21)

Let us conjecture that ψ(A,O) = −(AMλ)
−1Aφλ(O;β0λ), and then verify (21) by equivalently show-

ing that:

E[φλ(O;β0λ)S(O)′] = E

[
m(Z;β0λ)

{
s(Z(1))

′ +

R∑
r=2

s(Z(r)|Z(1), . . . , Z(r−1))
′

}∣∣∣∣∣C ∈ λ

]
.

Consider the left hand side (LHS) and, in accordance with the partition of φλ(O) (we work with the

alternative specification in (7) for convenience), write it as
∑R

q=1Bq where, for q = 2, . . . , R:

Bq := E

[
I(C ≥ q)

P (C ≥ q|Tq(Z)
[
φq,λ(O;β0λ)− φq−1,λ(O;β0λ)

]
S(O)′

]
, while B1 := E

[
φ1,λ(O;β0λ)S(O)′

]
.

To avoid notational clutter, in the rest of STEP-2 we writem(Z;β0λ) asm; Tq(Z) as Tq; φq,λ(O;β0λ)

as φq,λ for q = 1, . . . , R; and also write s(Z(r)|Z(1), . . . , Z(r−1)) as s(Z(r)|Tr−1) for r = 2, . . . , R.
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Now, note that:

B1 = E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] s(Z(1))
′
]
+

R∑
r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] I(C ≥ r)s(Z(r)|Tr−1)
′
]
.

Using MAR in (1) in the first equality of the last line below and the fact that s(Z(r)|Tr−1) ∈

L2
0(F (Z(r)|Tr−1)) for r > 1 in the last equality of the last line below, we obtain that:

R∑
r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] I(C ≥ r)s(Z(r)|Tr−1)
′
]

=

R∑
r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] (1− I(C ≤ r − 1))s(Z(r)|Tr−1)
′
]

=
R∑

r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1]E[(1− I(C ≤ r − 1))|Tr−1]E[s(Z(r)|Tr−1)
′|Tr−1]

]
= 0.

This is the first observation. On the other hand, since T1 := Z(1), we have the second observation:

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] s(Z(1))
′
]
= E

[
P (C ∈ λ|TR)
P (C ∈ λ)

ms(Z(1))
′
]
= E

[
I(C ∈ λ)

P (C ∈ λ)
ms(Z(1))

′
]
.

Combining the two observations it follows that B1 = E[ms(Z(1))
′|C ∈ λ].

Now, we consider Bq. (1) gives for q = 2, . . . , R:

Bq =

q−1∑
r=1

E

[
I(C ≥ q)

P (C ≥ q|Tq)
(φq,λ − φq−1,λ)s(Z(r)|Tr−1)

′
]
+

R∑
r=q

E

[
I(C ≥ r)

P (C ≥ q|Tq)
(φq,λ − φq−1,λ)s(Z(r)|Tr−1)

′
]
.

Since E[φq,λ|Tq−1] = φq−1,λ, it follows by conditioning on Tq−1 and from (19) that the first term on

the RHS is 0. On the other hand, (18) and the fact that s(Z(r)|Tr−1) ∈ L2
0(F (Z(r)|Tr−1)) imply that

the second term is:

R∑
r=q

E

[
1− I(C ≤ r − 1)

1− P (C ≤ q − 1|Tq−1)
(φq,λ − φq−1,λ)s(Z(r)|Tr−1)

′
]
= E[φq,λs(Z(q)|Tq−1)

′] = E[ms(Z(q)|Tq−1)
′|C ∈ λ].

Therefore, Bq = E[ms(Z(q)|Tq−1)
′|C ∈ λ] for q = 2, . . . , R, combining which with B1 verifies (21).

That ψ(A,O) ∈ T follows from matching terms as follows. (i) −(AMλ)
−1Aφ1,λ is only a function

of T1 := Z(1) and E[φ1,λ] = 0 and, hence, satisfies the properties of a1(Z(1)) in (20). (ii) The r-th

term (r = 2, . . . , R, without the multiplier I(C ≥ r)) on the RHS of ψ(A,O) can be written as:

− 1

P (C ≥ r|Tr)
(AMλ)

−1A [φr,λ − φr−1,λ] = − 1

1− P (C ≤ r − 1|Tr−1)
(AMλ)

−1A [φr,λ − φr−1,λ]
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by (1) [also see (18)]. Hence, by definition of φr, taking expectation of the RHS of the above equation

conditional on Tr−1 := (Z(1), . . . , Z(r−1))
′ gives 0. Therefore, this term is only a function of Tr that

is also in L2
0(F (Z(r)|Z(1), . . . , Z(r−1))), and hence satisfies the properties of ar(Z(1), . . . , Z(r)) in (20).

STEP - 3: For a givenA, we verified that the projection of the influence function−(AMλ)
−1Am(Z;β0λ)

on to the tangent set T is ψ(A,O) := −(AMλ)
−1Aφλ(O;β0λ). The asymptotic variance of ψ(A,O)

is (AMλ)
−1A Vλ A′(AMλ)

−1′ where Vλ := V ar
(
φλ(O;β0λ)

)
= E[φλ(O;β0λ)φλ(O;β0λ)

′]. Therefore,

the efficient influence function is obtained by minimizing the above variance with respect to A.

Standard arguments give that the minimizer is A∗ = M ′
λV

−1
λ . Hence, the variance lower bound is

Ωλ := (M ′
λV

−1
λ Mλ)

−1 and the efficient influence function with variance equal to the variance lower

bound is ψ(A∗, O) = −ΩλM
′
λV

−1
λ φλ(O;β0λ).

Proof of Proposition 2:

Let us start with r = 1, i.e., the residual from the projection, ProjTR−1
(ϕR,λ(β)|ϕR−1), inside

the innermost parenthesis on the RHS. We will also consider r = 2 so that the pattern in the form

of the residuals from the successive projections inside the first few innermost parentheses is clear to

all. Then we apply induction arguments. For brevity, write φR,λ(O;β) as φR,λ and Tr(Z) as Tr.

First, note that direct computation and (1) along with (18) give:

ProjTR−1
(ϕR,λ(β)|ϕR−1) =

[
I(C = R)

P (C = R|TR)
− I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)

]
E[φR,λ|Tr−1],

which implies that:

ProjTR−1
(ϕR,λ(β)|ϕR−1) =

I(C = R)

P (C = R|TR)
(φR,λ − E[φR,λ|TR−1])︸ ︷︷ ︸+ I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)
E[φR,λ|TR−1].

Consider the under-braced part in the RHS of the expression for ProjTR−1
(ϕR,λ(β)|ϕR−1). Using

TR−1 \ TR−2 = Z(R−1) and (1), note that E [(φR,λ − E[φR,,λ|TR−1])ϕR−2|TR−2] is a dm × 2 matrix

of zeros, and hence has no contribution in the successive projections. (Terms with no contribution

in the successive projections are marked by under-braces in this proof.) On the other hand,

E

[
I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)
E[φR,λ|TR−1]ϕR−2

∣∣∣∣TR−2

]
=
P (C = R− 2|TR−2)

P (C ≥ R− 2|TR−2)
E[φR,λ|TR−2].

Thus, similar computation as above (and the use of (18)) gives for r = 2:

ProjTR−2

(
ProjTR−1

(ϕR,λ(β)|ϕR−1)
∣∣∣ϕR−2

)
=

[
I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)
− I(C ≥ R− 2)

P (C ≥ R− 2|TR−2)

]
E[φR,λ|TR−2],

40



which implies that:

ProjTR−2

(
ProjTR−1

(ϕR,λ(β)|ϕR−1)
∣∣∣ϕR−2

)
=

1∑
s=0

I(C ≥ R− s)

P (C ≥ R− s|TR−s)
(E[φR,λ|TR−s]−E[φR,λ|TR−s−1])︸ ︷︷ ︸+ I(C ≥ R− 2)

P (C ≥ R− 2|TR−2)
E[φR,λ|TR−2].

To prove the proposition by induction, let us assume that the following holds for a general

r ∈ {2, . . . , R− 2}:

ProjTR−r

(
. . .ProjTR−1

(ϕR,λ(β)|ϕR−1) . . .
∣∣∣ϕR−r

)
=

r−1∑
s=0

I(C ≥ R− s)

P (C ≥ R− s|TR−s)
(E[φR,λ|TR−s]−E[φR,λ|TR−s−1])︸ ︷︷ ︸+ I(C ≥ R− r)

P (C ≥ R− r|TR−r)
E[φR,λ|TR−r].

Now, once again using (18), note that:

E[ϕ2R−r−1|TR−r−1] =
P (C ≥ R− r|TR−r)P (C = R− r − 1|TR−r−1)

P (C ≥ R− r − 1|TR−r−1)
,

and

E[ProjTR−r

(
. . .ProjTR−1

(ϕR,λ(β)|ϕR−1) . . .
∣∣∣ϕR−r

)
ϕR−r−1|TR−r−1]

=
P (C = R− r − 1|TR−r−1)

P (C ≥ R− r − 1|TR−r−1)
[φR,λ|TR−r−1].

Hence, the proof follows by indiction since the form is also valid for r + 1, i.e.,

ProjTR−r−1

(
. . .ProjTR−1

(ϕR,λ(β)|ϕR−1) . . .
∣∣∣ϕR−r−1

)
=

r∑
s=0

I(C ≥ R− s)

P (C ≥ R− s|TR−s)
(E[φR,λ|TR−s]−E[φR,λ|TR−s−1]) +

I(C ≥ R− r − 1)

P (C ≥ R− r − 1|TR−r−1)
E[φR,λ|TR−r−1].

(ii) The proof follows in the same way as that of Theorem 1 in Chamberlain (1992) or, more

generally, as that of Theorem 1 of Ai and Chen (2012). Appendix C1 makes the connection with Ai

and Chen (2012) explicit.

Proof of Proposition 3: This proof follows in the same way as that of Proposition 1. The efficient

influence turns out to be exactly the same as in Proposition 1 if CMAR is imposed on the latter.

We present the proofs of Propositions 4 and 5 in reverse order because the latter makes a reference

to the former. Also, since the proof of Proposition 1 already considered the case dm > dβ in detail,

for brevity, we now take dm = dβ and primarily focus on the verifications involved in Step 2.
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Proof of Proposition 5:

STEP - 1: Consider a regular parametric sub-model indexed by θ for the joint distribution of

the observed data O = (C, T ′
C(Z))

′. Because of CMAR in (10), the log of the distribution can be

expressed in terms of the full data (C,Z ′)′ as:

log fθ(O) =

R∑
r=1

I(C = r) logPθ(C = r|Z(1)) +

R∑
r=1

I(C ≥ r) log fθ(Z(r)|Z(1), . . . , Z(r−1)) + log fθ(Z(1)).

Let the true distribution be f(O) = fθ0(O) for some θ0. Using the same notations as before, the

score function with respect to θ can be written in terms of (C,Z ′)′ as:

Sθ(O) = sθ(Z(1)) +
R∑

r=2

I(C ≥ r)sθ(Z(r)|Z(1), . . . , Z(r−1)) +
R∑

r=1

I(C = r)
Ṗθ(C = r|Z(1))

Pθ(C = r|Z(1))

where Ṗθ(C = r|Z(1)) :=
∂
∂θPθ(C = r|Z(1)). Thus, the tangent space is characterized by functions of

the form:

T := a1(Z(1)) +

R∑
r=2

I(C ≥ r)ar(Z(1), . . . , Z(r)) +

R∑
r=1

I(C = r)
br(Z(1))

bbr(Z(1))
, (22)

where a1(Z(1)) ∈ L2
0(F (Z(1))); ar(Z(1), . . . , Z(r)) ∈ L2

0(F (Z(r)|Z(1), . . . , Z(r−1))) for r = 2, . . . , R;∑R
r=1 br(Z(1))) = 0,

∑R
r=1 bbr(Z(1)) = 1 , and

∑R
r=1 I(C = r)

br(Z(1))

bbr(Z(1))
∈ L2

0(F (C|Z(1))).

To avoid notational clutter, in the rest of the proof we write m(Z;β0λ) as m; Tr(Z) as Tr for

r = 1, . . . , R; and also write s(Z(r)|Z(1), . . . , Z(r−1)) as s(Z(r)|Tr−1) for r = 2, . . . , R.

Unlike in Chen et al. (2008)’s proof we use the same factorization of the joint density of O for

all λ. For a given λ ∈ Λ, the following relation obtained by two different factorization of the joint

distribution of (I(C ∈ λ), T1(Z) ≡ Z(1)) helps us to switch between different factorizations:

s(T1) + I(C ∈ λ)
Ṗ (C ∈ λ|T1)
P (C ∈ λ|T1)

+ I(C /∈ λ)
Ṗ (C /∈ λ|T1)
P (C /∈ λ|T1)

= I(C ∈ λ)

[
Ṗ (C ∈ λ)

P (C ∈ λ)
+ s(T1|C ∈ λ)

]
+ I(C /∈ λ)

[
Ṗ (C /∈ λ)

P (C /∈ λ)
+ s(T1|C /∈ λ)

]
. (23)

STEP - 2: [dm = dβ] Differentiating (3) with respect to θ under the integral:

∂β0
λ(θ0)

∂θ′
= −M−1

λ E

[
m

{
s(T1|C ∈ λ)′ +

R∑
r=2

s(Z(r)|Tr−1)
′

}∣∣∣∣∣C ∈ λ

]
.
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Then, as in the proof of Proposition 1, here we will need to correspondingly verify that:

E[φCMAR
λ[u] (O;β0λ)S(O)′] = E

[
m

{
s(T1|C ∈ λ)′ +

R∑
r=2

s(Z(r)|Tr−1)
′

}∣∣∣∣∣C ∈ λ

]
. (24)

We do this term by term for φCMAR
λ[u] (O;β0λ) and show equality of the terms on the LHS and RHS.

Consider the first term of φCMAR
λ[u] (O;β0λ). Since s(Z(r)|Tr−1) ∈ L2

0(F (Z(r)|Tr−1)) for r = 2, . . . , R

by definition, we can use (10) to take conditional expectations and then write

E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]S(O)′

]
= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

{
s(T1)

′ +
R∑

r=1

I(C = r)
Ṗ (C = r|T1)′

P (C = r|T1)

}]

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

{
Ṗ (C ∈ λ)

P (C ∈ λ)
+ s(T1|C ∈ λ)− Ṗ (C ∈ λ|T1)

P (C ∈ λ|T1)

}′]

+ E

[
1

P (C ∈ λ)
E[m|T1]Ṗ (C ∈ λ|T1)′

]

where the third line follows by using (23) to replace s(T1). The last line follows since, by using (10),

E

[
I(C ∈ λ)

R∑
r=1

I(C = r)
Ṗ (C = r|T1)
P (C = r|T1)

∣∣∣∣∣T1
]

=
∑
r∈λ

P (C = r|T1)
Ṗ (C = r|T1)
P (C = r|T1)

=
∑
r∈λ

Ṗ (C = r|T1) = Ṗ (C ∈ λ|T1).

Hence, now by repeatedly using (10) (e.g., first term on RHS of second equality) we obtain that:

E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]S(O)′

]
= E [E[m|T1]|C ∈ λ]

Ṗ (C ∈ λ)′

P (C ∈ λ)
+ E

[
E[m|T1]s(T1|C ∈ λ)′|C ∈ λ

]
− E

[
E[m|T1]

Ṗ (C ∈ λ|T1)′

P (C ∈ λ)

]
+ E

[
E[m|T1]

Ṗ (C ∈ λ|T1)′

P (C ∈ λ)

]

= E [m|C ∈ λ]
Ṗ (C ∈ λ)′

P (C ∈ λ)
+ E

[
E[m|T1]s(T1|C ∈ λ)′|C ∈ λ

]
+ 0

= 0 + E[ms(T1|C ∈ λ)′|C ∈ λ] + 0 (25)

where the first zero in last line follows from (3). The second term follows by using (10) and noting that

E [E[m|T1]s(T1|C ∈ λ)′|C ∈ λ] = E [E[ms(T1|C ∈ λ)′|T1, C ∈ λ]|C ∈ λ] = E [ms(T1|C ∈ λ)′|C ∈ λ].

Now consider the r-th term of φCMAR
λ[u] (O;β0λ) for r = 2, . . . , R. By taking expectation conditional
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on Tr−1 ≡ (Z(1), . . . , Z(r−1)), and using (10) we obtain that:

E

[
P (C ∈ λ|T1)
P (C ∈ λ)

(E[m|Tr]− E[m|Tr−1])S(O)′
]

= E

[
P (C ∈ λ|Z1)

P (C ∈ λ)
(E[m|Tr]− E[m|Tr−1])

R∑
s=r

s(Z(s)|Ts−1)

]

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|Tr]s(Z(r)|Tr−1)

′
]

= E
[
ms(Z(r)|Tr−1)

′|C ∈ λ
]

(26)

by using that s(Z(s)|Ts−1) ∈ L2
0(F (Z(s)|Ts−1)) for s = r, . . . , R by definition, and by (10).

Therefore, (25) and (26) verify (24). That φCMAR
λ[u] (O;β0λ) belongs to T in (22) can be shown as

follows. (Recall that, in light of the proof of Proposition 1 we are now letting dm = dβ for brevity.) (i)

Match the term a(Z(1), . . . , Z(r)) in T with the r-th term of φCMAR
λ[u] (O;β0λ) for r > 1. (ii) Distribute

the first term s(Z(1)) in T according to the relation (23) and match the term I(C ∈ λ)s(Z(1)|C ∈ λ)

with the first term of φCMAR
λ[u] (O;β0λ) while keeping in mind that, by definition, s(Z(1)|C ∈ λ) ∈

L2
0(F (Z(1)|C ∈ λ)). It is straightforward to verify that all the corresponding conditional expectations,

as required by the definition in (22) and also (23), are zeros. Rest of the terms in T (including the

one due to the distribution of terms in (ii)) are represented in φCMAR
λ[u] (O;β0λ) by zeros.

Proof of Proposition 4: The references in the steps of this proof are to mainly to that of Propo-

sition 3 (i.e., effectively to that of Proposition 1) and to that of Proposition 5. To avoid notational

clutter, when convenient, we write m(Z;β0λ) as m; Tr(Z) as Tr for r = 1, . . . , R; and also write

s(Z(r)|Z(1), . . . , Z(r−1)) as s(Z(r)|Tr−1) for r = 2, . . . , R.

As before, we obtain the score function for a parametric sub-model indexed by θ as:

Sθ(O) = sθ(T1) +

R∑
r=2

I(C ≥ r)sθ(Z(r)|Tr−1) +

R∑
r=1

I(C = r)

P (C = r|T1)

(
∂P (C = r|T1; γ0)

∂γ′
∂γ0

∂θ′

)′
.

Recall that Sγ(C|T1) :=
∑R

r=1
I(C=r)

P (C=r|T1)
∂
∂γP (C = r|T1; γ0). Let b denote constant matrices of

dimension same as that of ∂γ0

∂θ′ . Then, the tangent set for the model is characterized by the set of

functions:

T := a1(T1) + b′Sγ(C|T1) +
R∑

r=2

I(C ≥ r)ar(Tr),

where a1(T1) ∈ L2
0(F (T1)), Sγ(C|T1) ∈ L2

0(F (C|T1)) and ar(Tr) ∈ L2
0(F (Z(r)|Tr−1)).

Recognizing that P (C = r|T1) = P (C = r|T1; γ0) is known up to the finite (dγ) dimensional
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parameter γ, alters the relationship in (23) as follows:

s(T1) +
∂γ0

′

∂θ

[
I(C ∈ λ)

∂
∂γP (C ∈ λ|T1; γ0)
P (C ∈ λ|T1)

+ I(C /∈ λ)

∂
∂γP (C /∈ λ|T1; γ0)
P (C /∈ λ|T1)

]

= I(C ∈ λ)

[
Ṗ (C ∈ λ)

P (C ∈ λ)
+ s(T1|C ∈ λ)

]
+ I(C /∈ λ)

[
Ṗ (C /∈ λ)

P (C /∈ λ)
+ s(T1|C /∈ λ)

]
.

As before, differentiating (3) (equivalently, (4)) under the integral with respect to θ, and using

the above relationship give:

∂β0λ(θ0)

∂θ′

= −M−1
λ E

[
P (C ∈ λ|T1)
P (C ∈ λ)

m

{
s(T1)

′ +

R∑
r=2

s(Z(r)|Tr−1)
′

}]
−M−1

λ E

[
E[m|T1]

∂
∂γ′P (C ∈ λ|T1; γ0)

P (C ∈ λ)

∂γ0

∂θ′

]
.

Therefore, utilizing the expression of the efficient influence function in Proposition 3 and its relation

to that in Proposition 4, the verification of pathwise differentiability boils to verifying that:

E

[
Π

(
I(C ∈ λ)

P (C ∈ λ)
E[m|T1(Z)]

∣∣∣∣Sγ(C|T1(Z)))S(O)′
]
= E

[
E[m|T1]

∂
∂γ′P (C ∈ λ|T1; γ0)

P (C ∈ λ)

∂γ0

∂θ′

]
.

Note that E
[
Sγ(C|T1)

{
s(T1)

′ +
∑R

r=2 s(Z(r)|Tr−1)
′
}]

= 0 by using (term by term) that E[Sγ(C|T1)|T1] =

0 for term one; s(Z(r)|Tr−1) ∈ L2
0(F (Z(r)|Tr−1), and then using (10) for the rest. Therefore, in the

above equation (that contains the equality relationship to be verified), the LHS simplifies as:

LHS = E

[
Π

(
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

∣∣∣∣Sγ(C|T1))Sγ(C|T1)′] ∂γ0∂θ′

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]Sγ(C|T1)′

]
∂γ0

∂θ′

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

R∑
r=1

I(C = r)

P (C = r|T1)
∂P (C = r|T1; γ0)

∂γ′

]
∂γ0

∂θ′

= E

[
1

P (C ∈ λ)
E[m|T1]

∑
r∈λ

P (C = r|T1)
P (C = r|T1)

∂P (C = r|T1; γ0)
∂γ′

]
∂γ0

∂θ′

= E

[
1

P (C ∈ λ)
E[m|T1]

∂P (C ∈ λ|T1; γ0)
∂γ′

]
∂γ0

∂θ′

= RHS.

Proofs of Corollary 6, 7, 8: Straightforward but tedious manipulations of the results of Proposi-

tions 3 and 5 give Corollaries 7 and 8 respectively [see Chaudhuri (2014) for the proof of the latter].

Corollary 6 follows by imposing INDEP on the result of either Proposition 3 or Proposition 5.
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Appendix C: GMM estimation of β0
λ defined in (3)

C.1 This GMM estimation is a special case of Ai and Chen (2012)

Recall that Proposition 2 shows that under (1), (2) and assumption A, the efficient influence function

and the efficiency bound for the estimation of β0λ based (3) are identical to those based on the

sequential moment restrictions (8)-(9). This is why we noted in Section 4 that the efficient GMM

estimation of β0λ can be performed simply as a special case of the optimally weighted orthogonalized

sieve minimum distance (SMD) estimator proposed by Ai and Chen (2012) in a more general context.

To see the connection with Ai and Chen (2012) more clearly, note that our unconditional moment

restriction in (8) corresponds to equation (1) in Ai and Chen (2012) with their conditioning variable

X(1) taken as a constant. Now, the simplifications for our setup follows because, unlike Ai and Chen

(2012), we do not have any unknown nuisance parameters (thanks to (2)) and because in our setup

βλ only enters the unconditional moment restrictions. That is, in our setup the moment restrictions

in (9) turn out to be truly auxiliary whose sole purpose is to assist in obtaining efficiency gains.

This results in equation (10) of Ai and Chen (2012) (using their notation) to become:

α0 := inf
α∈Θ

E
{
m1(X

(1), α)′Σ01(X
(1))−1m1(X

(1), α)
}
, (27)

where m1(X
(1), α) := E

[
ε1(Z,α)|X(1)

]
= E [ε1(Z,α)] ,

Σ01(X
(1)) := E

[
ε1(Z,α0)ε1(Z,α0)

′|X(1)
]
= E

[
ε1(Z,α0)ε1(Z,α0)

′] ,
i.e.,

α0 := inf
α∈Θ

E
[
ε1(Z,α)

′] (E [ε1(Z,α0)ε1(Z,α0)
′|X(1)

])−1
E [ε1(Z,α)] .

Now, note that ε1(Z,α) is Ai and Chen (2012)’s sequentially orthogonalized moment vector, i.e.,

ε1(Z,α) := ρ1(Z;α)−
T∑
t=2

Γ1,t(X
(t))εt(Z,α)

where εT (Z;α) := ρT (Z,α) and for t = 2, . . . , T − 1, εt(Z,α) are the orthogonalized residuals:

εt(Z,α) := ρt(Z;α)−
T∑

s=t+1

Γt,s(X
(s))εs(Z,α),

where Γt,s(X
(s)) := E

[
ρt(Z;α0)εs(Z;α0)

′|X(s)
] (
E
[
εs(Z;α0)εs(Z;α0)

′|X(s)
])−1

.
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Therefore, thanks to our Proposition 2, ε1(Z,α) and Σ01(X
(1)) in Ai and Chen (2012) are our

φλ(O;β) and Vλ := V ar(φλ(O;β0)) respectively. Accordingly, the optimally weighted orthogonalized

SMD estimator in equation (11) of Ai and Chen (2012), that is based on the sample counterpart of

(27), is identical to the GMM estimator that uses the average estimated φλ(O;β) as the moment

vector and an estimator of V −1
λ as the weighting matrix. We say “estimated φλ(O;β)” because, as

is clear from the definition of ε1(Z,α) entering m1(X
(1), α) := E [ε1(Z,α)], this contains unknown

conditional expectations (covariance and variances) as nuisance parameters that need to be estimated

and, thereby, profiled out from the criterion function of the estimation of the parameter of interest.

The purpose of Section C.2 and C.3 below is to point out with some details that under this special

case of Ai and Chen (2012) that is our setup, a key feature of φλ(O;β) provides practically useful

flexibility in the parametric or nonparametric estimation of these nuisance parameters.

C.2 Estimation framework and the key feature

To consolidate notation following Chen et al. (2003), and guided by (6), define a dm × 1 function:

g(O;β, h(β)) :=
I(C = R)

P (C = R|TR(Z))
φR,λ(O;β)+

R−1∑
r=1

[
I(C ≥ r)

P (C ≥ r|Tr(Z))
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1(Z))

]
hr(β)

(28)

where h(β) = (h′1(β), . . . h
′
R−1(β))

′ are the unknown nuisance parameters, and hr(β)’s belongs to a

class of functions (Z, β) 7→ Rdm , call it Hr(β), for r = 1, . . . , R−1. Let H := {H1(β)×. . .×HR−1(β) :

β ∈ B} be a vector space endowed with a pseudo-metric ∥.∥H, which is the sup-norm metric with

respect to the argument β and a pseudo-metric with respect to the other arguments.

g(O;β, h(β)) = φλ(O;β) defined in (6) if hr(β) = φr,λ(O;β) for r = 1, . . . , R − 1. Denote the

true hr(β) as h0r(β) := φr,λ(O;β) for r = 1, . . . , R − 1. While this suggests restricting hr(β) as

(Tr(Z), β) 7→ Rdm for r = 1, . . . , R− 1, it turns out that letting hr(β) instead be a function of Z and

β does not affect either consistency or asymptotic normality of the GMM estimator defined below.

In light of this discussion, now define the GMM average moment vector and its expectation as:

Gn(β, h(β)) :=
1

n

n∑
i=1

g(Oi;β, (h
′
1,i(β), . . . , h

′
R−1,i(β))

′) and G(β, h(β)) := E [Gn(β, h(β))] .

Then, given any standard parametric or nonparametric estimator ĥ(β) for h(β) and any dm × dm

symmetric weighting matrix Wn (possibly efficient), the GMM estimator β̂λ(Wn) of β
0
λ is defined as:

β̂λ(Wn) ≈ argmin
β∈B

Gn(β, ĥ(β))
′WnGn(β, ĥ(β)). (29)
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The key feature of our setup is the identity that for any β ∈ B and any h(.) ∈ H (that need not

be h(β)):

G(β, h(.)) = E[φR,λ(O;β)] = E[m(Z;β)|C ∈ λ] (30)

by (4), (1) and (28). That is, G(β, h(.)) does not depend on h(.) ∈ H. Its main implications are:

(F1) G(β0λ, h(.)) = 0 for any h(.) ∈ H by also using (3). Also, for any β ∈ B and any h(.), h̄(.) ∈ H:

G(β, h(.))−G(β0λ, h̄(.)) = 0 ⇐⇒ E[m(Z;β)|C ∈ λ]− E[m(Z;β0λ)|C ∈ λ] = 0 ⇐⇒ β = β0λ.

(F2) The partial derivative of G(β, h(β)) with respect to β, denote it by Gβ(β, h(β)), satisfies

Gβ(β, h(β)) =Mλ(β) :=
∂
∂β′E [m(Z;β)|C ∈ λ], and it exists whenever Mλ(β) exists.

(F3) G(β, h(.)) − G(β, h̄(.)) = 0 for any β ∈ B and h(.), h̄(.) ∈ H. Thus, the pathwise derivative of

G(β, h(.)) with respect to h(.), denote it by Gh(β, h(.)), exists at all h(.) ∈ H, in all directions

[h̄(.)− h(.)] for {h(.) + τ(h̄(.)− h(.)) : τ ∈ [0, 1]} ⊂ H, and satisfies Gh(β, h(.))[h̄(.)− h(.)] = 0.

(F1) helps to verify the well-separability (of the true β) assumption for consistent estimation of β0λ by

β̂λ(Wn). It is even stronger since it indicates that ĥ(β) need not converge in probability to the true

h0(β) but can converge to any h†(β) ∈ interior(H) without affecting the consistency of β̂λ(Wn) for

β0λ [see Proposition 11]. (F2) simplifies the Jacobian formula (and its estimation) in the asymptotic

variance of β̂λ(Wn) since it implies that Gβ(β
0
λ, h(β

0
λ)) = Mλ. Finally, while it was already clear

from (F1) that the asymptotic orthogonality condition, Assumption N(c), in Andrews (1994) is

satisfied following his equations (4.9)-(4.11) if ∥ĥ(β)− h†(β)∥H = op(1) for any h
†(β) ∈ interior(H);

(F3) is still stated in a way that makes it more convenient for us to verify condition (4.1.4) in

Theorem 4.1 of Chen (2007). (Proofs of the results stated below proceed by verifying the conditions

in Chen et al. (2003) or Chen (2007).) Hence, the asymptotic variance of β̂λ(Wn) is unaffected by

the estimation of h(β) even if ĥ(β) converges at a rate slower than ∥ĥ(β) − h†(β)∥H = op(n
−1/4);

for example, ∥ĥ(β) − h†(β)∥H = op(1) will suffice. See Remark 2(iii) in Chen et al. (2003) and

Theorem 5 in Cattaneo (2010). The scenario is actually stronger here since we do not even require

that h†(β) = h0(β), the truth [see Proposition 12]. Of course, semiparametric efficiency for β̂λ(Wn)

requires that h†(β0λ) = h0(β0λ), but the rate of convergence of the consistent ĥ(β) is still of no

consequence as far as the first-order asymptotic properties of GMM estimators are concerned [see

Corollary 13]. Naturally, all these nice implications of (30) also provide flexibility in estimating the

nuisance parameters – (i) parametrically based on misspecified models, e.g., giving linear projections

rather than conditional expectations or (ii) nonparametrically under less than satisfactory conditions

that might prevent a faster than n1/4-rate convergence of the estimator.
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C.3 Asymptotic properties of the GMM estimator in (29)

For simplicity we follow Chen et al. (2003) and write (β, h(β)) as (β, h) unless confusing. Also, define

∥A∥B :=
√
trace(A′BA) for conformable matrices A and B. Write ∥A∥ ≡ ∥A∥B if B is identity.

Proposition 11 Let (3), (1), and assumptions (A1) and (A2) hold. Let {Wn} be a dm×dm positive

semidefinite matrix such that Wn = W + op(1) where W is a constant positive definite matrix.

Assume:

(B1) ∥Gn(β̂λ(Wn), ĥ)∥Wn ≤ infβ∈B ∥Gn(β, ĥ)∥Wn + op(1) where B is a compact subset of Rdβ ;

(B2) ∥ĥ(β)−h†(β)∥H = op(1) for some h†(β) ∈ interior(H) for all β, and h†(β) not necessarily equal

to h0(β);

(B3) for all sequences of positive numbers {δn} with δn = o(1),

sup
β∈B,∥h−h†(β)∥H≤δn

∥Gn(β, h)−G(β, h)∥
1 + ∥Gn(β, h)∥+ ∥G(β, h)∥

= op(1).

Then β̂λ(Wn)− β0λ = op(1).

Proposition 12 Let (3), (1) and assumptions A hold. Let {Wn} be a dm× dm positive semidefinite

matrix such thatWn =W+op(1) whereW is a constant positive definite matrix. Let β0λ ∈ interior(B)

and h†(β) ∈ interior(H) for all β, but h†(β) not necessarily equal to h0(β). For a small δ > 0 define

the neighborhoods Bδ := {β ∈ B : ∥β − β0λ∥ ≤ δ} and Hδ := {h ∈ H : ∥h − h†(β)∥H ≤ δ}. (Nothing

changes if the sup-norm with respect to β in ∥.∥H is alternatively defined to be taken locally over

β ∈ Bδ instead β ∈ B; see Chen et al. (2003).) Let β̂0λ(Wn)−β0λ = op(1) and ∥ĥ(β)−h†(β)∥H = op(1).

Assume:

(C1) ∥Gn(β̂λ(Wn), ĥ)∥Wn ≤ infβ∈Bδ
∥Gn(β, ĥ)∥Wn + op(n

−1/2);

(C2) Gβ(β, h
†) exists for β ∈ Bδ and is continuous at β = β0λ (Gβ(β

0
λ, h

†) is full column rank by (A3)

and (F2));

(C3) for all sequences of positive numbers {δn} with δn = o(1),

sup
β∈Bδn ,h∈Hδn

∥Gn(β, h)−G(β, h)−Gn(β
0
λ, h

†)∥
n−1/2 + ∥Gn(β, h)∥+ ∥G(β, h)∥

= op(1);

(C4)
√
nGn(β

0
λ, h

†)
d−→ N(0,Σ) where Σ := E

[
g(O; (β0λ, h

†))g(O; (β0λ, h
†))′
]
is finite.

Then, for Mλ :=M(β0λ) defined in assumption (A3), Rλ :=M ′
λWMλ and Sλ :=M ′

λWΣWMλ,

√
n(β̂λ(Wn)− β0λ) = −R−1

λ M ′
λW

√
nGn(β

0
λ, h

†) + op(1)
d−→ N

(
0, R−1

λ SλR
−1
λ

)
.
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Remark: Propositions 11 and 12 respectively establish the consistency and asymptotic normality of

the GMM estimator defined in (29). We focus on showing how the key feature (30) helps to satisfy

some of the conditions from Theorem 1 in Chen et al. (2003) and Theorem 4.1 in Chen (2007). We

assume their other conditions. Through its condition (4.1.4), as opposed to (4.1.4)’, Theorem 4.1

in Chen (2007) broadens the scope of Theorem 2 in Chen et al. (2003). This is useful to highlight

that Propositions 11 and 12 (and the subsequent results) do not depend on the rate of convergence

∥ĥ(β) − h†(β)∥H = op(1). Importantly, we allow h†(β) ̸= h0(β) to emphasize that consistency and

asymptotic unbiasedness of β̂λ(Wn) are robust to the estimation of the nuisance parameters h(β)

parametrically under misspecification or nonparametrically under less than satisfactory conditions.

Thus, the theoretical results confirm the intuitions from our discussion of the implications of the

key feature, with the final bit, i.e., on efficiency, to be confirmed by the following result.

Corollary 13 Under the assumptions of Proposition 12:

(1) if W = Σ−1 then

√
n(β̂λ(Wn)− β0λ) = −

(
M ′

λΣ
−1Mλ

)−1
M ′

λΣ
−1√nGn(β

0
λ, h

†) + op(1)
d−→ N

(
0,
(
M ′

λΣ
−1Mλ

)−1
)
;

(2) if, additionally, h†(β0λ) = h0(β0λ) then Σ = Vλ as in Proposition 1, and letting β̂λ := β̂λ(Wn),

√
n(β̂λ−β0λ) = −

(
M ′

λV
−1
λ Mλ

)−1
M ′

λV
−1
λ

√
nGn(β

0
λ, h

0)+op(1)
d−→ N

(
0,Ωλ =

(
M ′

λV
−1
λ Mλ

)−1
)
,

i.e., by Proposition 1, the estimator β̂λ becomes semiparametrically efficient.

Estimation of asymptotic variance: Consistent estimation of Mλ is simplified due to (F2) be-

cause one could completely ignore the unknown nuisance parameters and obtain an estimator by

taking analytical derivative (if it exists) or numerical derivative only for the first term of Gn(β, h).

Consistency of M̂λ(β) for Mλ(β) with numerical derivatives follows by Theorem 7.4 in Newey and

McFadden (1994). Also see Section 5.3 of Cattaneo (2010).

Standard conditions, e.g., g(Oi; (β, h)) is continuous with probability approaching one in a neigh-

borhood N of (β0λ, h
†) and E

[
sup(β,h)∈N ∥g(Oi; (β, h))∥2

]
< ∞ [see Lemma 4.3 in Newey and

McFadden (1994)], ensure that for any β = β0λ + op(1) and h(β) such that ∥h(β) − h†(β)∥H =

op(1) (suffices if the sup-norm in ∥.∥H with respect to β is only local), the estimator V̂λ(β, h) :=

1
n

∑n
i=1 g(Oi; (β, h))g(Oi; (β, h))

′ = Σ+op(1). Thus, the estimator Ω̂λ(β̂λ, ĥ) :=
(
M̂ ′

λ(β̂λ)V̂
−1
λ (β̂λ, ĥ)M̂λ(β̂λ)

)−1

is consistent for the asymptotic variance in Corollary 13(1). If h†(β0λ) = h0(β0λ) then Σ = Vλ, and

now Ω̂λ(β̂λ, ĥ) will be consistent for the asymptotic variance Ωλ in Corollary 13(2). Any consistent

(for the appropriate limit) estimator (β̃, h̃) ensures consistency of all these quantities.
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C.4 One step from the IPW estimator gives efficiency

The presence of β in possibly highly nonlinear form in all the R additive terms of the average

moment vector Gn(β, ĥ(β)) should not ideally be a drawback for computational purpose. If the

GMM estimator has a closed form (e.g., Illustration 1 below) then this is not an issue. However,

if there is no closed form expression (e.g., Illustration 2 below), one could start with an easy to

compute
√
n-consistent estimator for β0λ and then update it in one step to obtain an estimator with

the same asymptotic distribution as the efficient estimator in Corollary 13. For example, an IPW

estimator based on the complete sub-sample {i = 1, . . . , n : Ci = R} and with the identity (or some

simple) weighting matrix is relatively easy to compute:

β̃λ := argmin
β∈B

∥∥∥∥∥ 1n
n∑

i=1

I(Ci = R)

P (C = R|TR(Zi))
φR,λ(Oi;β)

∥∥∥∥∥
≡ argmin

β∈B

∥∥∥∥∥ 1n
n∑

i=1

I(Ci = R)

P (C = R|Zi)

P (C ∈ λ|Zi)

P̂ (C ∈ λ)
m(Zi;β)

∥∥∥∥∥ . (31)

It is consistent under the assumptions of Proposition 11 [see, e.g., Wooldridge (2002)]. Built-in

routines in standard statistical softwares can be directly used or slightly modified to obtain this

estimator for a wide variety of the moment vector m(Z;β) (e.g., Illustration 2 below). Now a one

step estimator of β0λ can be obtained by updating β̃λ as:

β̂1step = β̃λ − Ω̂−1
λ (β̃λ, ĥ(β̃λ))M̂

′
λ(β̃λ)V̂

−1
λ (β̃λ, ĥ(β̃λ))Gn(β̃λ, ĥ(β̃λ)) (32)

where ĥ(β̃λ) is a consistent estimator of h0(β0λ), and M̂λ(β̃λ), V̂λ(β̃λ, ĥ(β̃λ)) and Ω̂λ(β̃λ, ĥ(β̃λ)), defined

below Corollary 13, are consistent estimators for Mλ, Vλ and Ωλ respectively under the conditions

noted therein. (Allowing for consistency of ĥ(β̃λ) for h†(β0λ) instead of h0(β0λ) will entail according

change in the probability limit for V̂λ(β̃λ, ĥ(β̃λ)) as noted at the end of the last section.)

Proposition 14 Let all the conditions of Corollary 13(2) hold for β̂λ, i.e., for the efficient GMM

estimator with the efficient weighting matrix. Additionally, let there be a first step estimator β̃λ satis-

fying:
√
n(β̃λ−β0λ) = Op(1), M̂λ(β̃λ) =Mλ+ op(1), V̂λ(β̃λ, ĥ(β̃λ)) = Vλ+ op(1) and Ω̂λ(β̃λ, ĥ(β̃λ)) =

Ωλ + op(1). For simplicity, assume a slightly stronger version of the stochastic equicontinuity con-

dition (C3) [see Proposition 12] as: supβ∈Bδn ,h∈Hδn

√
n∥Gn(β, h) − G(β, h) − Gn(β

0
λ, h

0)∥ = op(1).

Then, β̂1step defined in (32) is asymptotically efficient since it satisfies:
√
n
(
β̂1step − β̂λ

)
= op(1).
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C.5 Illustration of the GMM estimator when R = 3

To focus on the main components, we abstract from the weighting matrix Wn by taking dm = dβ.

We consider two cases where the moment vector respectively corresponds to: (1) a linear regression

giving a closed form expression for the efficient estimator, and (2) a linear quantile regression where

the efficient estimator is computed in one step as in (32). As for a concrete scenario with R = 3, it

may be useful to keep in mind the setup of our Monte Carlo experiment in Section 4.

Illustration 1: Linear regression in the target population λ

Consider a moment vector of the form m(Z;β) = X(y−X ′β). For i = 1, . . . , n, let Tji := Tj(Zi)

for j = 1, 2, 3, a3i := I(Ci = 3)/P (C = 3|T3i), a2i := I(Ci ≥ 2)/P (C ≥ 2|T2i)−a3i, a1i := 1−a2i−a3i,

q := P (C ∈ λ|T3(Z)) and qi := P (C ∈ λ|T3i). Simple computations give a closed form expression for

the estimator β̂λ in (29) as:

β̂λ =

(
n∑

i=1

{
a3iqiXiX

′
i + a2iÊ

[
qXX ′|T2i

]
+ a1iÊ

[
qXX ′|T1i

]})−1

×
n∑

i=1

{
a3iqiXiyi + a2iÊ [qXy|T2i] + a1iÊ [qXy|T1i]

}

where Ê denotes the estimated conditional expectation. While one could factor out yi from all three

terms inside the last pair of braces, our experience is that estimating the conditional expectations,

e.g., E [qXy|T2i] directly instead of using the form E [qX|T2i] yi leads to smaller variance of the

estimator β̂λ in small samples.

Illustration 2: Linear quantile regression in the target population λ

Consider a moment vector of the form m(Z;β) = X (τ − I(y −X ′β < 0)) for some fixed τ ∈

(0, 1). (The notation a3i, a2i, a1i, qi and q remain the same as in Illustration 1.) For any (β, h) define:

g(Oi; (β, h)) = a3iqim(T3i;β) + a2iE[qm(T3;β)|T2i] + a1iE[qm(T3;β)|T1i],

and accordingly define g(Oi; (β, ĥ)) andGn(β, ĥ) replacing the conditional expectations in g(Oi; (β, h))

by their estimators. (The ignored common denominator P (C ∈ λ) will be adjusted for in the fi-

nal step.) Let β̃λ denote the inefficient but
√
n-consistent estimator of β0λ obtained from (31) by

using this particular choice of the moment vector m(Z;β). It is simple to obtain β̃λ since com-

monly used statistical softwares provide built-in routine for weighted quantile regression which au-

tomatically gives the estimator with (a3iqi/
∑

j a3jqj)
n
i=1 as weights. Estimate Mλ where Mλ(β) =

−(∂/∂β′)E [XI(y −X ′β < 0)|C ∈ λ] using β̃λ [see below Corollary 13]. Therefore, since dm = dβ,

by using (32) we obtain the one-step estimator as: β̂1step = β̃λ − M̂−1
λ (β̃λ)Gn(β̃λ, ĥ(β̃λ))/P̂ (C ∈ λ).
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C.6 Simulation evidence from Section 4 of the finite-sample properties of β̂λ

Besides the efficient estimators based on various sub-samples, we also consider the complete case

(CC) and IPW [see (31)] estimators. The CC estimator is the default in the statistical softwares and

is based only on the complete sub-sample ignoring its likely unrepresentative of the target population.

We consider certain finite-sample properties of all these estimators and report them in Table 4

under INDEP, Tables 5 for Intercept and 6 for Slope under CMAR, and Tables 7 for Intercept and

8 for Slope under MAR. We focus on the following quantities computed as averages over the 10,000

Monte Carlo trials: Mbias (deviation from the true values), Abias (absolute deviation from the true

values), Std (standard deviation obtained as
√

(estimated Avar)/(size of the used sample)) and IQR

(interquartile range). Mean squared error is not reported but follows directly as Mbias2+ Std2.

The CC and IPW estimators are numerically equivalent if λ = {3} or under INDEP. Otherwise,

as expected, CC can be badly biased (Mbias) since it does not recognize the sample-selection.

The other estimators are consistent under our assumptions, and their small Mbias and decreasing

(with n) Std support this. The ordering of the variability of the estimators, as measured by Abias,

Std and IQR, are as expected: always the largest when the used sample is {3}, and the smallest

when the used sample is {1, 2, 3}.

Comparison between the two estimators based on the used samples {1, 3} and {2, 3} is possible

under INDEP or under CMAR and MAR if λ = {3} or λ = {1, 2, 3}. In these cases, it seems that in

spite of the poorer quality of information in the units of {1, 3}, its larger sample size makes it more

desirable than {2, 3}. (Under our premise, {1, 3} could still be less expensive than {2, 3} to observe.)

Overall, under our simulation design all the estimators display good properties in finite samples,

and thus lend credibility to the encouraging simulation results on the efficiency loss in Section 4.

Used n = 600 n = 1200 n = 1800
Sample Mbias Abias Std IQR Mbias Abias Std IQR Mbias Abias Std IQR

{3} -.0002 .0748 .0933 .1250 .0011 .0529 .0661 .0895 -.0003 .0436 .0540 .0739
{1, 3} .0005 .0560 .0667 .0947 .0007 .0388 .0473 .0666 .0002 .0313 .0388 .0530
{2, 3} -.0001 .0584 .0673 .0986 .0008 .0392 .0475 .0661 .0003 .0317 .0388 .0534
{1, 2, 3} .0003 .0523 .0584 .0878 .0006 .0346 .0411 .0589 .0003 .0278 .0337 .0475

{3} .0004 .0773 .0927 .1296 .0001 .0527 .0659 .0885 .0002 .0434 .0539 .0737
{1, 3} .0090 .0641 .0714 .1069 .0038 .0425 .0510 .0715 .0028 .0345 .0418 .0579
{2, 3} .0062 .0667 .0720 .1106 .0019 .0432 .0507 .0739 .0013 .0347 .0415 .0586
{1, 2, 3} .0082 .0631 .0649 .1044 .0030 .0403 .0458 .0686 .0021 .0320 .0377 .0545

Table 4: Bias (Mbias), absolute bias (Abias), standard deviation (Std) and interquartile range (IQR) of the
estimators under INDEP sampling are reported based on the average over 10,000 Monte Carlo trials. Target
population λ = {1, 2, 3}. Top panel: Intercept parameter βλ,1. Bottom panel: Slope parameter βλ,2.
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C.7 Proofs

For simplicity, we write βλ as β. We follow the steps of the proof for Theorems 1 and 2 in Chen et al.

(2003) with adjustments for the weaker conditions that are consequences of (30) [see (F1)-(F3)]. The

main adjustment is that we allow ∥ĥ− h†∥H = op(1) where h
† ∈ H need not be h0.

Proof of Proposition 11: (F1) already implies the standard well-separability of β0 by virtue of

(3). Hence, for all δ > 0 there exists ϵ(δ) > 0 such that P (∥β̂ − β0∥ > δ) ≤ P (∥G(β̂, h†)∥ ≥ ϵ(δ)).

Therefore, to establish that β̂
P−→ β0, it is sufficient to show that ∥G(β̂, h†)∥ = op(1). Assumption

(B2) implies that P (ĥ(β) ∈ H) → 1 uniformly in β ∈ B as n → ∞. The rest of the proof works

conditional on the sequence of events {ĥ(β̂) ∈ H}, i.e., we use the fact that:

P (∥G(β̂, h†)∥ < ϵ(δ))

= P (∥G(β̂, h†)∥ < ϵ(δ)|ĥ(β̂) ∈ H)P (ĥ(β̂) ∈ H) + P (∥G(β̂, h†)∥ < ϵ(δ)|ĥ(β̂) /∈ H)P (ĥ(β̂) /∈ H)

= P (∥G(β̂, h†)∥ < ϵ(δ)|ĥ(β̂) ∈ H) + o(1) (33)

as n→ ∞ and, instead, show that ∥G(β̂, h†)∥ = op(1) conditional on {ĥ(β̂) ∈ H}.

To this end, first note that:

∥G(β̂, h†)∥ ≤ ∥G(β̂, h†)−G(β̂, ĥ)∥+ ∥G(β̂, ĥ)−Gn(β̂, ĥ)∥+ ∥Gn(β̂, ĥ)∥

= ∥G(β̂, ĥ)−Gn(β̂, ĥ)∥+ ∥Gn(β̂, ĥ)∥. (34)

The inequality holds by the triangle inequality (kept implicit hereafter). The equality holds by (F3).

Using (B3) and then (F3), we obtain:

∥G(β̂, ĥ)−Gn(β̂, ĥ)∥ ≤ op(1){1 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)∥} ≤ op(1){1 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, h†)∥}.

Using this along with (34) gives:

∥G(β̂, h†)∥ × (1− op(1))

≤ op(1) + ∥Gn(β̂, ĥ)∥ × (1 + op(1))

≤ op(1) + ∥Gn(β̂, ĥ)∥Wn × (1 + ∥W−1
n −W−1∥+ ∥W−1 − Idm∥)× (1 + op(1))

= op(1) + ∥Gn(β̂, ĥ)∥Wn × (c+ op(1))

≤ op(1) + inf
β∈B

∥Gn(β, ĥ)∥Wn × (c+ op(1)) (35)
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where c = 1 + ∥W−1 − Idm∥. The equality in the above equations follows since (i) Wn −W = op(1)

for a constant positive definite matrix W implies that W−1
n exists with probability approaching one

and W−1
n −W−1 = op(1), and hence ∥W−1

n −W−1∥ = op(1) as dm is finite, (ii) a finite and positive

definite W and a finite dm imply that c(> 1) is finite. The last inequality in (35) is due to (B1).

Following similar steps again and letting d = 1 + ∥W − Idm∥ (> 1 and finite), note that:

∥Gn(β, ĥ)∥Wn

≤ ∥Gn(β, ĥ)∥ × (d+ op(1))

≤ {∥Gn(β, ĥ)−G(β, ĥ)∥+ ∥G(β, ĥ)−G(β, h†)∥+ ∥G(β, h†)−G(β0, h†)∥} × (d+ op(1))(36)

by using (30), i.e., G(β0, h) = 0 for all h ∈ H (in the last term inside the braces). This is the special

feature of our setup; whereas this holds only at h = h0 in Chen et al. (2003). On the other hand,

∥G(β, ĥ)−G(β, h†)∥ = 0 by (F3). Lastly, using (B4) as before:

∥Gn(β, ĥ)−G(β, ĥ)∥ ≤ op(1){1 + ∥Gn(β, ĥ)∥+ ∥G(β, h†)∥+ op(1)} = op(1) + ∥Gn(β, ĥ)∥ × op(1)

= op(1) + ∥Gn(β, ĥ)∥Wn × (c+ op(1))× op(1)

where the second line follows by the same argument as in (35). Therefore, (36) gives:

∥Gn(β, ĥ)∥Wn ≤ {op(1) + ∥Gn(β, ĥ)∥Wn × (c+ op(1))× op(1) + ∥G(β, h†)−G(β0, h†)∥} × (d+ op(1))

= op(1) + ∥Gn(β, ĥ)∥Wn × op(1) + ∥G(β, h†)−G(β0, h†)∥ × (d+ op(1))

and hence ∥Gn(β, ĥ)∥Wn × (1 − op(1)) ≤ op(1) + ∥G(β, h†) − G(β0, h†)∥ × (d + op(1)) where all the

op(1) terms are uniform with respect to β ∈ B. This implies that:

inf
β∈B

∥Gn(β, ĥ)∥Wn ≤ sup
β∈B

op(1) + inf
β∈B

∥G(β, h†)−G(β0, h†)∥W × (d+ sup
β∈B

op(1)) = op(1)

since infβ∈B ∥G(β, h†)−G(β0, h†)∥W = 0. So, by (33) and (35) it follows that ∥G(β̂, h†)∥ = op(1).

Proof of Proposition 12: First, we show
√
n-consistency of β̂, and then its asymptotic normality.

Since β0 ∈ interior(B), h†(β) ∈ interior(H), β̂ − β = op(1) and ∥ĥ(β) − h†(β)∥H = op(1), we

can choose a positive sequence δn = op(1) such that P ((β̂, ĥ) ∈ Bδn × Hδn) → 1 as n → ∞. For

the δ in the statement of the proposition, P (Bδn × Hδn ⊂ Bδ × Hδ) → 1 as n → ∞. While to

avoid repetition we do not make it explicit, it is important to keep in mind that as in the proof of
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Proposition 11, here also we work conditional on the event {(β̂, ĥ) ∈ Bδn ×Hδn} which occurs with

probability approaching one, i.e., we implicitly use arguments similar to (33) throughout the proof.

(C2) implies that there exists a constant a > 0 such that P (a∥β̂ − β0∥ ≤ ∥G(β̂, h†)∥) → 1 as

n→ ∞. Therefore,
√
n-consistency of β̂ follows if we can establish that ∥G(β̂, h†)∥ = Op(n

−1/2).

To this end, note that:

∥G(β̂, h†)∥ ≤ ∥G(β̂, h†)−G(β̂, ĥ)∥+ ∥G(β̂, ĥ)−Gn(β̂, ĥ) +Gn(β
0, h†)∥+ ∥Gn(β̂, ĥ)∥+ ∥Gn(β

0, h†)∥

= 0 + ∥G(β̂, ĥ)−Gn(β̂, ĥ) +Gn(β
0, h†)∥+ ∥Gn(β̂, ĥ)∥+Op(n

−1/2) (37)

where the first 0 follows from (F2) and the last Op(n
−1/2) from (C4). Now, by (C3) for the first

inequality below,

∥G(β̂, ĥ)−Gn(β̂, ĥ) +Gn(β
0, h†)∥ ≤ op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)∥}

≤ op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)−G(β̂, h†)∥+ ∥G(β̂, h†)∥}

= op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, h†)∥}

where the last line follows by (F3). Therefore, this along with (37) imply that:

∥G(β̂, h†)∥ ≤ op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, h†)∥}+ ∥Gn(β̂, ĥ)∥+Op(n
−1/2)

which, further implies that (second inequality below follows using same arguments as in (35) with

c = 1 + ∥W−1 − Idm∥)

∥G(β̂, h†)∥ × (1− op(1)) ≤ Op(n
−1/2) + ∥Gn(β̂, ĥ)∥ × (1 + op(1))

≤ Op(n
−1/2) + ∥Gn(β̂, ĥ)∥Wn × (c+ op(1))

≤ Op(n
−1/2) + inf

β∈Bδ

∥Gn(β, ĥ)∥Wn × (c+ op(1)) (38)

where the last line follows by (C1). Now, for d = 1 + ∥W − Idm∥, recall from the first line of (36)

that ∥Gn(β, ĥ)∥Wn ≤ ∥Gn(β, ĥ)∥ × (d+ op(1)). On the other hand,

∥Gn(β, ĥ)∥ ≤ ∥Gn(β, ĥ)−G(β, ĥ)−Gn(β
0, h†)∥+ ∥G(β, ĥ)−G(β, h†)∥+ ∥G(β, h†)∥+ ∥Gn(β

0, h†)∥

≤ op(1)× {n−1/2 + ∥Gn(β, ĥ)∥+ ∥G(β, ĥ)∥}+ 0 + ∥G(β, h†)∥+Op(n
−1/2)

where the first term in the last line follows from (C3), the third term, i.e., the 0, from (F3), and the

60



last one from (C4). Therefore,

∥Gn(β, ĥ)∥ × (1− op(1)) ≤ ∥G(β, ĥ)∥ × op(1) + ∥G(β, h†)∥+Op(n
−1/2)

≤ ∥G(β, ĥ)−G(β, h†)∥ × op(1) + ∥G(β, h†)∥ × (1 + op(1)) +Op(n
−1/2)

= ∥G(β, h†)∥ × (1 + op(1)) +Op(n
−1/2) [by (F3)]

≤ ∥G(β, h†)−G(β0, h†)∥ × (1 + op(1)) + ∥G(β0, h†)∥ × (1 + op(1)) +Op(n
−1/2)

= ∥G(β, h†)−G(β0, h†)∥ × (1 + op(1)) +Op(n
−1/2)

sinceG(β0, h†) = 0. Therefore, ∥Gn(β, ĥ)∥Wn ≤ ∥G(β, h†)−G(β0, h†)∥×(d+op(1))+Op(n
−1/2) where

all the op and Op terms are uniform with respect to β ∈ Bδ. Hence, as in the proof of Proposition

11, noting that infβ∈B ∥G(β, h†)−G(β0, h†)∥ = 0, it follows that infβ∈Bδ
∥Gn(β, ĥ)∥Wn = Op(n

−1/2)

and, therefore, (38) gives ∥G(β̂, h†)∥ = Op(n
−1/2) and, subsequently, β̂ − β0 = Op(n

−1/2).

To establish asymptotic normality, define the linearization Ln(β) = Gn(β
0, h†) +Mλ(β − β0).

Note that the differences from the linearization in Chen et al. (2003) arise due to (F2) and (F3).

This gives:

∥Gn(β̂, ĥ)− Ln(β̂)∥

= ∥Gn(β̂, ĥ)−Gn(β
0, h†)−Mλ(β̂ − β0)∥

= ∥Gn(β̂, ĥ)−Gn(β
0, h†)−G(β̂, ĥ) +G(β̂, ĥ) +G(β̂, h†)−G(β̂, h†)−Mλ(β̂ − β0)∥

≤ ∥Gn(β̂, ĥ)−Gn(β
0, h†)−G(β̂, ĥ)∥+ ∥G(β̂, ĥ)−G(β̂, h†)∥+ ∥G(β̂, h†)−Mλ(β̂ − β0)∥

≤ ∥Gn(β̂, ĥ)−Gn(β
0, h†)−G(β̂, ĥ)∥+ ∥G(β̂, h†)−Mλ(β̂ − β0)∥ [by (F3)]

≤ op(1)× {1 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)∥}+ ∥G(β̂, h†)−G(β0, h†)−Mλ(β̂ − β0)∥

where the term inside braces follows from (C3) and the inclusion of G(β0, h†) in the last term is

innocuous since G(β0, h†) = 0. Now, by the definition of Mλ, assumptions (C2), (A3) and (F2), it

follows that ∥G(β̂, h†)−G(β0, h†)−Mλ(β̂ − β0)∥ = op(∥β̂ − β0∥), which is op(n
−1/2) since β̂ − β0 =

Op(n
−1/2). On the other hand, the same steps from the top line of (38) until (almost) the end of the

first part of the proof give ∥Gn(β̂, ĥ)∥ ≤ infβ∈Bδ
∥Gn(β, ĥ)∥+ op(n

−1/2) = Op(n
−1/2). Finally, since

∥G(β̂, ĥ)∥ ≤ ∥G(β̂, ĥ)−G(β̂, h†)∥+ ∥G(β̂, h†)∥ = Op(n
−1/2) because the first term is 0 by (F3) and

the second term is Op(n
−1/2) from the first part of the proof, we obtain that ∥Gn(β̂, ĥ)− Ln(β̂)∥ ≤

op(n
−1/2). Similarly, for β̄ := argminβ ∥Ln(β)∥W , that, by construction, satisfies

√
n(β̄ − β0) =

−(M ′
λWMλ)

−1M ′
λW

√
nGn(β

0, h†), we can show that ∥Gn(β̄, ĥ) − Ln(β̄)∥ ≤ op(n
−1/2). Now that
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the proximity of Gn(β, ĥ) and Ln(β) has been established at β̂ and β̄ respectively, the rest of the

proof is to show that
√
n(β̄− β̂) = op(1). As was the case in Chen et al. (2003), this does not involve

anything particularly related to the key feature of our setup (it only works with the linearization),

and hence follows exactly in the same way as in the proof of Theorem 3.3 and Lemma 3.5 in Pakes

and Pollard (1989).

Proof of Corollary 13:

(1) This is standard and hence the proof is omitted.

(2) This follows by noting that g(O;β, h0(O;β)) = φλ(O;β) defined in (6).

Proof of Proposition 14: Define Ln(β) := Gn(β
0, h0) +Mλ(β − β0) and note that

√
nLn(β̃λ) =

Op(1) by assumptions (A3), (C4) and since
√
n(β̃λ − β0λ) = Op(1). Therefore, using (F1), (F3) and

also the stochastic equicontinuity condition from the statement of the proposition, we obtain that:

√
n∥Gn(β̃λ, ĥ)− Ln(β̃λ)∥

=
√
n∥{Gn(β̃λ, ĥ)−G(β̃λ, ĥ)−Gn(β

0
λ, h

0)}+ {G(β̃λ, ĥ)−G(β̃λ, h
0(β0))}+ {G(β̃λ, h0(β0)−Mλ(β̃λ − β0λ)∥

≤ sup
β∈Bδn ,h∈Hδn

√
n∥Gn(β, h)−G(β, h)−Gn(β

0
λ, h

0)∥+
√
n∥G(β̃λ, ĥ)−G(β̃λ, h

0(β0))∥

+ ∥
√
nG(β0, h0) + (Mλ + op(1)−Mλ)

√
n(β̃λ − β0λ)∥

= op(1) + 0 + (0 + op(1)) = op(1).

Now, the proof completes since under the conditions of the proposition, the definition in (32) gives:

√
n
(
β̂1step − β̃λ

)
= −

(
Ω−1
λ + op(1)

) (
M ′

λ + op(1)
) (
V −1
λ + op(1)

) (√
nLn(β̃λ) + op(1)

)
= −Ω−1

λ M ′
λV

−1
λ

(√
nGn(β

0, h0) +Mλ

√
n(β̃λ − β0)

)
+ op(1)

=
√
n
(
β̂λ − β0λ

)
−

√
n
(
β̃λ − β0λ

)
+ op(1) =

√
n
(
β̂λ − β̃λ

)
+ op(1).
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