
Finite-sample improvements of score tests by the use of implied

probabilities from Generalized Empirical Likelihood ∗†

Saraswata Chaudhuri‡and Eric Renault§

Preliminary version: Comments are welcome

Date: December 3, 2011.

Abstract

We are interested in score tests for parameter vectors and sub-vectors defined by moment re-

strictions. We provide a general setup to conduct score tests by utilizing the additional information

obtained from the Generalized Empirical Likelihood framework in the form of implied probabili-

ties. Although most tests considered here are first-order asymptotically equivalent, we find by a

series of simulation experiments that use of the empirical likelihood implied probabilities matches

the estimated asymptotic size best with the nominal levels of the tests. Such tests can be com-

putationally difficult when testing sub-vectors. We suggest a convenient test based on Neyman

(1959)’s C(α) statistic that is asymptotically equivalent and performs similarly in finite samples.

When elements of the parameter vector not specified by the null hypothesis are weakly identified,

the conventional tests do not have correct asymptotic size and the direction of size-distortion is

not clear. To prevent any uncontrolled upward size-distortion, we extend the projection-based test

proposed by Chaudhuri and Zivot (2011) to the setup of the current paper. This test performs well

in terms of finite-sample size and power in our simulation experiments.
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1 Introduction

Newey and Smith (2004) demonstrated that in terms of bias, the optimal (infeasible) Generalized

Method of Moments (GMM) estimator is more closely mimicked by the Generalized Empirical Like-

lihood (GEL) estimators (see Smith (1997)) than the efficient two step GMM (2S-GMM) estimator

(see Hansen (1982)).While both GEL and 2S-GMM are suitable for estimation and inference on

parameters defined by moment restrictions, the property stated above makes GEL higher-order-

asymptotically more attractive than the computationally convenient efficient 2S-GMM.

The question is: How much of these higher-order gains of GEL are actually reflected in finite

samples of reasonable size? Typically simulation studies are tools to explore such questions. How-

ever, to our knowledge, there are not many such studies covering a variety of (econometrically

relevant) cases that would be sufficient to get a conclusive answer on the benefit of using the GEL

methods over 2S-GMM.1 Perhaps as a consequence of this lack of simulation evidence, GEL meth-

ods still seem to be much less popular than 2S-GMM among applied researchers in economics (even

post Newey and Smith (2004)).2

A primary goal of our paper is to fill this gap by seeking to explore the benefits/perils of using

various classes of GEL methods over one other and 2S-GMM through a series of large-scale Monte-

Carlo experiments covering cases where GEL have been theoretically shown to be beneficial. In

these Monte-Carlo experiments, we also consider cases where 2S-GMM is known to perform better

than GEL: e.g., when estimation bias is not a concern, or when the moment vector in (2.1) is thick

tailed (see for e.g., Newey and Smith (2004) and Guggenberger (2008)).

A practical problem with the GEL methods is the computational cost. GEL estimation of

parameters involve solving a saddle-point optimization that becomes increasingly difficult com-

putationally when there are multiple parameters and moment restrictions. Partly to avoid this

computational burden, we focus on score tests when the parameters are completely (H0 : θ = θ0) or

partially (H10 : θ1 = θ10) specified by the null hypothesis where θ is the parameter vector defined

by (2.1) and θ1 is a sub-vector of θ.3 We note that the desirable higher-order properties of the

1One strand of the literature that has explored the use of a particular class of GEL, i.e., the Continuous Updating
GMM (CU-GMM), is the weak instrument/identification literature. See for example, Staiger and Stock (1997), Stock
and Wright (2000), Kleibergen (2002), Kleibergen (2005), Dufour and Taamouti (2005a), etc. Exceptions, that actually
compare the various class of GEL (occasionally in other contexts) are Mittelhammer et al. (2005), Guggenberger and
Smith (2005), Guggenberger and Hahn (2005), Guggenberger (2008) and Caner (2010).

2An ad hoc search of the keywords ”generalized method of moments”, ”generalized empirical likelihood”, ”continuous
updating generalized method of moments”, ”empirical likelihood”, ”exponential titling” yielded respectively (19, 0, 2, 0,
0) in the Journal of Political Economy (2004-2011), (21, 0, 1, 0, 0) in the Quarterly Journal of Economics (2004-2011)
and (34, 0, 0, 0, 1) in the American Economic Review (2004-2008). There were some other occurrences of the term
”empirical likelihood” but in unrelated contexts.

3In terms of point-estimation, a practical approach to avoid the computational problem is to use approximation-based
estimators that become asymptotically equivalent to the GEL estimator. See, for example, Antoine et al. (2007) and
Fan et al. (2011). We will treat the first reference elaborately in the sequel.
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GEL estimators over 2S-GMM (following the arguments of Newey and Smith (2004)) are likely to

extend to the GEL score tests by reweighing the estimators of the Jacobian and the variance matrix

of the moment vector using the so-called ”implied probabilities”.4 Therefore, any evidence of the

superior finite-sample performance of GEL score tests over 2S-GMM score tests is of importance

to the practitioners.

The saddle-point optimization cannot, however, be avoided by the conventional plug-in score

tests when interest lies only on a subset of parameters, i.e., when the null hypothesis is of the form

H10 : θ1 = θ10. In such cases the conventional plug-in score tests require the estimated value of

the nuisance parameters to be plugged in the score statistics.5 To avoid such computations, we

propose the use of a GEL score statistic that is analogous to Neyman (1959)’s C(α) statistic and

can be asymptotically equivalent to the conventional plug-in score statistic.

There is an additional theoretical problem with the GEL tests for subsets of parameters. Under

an important scenario considered in this paper we allow the parameters to be weakly identified

following the framework of Stock and Wright (2000). In case any element of the nuisance parameters

is weakly identified, one cannot obtain a consistent estimator of that element (even when the

null hypothesis is true) and as a result the conventional plug-in GEL score tests and the C(α)-

type tests do not have correct asymptotic size.6 We say that the asymptotic size of a test is

incorrect when it is different from the nominal level that is used to determine the critical value

for the test. We recall here that the tests for subsets of parameters discussed in Kleibergen (2005)

and Guggenberger and Smith (2005)(GS-05, henceforth) assume that the nuisance parameters are

strongly (i.e., not weakly) identified. While recently Kleibergen and Mavroeidis (2009) contend

that such score tests (based on CU-GMM, a particular class of GEL) are downward size-distorted,

i.e., asymptotic size is less than nominal size; Chen and Guggenberger (2011) contend that they

can be upward size-distorted (typically considered a more serious problem in economics). In the

view of this confusion and deeming downward size-distortion as the lesser problem, it seems that

the conventional projection-based tests, such as (extensions of) those advocated by, among others,

Dufour and Taamouti (2005b), are the safest choices for practitioners.

However, it is also known that these conventional projection-based tests for subsets of parameters

can be needlessly conservative (even in the absence of weak identification). To the best of our

4We expect the higher-order gains of the GEL estimators in terms of bias are likely to result in better size properties
of the GEL score tests. To the best of our knowledge, GEL estimators do not result in efficiency gains, unless bias
corrected. Hence we do not expect the GEL score tests to have an advantage in terms of power.

5We should qualify the usage of the term ”nuisance parameters”. While moment restriction models are intrinsically
semi-parametric in nature and involve infinite dimensional nuisance parameters, our usage of the term is rather simplistic.
In the context of (2.1), we refer to the sub-vector of θ that is not specified by the null hypothesis as the nuisance
parameters.

6Newey and West (1987)’s 2S-GMM score test of H0 : θ = θ0 or H10 : θ1 = θ10 has incorrect asymptotic size when
any element of the entire parameter vector is weakly identified, and hence is even less robust to weak identification.
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knowledge, the projection-based test proposed by Chaudhuri and Zivot (2011), in the context

of CU-GMM, is the least conservative projection test. They showed that this test: (i) is less

conservative than the conventional projection-based tests, (ii) always guards against uncontrolled

upward size-distortion, and (iii) in the absence of weak identification, can be made asymptotically

as powerful as the conventional plug-in based tests. In this paper we extend this test to the entire

GEL class and thus obtain a GEL test for subsets of parameters, which we henceforth call the

GEL-projection test. This GEL test is not upward size-distorted (unlike the conventional plug-in

based GEL tests) and at the same time is more powerful than the conventional projection-based

test. This is the methodological contribution of our paper.

The rest of the paper is organized as follows. In Section 2, we describe the framework of our

paper and summarize the results obtained by simulations in the subsequent sections. In Section 3,

we consider score tests for null hypotheses of the form H0 : θ = θ0, (i.e., for the entire parameter

vector) and conduct two simulation experiments to conduct a study of the relative performance

of the 2S-GMM and GEL score tests. In Section 4, we do the same for null hypotheses of the

form H10 : θ1 = θ10 (i.e., for a sub-vector). In addition, we also discuss the GEL-projection test,

establish its asymptotic properties, and compare its performance in finite samples with the other

tests. Proofs of all the theoretical results are collected in the Technical Appendix.

Notations used throughout the paper: For any a × b matrix A, ∥A∥ :=
√
trace(A′A). If A is

full column-rank then P (A) := A(A′A)−1A′ and N(A) := Ia − P (A) where Ia is the a× a identity

matrix. If A is symmetric and positive semi-definite then A
1
2 is such that A = A

1
2A

1
2
′
. χ2

p,1−α

denotes the 1− α-th quantile of a central χ2 distribution with p degrees of freedom.

2 Framework and summary of simulation results

Suppose that we have observations w1, w2, . . . , wn ∈ W from the unknown probability distribution

Fθ0,η0 ∈ F := {Fθ,η : θ ∈ Θ ⊂ Rp} where for a given θ, the elements of η are a set of unknown

nuisance parameters in A(θ), a space of possibly infinite dimension and possibly constrained by

θ. Now, suppose that the unknown ”true” value θ0 ∈ interior(Θ) is uniquely identified by a set of

moment restrictions given by

E[g(w, θ)] = 0 ⇔ θ = θ0, (2.1)

where g : W × Θ 7→ Rk is a known function.7 Being true to the literature on moment restrictions

models, we let the expectation on the LHS of (2.1) to be with respect to the family of unknown

probability distributions Fθ0,η for all η ∈ A(θ0) (and not just Fθ0,η0). This notion of uniformity is

7We only consider unconditional moment restrictions. Extension of these results to conditional moment restrictions,
while of theoretical relevance, is straightforward once the usual technical and computational issues are taken care of.
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a key ingredient of the current paper and will be of paramount importance when we consider the

size of tests in the presence of weak identification.

In this paper we consider various forms of score tests on θ (i.e., H0 : θ = θ0), and subsequently

on its sub-vector θ1 (i.e., H10 : θ1 = θ10), based on the first-order conditions of the efficient 2S-

GMM and GEL objective functions. The principle behind the design of the score statistics is same

as that of the 2S-GMM score statistic in Newey and West (1987). However, with the insight from

Newey and Smith (2004), we also incorporate the additional information obtained from the GEL

framework by using the GEL implied probabilities to obtain efficient estimators of the Jacobian

and the variance matrix of the moment vector g(w, θ) (or, interchangeably, its sample average).

For the sake of completeness, we first briefly describe the necessary part of the GEL framework

following Newey and Smith (2004) and then describe how to use the GEL implied probabilities to

design the score statistics. To fix the idea, in this section, we focus on the entire vector θ, i.e., on

null hypotheses of the form H0 : θ = θ0.

2.1 GEL implied probabilities and GEL score statistic:

The GEL class of estimators of θ0 is indexed by the function ρ (see Assumption ρ below) and is

defined as

θ̂ρ,n := argmin
θ∈Θ

sup
λ∈Λn(θ)

Q̂ρ,n(θ, λ)

where Q̂ρ,n(θ, λ) :=
1

n

n∑
i=1

ρ(λ′gi(θ))− ρ(0),

and Λn(θ) := {λ ∈ Rk : λ′gi(θ) ∈ O, ∀ i = 1, . . . , n}.

The choice of ρ(.) leads to various types of GEL such as CU-GMM or Euclidean empirical likelihood

(EEL) (ρ(v) = −(1 + v)2/2,O = R), empirical likelihood (EL) (ρ(v) = ln(1 − v),O = (−1,∞)),

exponential tilting (ET) (ρ(v) = − exp[v],O = R), etc. all of which satisfy Assumption ρ.

Assumption ρ: (GEL function)

ρ : O 7→ R is a continuous function such that

(i) ρ is concave on its domain O which is an open interval containing 0.

(ii) ρ is twice continuously differentiable on its domain. Defining ρr(v) := ∂rρ(v)/∂vr for r = 1, 2

and ρr := ρr(0), let ρ1 = ρ2 = −1 (standardization for convenience).

The desirable higher-order properties of the GEL estimators are precisely due to the GEL first

order condition which, assuming differentiability of the moment vector g(w, θ) with respect to θ, is
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given by

oP

(
1√
n

)
=

[
n∑

i=1

πρ,i,n(θ̂ρ,n)Gi(θ̂ρ,n)

]′ [ n∑
i=1

κρ,i,n(θ̂ρ,n)gi(θ̂ρ,n)g
′
i(θ̂ρ,n)

]−1

ḡn(θ̂ρ,n) (2.2)

where for given θ and ρ(.), gi(θ) := g(wi, θ), ḡn(θ) :=
1

n

n∑
i=1

gi(θ), Gi(θ) :=
∂

∂θ′
gi(θ),

λρ,n(θ) := arg sup
λ∈Λn(θ)

Q̂ρ,n(θ, λ), (2.3)

πρ,i,n(θ) :=
ρ1(λ

′
ρ,n(θ)gi(θ))∑n

j=1 ρ1(λ
′
ρ,n(θ)gj(θ))

: implied probabilities from GEL at a generic θ, (2.4)

κρ,i,n(θ) :=
κρ(λ

′
ρ,n(θ)gi(θ))∑n

j=1 κρ(λ′
ρ,n(θ)gj(θ))

, κρ(v) :=
ρ1(v) + 1

v
if v ̸= 0, κρ(0) = −1.

Observe that ρ(.) corresponding to EL leads to πρ,i,n(θ) = κρ,i,n(θ) for i = 1, . . . , n. It is because

of this along with a nice property of the implied probabilities πρ,i,n(θ) (discussed in Lemma-2.1

and Corollary-2.2 below) that results in the superior higher-order properties of the EL estimator

(among the GEL class) discussed in Newey and Smith (2004).

Lemma 2.1 Consider any θ ∈ interior(Θ) such that

(i) cn := max1≤i≤n ∥gi(θ)∥ = op(
√
n),

(ii) E[ḡn(θ)] = O(1/ns) for s ≥ 1/2,8

(iii)
√
n (ḡn(θ)− E[ḡn(θ)]) = OP (1) (i.e., assume V := Avar (ḡn(θ)) = O(1) and hence as a

consequence of (ii), ḡn(θ) = OP (n
−min {1/2,s}) = OP (n

−1/2)),9

(iv) bmin ≤ γmin(θ) ≤ γmax(θ) ≤ bmax, almost surely (w) where γmax(θ) and γmin(θ) are the

maximum and minimum eigen values of V̄n(θ) :=
1
n

∑n
i=1 gi(θ)g

′
i(θ), and bmax and bmin are (finite)

positive constants,10

(v) there exists a (finite) positive constant b such that for each v ∈ O, |ρ2(v)− ρ2(0)| ≤ b× |v|.

Then the following results hold as n → ∞ under assumptions ρ and (i)-(v):

(A) λρ,n(θ) defined in (2.3) is such that λρ,n(θ) = −V̄ −1
n (θ)ḡn(θ) + oP

(
n−1/2

)
,

(B) πρ,i,n(θ) defined in (2.4) is such that for a given i = 1, . . . , n,

πρ,i,n(θ) = πEEL,i,n(θ) + oP

(
n−3/2

)

where πEEL,i,n(θ)’s are the implied probabilities from EEL with the closed-form expression

πEEL,i,n(θ) =
1

n

[
1− (gi(θ)− ḡn(θ))

′V̄ −1
n (θ)ḡn(θ)

]
=

1

n
+OP

(
n−3/2

)
.

8We are focusing on moment restrictions that are weak or worse.
9This will be the rationale behind our definition of the space of hypothesized values of θ in Section 3.

10Under (ii) and (iii), V̄n(θ)− V = oP (1). Additionally, (iv) gives V̄ −1
n (θ)− V −1 = oP (1).
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Remark: Note from (B) that the difference between the EEL and GEL implied probabilities

is of a smaller order than that between the EEL implied probabilities and the naive empirical

probabilities {1/n}. This suggests us to claim that the use of the GEL implied probabilities to

re-weight observations results in equivalence up to one higher order and at the same time point out

a wedge between the use of the GEL implied probabilities versus the naive empirical probabilities.

However, this result, in itself, is not sufficient for such a claim because (B) is not uniform in

i = 1, . . . , n. We provide a proof of this claim in Corollary-2.2.

Corollary 2.2 Consider any θ ∈ Θ such that all the assumptions in Lemma-2.1 hold. Now con-

sider n i.i.d. realizations {Y1,n, . . . , Yn,n} of a d× 1 random vector Yn. Denote Ȳn =
∑n

i=1 Yi,n/n.

Assume that

(vi) Ȳn − µn
P−→ 0, 1

n

∑n
i=1(Yi,n − µn)

[
(gi(θ)− ḡn(θ))

′
, Y ′

i,n

] P−→ [ΩY g,ΩY Y ] and that

 √
n(Ȳn − µn)

√
n(ḡn(θ)− E[ḡn(θ)])

 d−→ N

0(d+k)×1,

 ΩY Y ΩY g

Ω′
Y g V

 , (2.5)

where ΩY g := ACov(Ȳn, ḡn(θ)),ΩY Y := AV ar(Ȳn) are finite.11

(vii) E∥Yi∥4 < ∞ and E∥gi(θ)∥4 < ∞.

Then the following results hold as n → ∞ under assumptions ρ and (i)-(vi):

(A)

 √
n
∑n

i=1 πEEL,i,n(θ) (Yi − µn)
√
n(ḡn(θ)− E[ḡn(θ)])

 d−→ N

0(d+k)×1,

 ΩY Y − ΩY gV
−1Ω′

Y g 0

0 V

,

(B)
√
n
∑n

i=1 πρ,i,n(θ) (Yi − µn)−
√
n
∑n

i=1 πEEL,i,n(θ) (Yi − µn)
P−→ 0.

Remarks: (A) states that the EEL implied probabilities provide a revision over the naive empirical

probabilities and, in case ḡn(θ) contains any information about Ḡn(θ), this revision leads to gain

in efficiency. Moreover, it also makes the re-weighted average of Yi,n asymptotically uncorrelated

(and, hence, independent because of normality) of the moment vector ḡn(θ). This is the primary

source of the improved higher-order properties of the GEL methods (see Newey and Smith (2004),

ABR-07). This is also an important property that has been exploited in the literature to design

score tests for weakly identified parameters (see Kleibergen (2005), Chaudhuri and Zivot (2011)).

On the other hand, the next result, (B), states that up to the first-order the implied probabilities

from all the members of the GEL class characterized by the function ρ(.) gives the same revision.

(B) will be the key justification for our general treatment of the various GEL score tests considered

later in this paper instead of considering them separately for each GEL member.

11The assumption on the existence of a CLT is not essential for our argument, but is made for the sake of a reference
in the subsequent sections of this paper. However, the convergence to and the existence of the asymptotic variances and
covariances are essential. Standard extension to independent but not identically distributed data is possible.
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Based on these observations, we consider a slightly modified and more general version of the

GEL first-order condition in (2.2). In other words, we consider a modified version of estimating

equations for θ. This is given by

ln,θ
(
θ;πG(θ), πV (θ)

)
:=

[
n∑

i=1

πG
i (θ)Gi(θ)

]′ [ n∑
i=1

πV
i (θ)Vi(θ)

]−1
√
nḡn(θ) = oP (1), (2.6)

where the notations are the same as before except that we take Vi(θ) := gi(θ)[gi(θ)− ḡn(θ)]
′ in the

deviation from mean form (shrinkage, see Hall (2000), Chaudhuri and Renault (2011)) with a hope

of better finite-sample performance. The choice of weights πG
i (θ) for the Jacobian and πV

i (θ) for

the weighting/variance matrix is dictated by the particular method used and this is what makes the

setup general (encompassing all the existing feasible methods based on moment restrictions).12,13

We illustrate this with some theoretically well known examples:

• 2S-GMM: πG
i (θ) = πV

i (θ) = 1/n for all i = 1, . . . , n and a preliminary consistent estimator θ̃

in the expression for Vi(θ),

• EEL/CU-GMM: πG
i (θ) = πEEL,i,n(θ), π

V
i (θ) = 1/n for all i = 1, . . . , n,

• 3S-EEL: πG
i (θ) = πEEL,i,n(θ), π

V
i (θ) = πEEL,i,n(θ) for all i = 1, . . . , n and a preliminary

consistent estimator θ̃ in the expressions for Gi(θ) and Vi(θ),
14

• EL: πG
i (θ) = πV

i (θ) = πEL,i,n(θ) for all i = 1, . . . , n,

• more generally, any GEL ρ(.) : πG
i (θ) = πρ,i,n(θ), π

V
i (θ) = κρ,i,n(θ) for all i = 1, . . . , n.

In fact, our setup can also accommodate mixed methods like ETEL (see Schennach (2007)) by

means of adding more notation to characterize the two different types of GEL, say ρ̂(.) and ρ̄(.)

(both satisfying Assumption ρ), in the expressions of the implied probabilities (in (2.4)):

πρ̂,ρ̄,i,n(θ) :=
ρ̄1(λ

′
ρ̂,n(θ)gi(θ))∑n

j=1 ρ̄1(λ
′
ρ̂,n(θ)gj(θ))

and similarly κρ̂,ρ̄,i,n(θ) :=
κρ̄(λ

′
ρ̂,n(θ)gi(θ))∑n

j=1 κρ̄(λ′
ρ̂,n(θ)gj(θ))

,

where λρ̂,n(θ) := arg sup
λ∈Λn(θ)

Q̂ρ̂,n(θ, λ) [compare with (2.3)].

For the specific case of ETEL, ρ̂ ≡ ρET and ρ̄ ≡ ρEL. Since we are primarily interested in the size

of score tests under the assumption of correctly specified models, we do not consider these mixed

methods in the current paper.15 Nevertheless, our results in Lemma-2.1 and Corollary-2.2 apply

12πG
i (θ) and πV

i (θ) can and will depend on sample size n. However, the dependence is suppressed for notational
convenience with a hope that it will not be unduly confusing to the readers.

13Note that, in contrast, the infeasible optimal GMM estimator solves the first order condition,
E[Gi(θ

0)]V ar−1(gi(θ
0))ḡn(θ) = oP (n

−1/2).
14It is obvious that the shrinkage version of the EEL implied probabilities put forward by ABR-07 and Dovonon (2008)

can be handled accordingly.
15A treatment of mixed methods, that is similar in spirit to our paper, can be found in Chaudhuri and Min (2012) in

the context of doubly robust Augmented Inverse Probability Weighting estimators of average treatment effects.
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to all the GEL and mixed methods (for mixed methods like ETEL, Lemma-2.1(A) is the key) and

hence all the theoretical results in this paper apply equally to a wide variety of methods.

The corresponding score statistic for testing null hypotheses of the form H0 : θ = θ0 can be

designed, following Newey and West (1987), as a quadratic form of n−1/2ln,θ
(
θ0;π

G(θ0), π
V (θ0)

)
defined in (2.6) with respect to the inverse of its asymptotic variance (under H0). The asymptotic

variance is likely to be unknown and needs to be replaced by a feasible estimator. In the spirit of

using the implied probabilities in ln,θ
(
θ0;π

G(θ0), π
V (θ0)

)
, we do the same for the estimator of the

asymptotic variance. Related technicalities are presented in Sections 3 and 4.

2.2 The motivation and summary of our findings:

In essence, all the methods considered are characterized by the weights used for estimating the

Jacobian and the variance matrix. Re-weighting with the GEL implied probabilities kills the

correlation (up to one higher order) of the average moment vector ḡn(θ) with the estimators of

the Jacobian and the variance matrix. As a result, the approximation

E
[
ln,θ

(
θ0;π

G(θ0), π
V (θ0)

)]
= 0

is more accurate under H0 : θ = θ0. This is likely to result in less size-distortion of the score test

in finite samples. There are at least two scenarios where this is known to be useful: (1) when the

parameters θ are weakly identified, and (2) when the moment vector gi(θ) is skewed. We consider

both to motivate the questions asked in this paper, and then summarize below the answers found

by simulation experiments.

Scenario 1: When θ is weakly identified, without any re-weighting, the estimator of the Jaco-

bian can be correlated with the average moment vector causing the score test to be size-distorted

in over-identified models (see Wang and Zivot (1998)). The solution of using the CU-GMM score

statistic, which is equivalent to re-weighting the Jacobian estimator with the EEL implied proba-

bilities, was proposed by Kleibergen (2005). Note that in this case the proposed solution is to use

the relevant quadratic form of ln,θ
(
θ0;π

G(θ0) = πEEL,i,n(θ0), π
V (θ0) = 1/n

)
as the score statistic.

For the purpose of our paper, it is important to observe the implicit and automatic re-scaling (by
√
n) in the presence of weakly identified θ:

√
nln,θ

(
θ0;πEEL,i,n(θ0),

1

n

)
=

[
√
n

n∑
i=1

πEEL,i,n(θ0)Gi(θ)

]′ [
1

n

n∑
i=1

Vi(θ)

]−1
√
nḡn(θ0).

Corollary-2.2(B) suggests that using any other GEL implied probabilities instead of EEL for re-

weighting the Jacobian estimator does not change the first-order asymptotic results. Corollary-

9



2.2(A) suggests that using any GEL implied probabilities instead of the naive empirical probabilities

(1/n) for re-weighting the variance matrix estimator does not change the second-order asymptotic

results. Also recall that in the spirit of the moment restrictions models in (2.1), under H0 : θ = θ0,

these results are supposed to be uniform with respect to the possibly infinite dimensional nuisance

parameters η ∈ A(θ0). Monte-Carlo experiment-I in Section 3 studies the accuracy of these results

implied by Corollary-2.2 in samples of reasonable size and under various specifications of η.

Scenario 2: When the moment vector is skewed, without any re-weighting, the estimator of

the variance matrix is correlated with the average moment vector causing the score test to be size-

distorted (see Altonji and Segal (1996), Horowitz (1998)). A solution is to re-weight the variance

matrix estimator with the EEL implied probabilities. This was proposed by ABR-07 and was

formulated into a score statistic by Guay and Pelgrin (2008). Note that in this case the proposed

solution is to use as the score statistic the relevant quadratic form of

ln,θ

(
θ0;

1

n
, πEEL,i,n(θ0)

)
=

[
1

n

n∑
i=1

Gi(θ)

]′ [ n∑
i=1

πEEL,i,n(θ0)Vi(θ)

]−1
√
nḡn(θ0).

Corollary-2.2 suggests that using any other GEL implied probabilities or (1/n) instead of EEL for

re-weighting the variance estimator does not change the second-order asymptotic results. Monte-

Carlo experiment-II in Section 3 studies the accuracy of these results implied by Corollary-2.2 in

samples of reasonable size and under various specifications of η.

As a representative of GEL other than EEL, we select EL and use it throughout the paper. In

addition to the results in Newey and Smith (2004), another reason behind this choice is the well

known optimality properties of the EL likelihood ratio (LR) test (and its similarity with the LR

test based on maximum likelihood estimation). See Kitamura (2006) for a survey. In the same

article (see page 44), Kitamura also asks if this nice property of EL carry over to the score type

tests. Our setup provides a platform to examine this question.

We find that in the presence of weak identification re-weighting the Jacobian estimator with the

EEL implied probabilities provides significant gain over 2S-GMM score tests. However, although

innocuous for first-order asymptotics, additionally re-weighting the variance estimator by the EEL

implied probabilities can cause severe size-distortion in small samples. On the other hand, in the

case of the EL implied probabilities, re-weighting both the Jacobian and the variance matrix estima-

tors provide the most accurate approximation, although re-weighting only the Jacobian estimator

becomes equally good in relatively large samples.

In the presence of skewed moment vector, using the EL implied probabilities to re-weight both

the Jacobian and the variance matrix estimators provide the most accurate approximation. Using

EEL implied probabilities produce bad approximation which can be even worse than that of 2S-

10



GMM in relatively small samples. We note here that Chaudhuri and Renault (2011) found a partly

similar result in the context of a simulation experiment in covariance structure models in the sense

that EL performed better than EEL, which in turn performed better than 2S-GMM.

Over all, the asymptotic equivalence of the GEL class only seems to hold when the sample

size is relatively large. Perhaps a way to justify the break down of asymptotic equivalence is to

note that the result on the order of magnitude of the difference in GEL implied probabilities in

Lemma–2.1(A) is not uniform over observations i = 1, . . . , n. While shrinkage in the spirit of

ABR-07 and Dovonon (2008) can correct for the negative EEL implied probabilities, often, without

proper trimming, certain influential observations can result in large EEL implied probabilities and

thus distort the asymptotic equivalence results and subsequently the behavior of the score test.

Note that the EL implied probabilities are between 0 and 1 by construction and, in a correctly

specified model, are quite stable (Schennach (2007)). Probably this is the reason behind the better

performance of score tests based on the EL implied probabilities.

Monte-Carlo experiments III and IV in Section 4 study the same for testing a sub-vector of

θ, i.e., for null hypotheses of the form H10 : θ1 = θ10. For θ2 such that θ := (θ′1, θ
′
2)

′, the sub-

vector score tests require that an estimator of θ2 (obtained by minimizing with respect to θ2 the

corresponding objective function constrained by θ1 = θ10) be plugged in the score statistic. We

call them generically the conventional plug-in based score tests. Since such computations can be

difficult with EL implied probabilities, we suggest the use of Neyman’s C(α) form and replace θ2

by any easy to obtain estimator that is
√
n-consistent under H0 and local alternatives. This results

in an asymptotically equivalent score test (when they are known to work) and our simulations in

Monte-Carlo experiments III and IV show that it performs comparably to the conventional plug-in

based score tests.

However, as mentioned in the Introduction, it is not clear if any of these plug-in based tests is

not upward size-distorted when θ2 is weakly identified (see Chen and Guggenberger (2011)). Hence

we also extend the projection-based test of Chaudhuri and Zivot (2011) to the GEL setup described

above. The main issue with this test is that: being of a projection type, in finite samples it may not

be as powerful as the plug-in based tests when there is actually no problem of weak identification.

This does not seem to be a serious problem in our simulation results from Monte-Carlo experiment

III.
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3 Testing for entire parameter vector, H0 : θ = θ0

3.1 Various Score tests and their asymptotic properties

As discussed in the last section, following Newey and West (1987), the score statistic for testing

H0 : θ = θ0 is designed as a quadratic form of ln,θ(θ0;π
G(θ0), π

V (θ0))/
√
n in (2.6) with respect to

the inverse of an estimator of its asymptotic variance. The asymptotic variance is estimated by

In,θ(θ0;πG(θ0), π
V (θ0)) where, for any θ, we define similar to (2.6),

In,θ
(
θ;πG(θ), πV (θ)

)
:=

[
n∑

i=1

πG
i (θ)Gi(θ)

]′ [ n∑
i=1

πV
i (θ)Vi(θ)

]−1 [ n∑
i=1

πG
i (θ)Gi(θ)

]
. (3.1)

Therefore, the generic form of the score statistic is LMn,θ

(
θ0;π

G(θ0), π
V (θ0)

)
where

LMn,θ

(
θ;πG(θ), πV (θ)

)
:= l′n,θ

(
θ;πG(θ), πV (θ)

)
I−1
n,θ

(
θ;πG(θ), πV (θ)

)
ln,θ

(
θ;πG(θ), πV (θ)

)
. (3.2)

The score test rejects H0 : θ = θ0 at the nominal level α if

LMn,θ

(
θ0;π

G(θ0), π
V (θ0)

)
> χ2

p,1−α.

While one is free to use different sets of weights to re-weight the estimator of the Jacobian and/or

the variance matrix appearing in ln,θ
(
θ;πG(θ), πV (θ)

)
and In,θ

(
θ;πG(θ), πV (θ)

)
respectively, for

the purpose of our simulations we choose to use the same set of weights. Also keeping in mind that

three sets of weights that we are particularly interested in are the naive empirical probabilities and

the implied probabilities from EEL and EL, the particular score statistics employed here are:

(A) 2S-GMM: LMn,θ (θ0; 1/n, 1/n) – see Newey and West (1987).

(B1) EEL-Hybrid-1: LMn,θ (θ0;πEEL,i,n(θ0), 1/n) – see Kleibergen (2005).

(B2) EEL-Hybrid-2: LMn,θ (θ0; 1/n, πEEL,i,n(θ0)) – see Guay and Pelgrin (2008).

(B3) EEL-Hybrid-3: LMn,θ (θ0;πEEL,i,n(θ0), πEEL,i,n(θ0)) – motivated from ABR-07.

(C1) EL-Hybrid-1: LMn,θ (θ0;πEL,i,n(θ0), 1/n) – see GS-05.

(C2) EL-Hybrid-2: LMn,θ (θ0; 1/n, πEL,i,n(θ0)) – EL version of Guay and Pelgrin (2008).

(C3) EL-Hybrid-3: LMn,θ (θ0;πEL,i,n(θ0), πEL,i,n(θ0)) – see GS-05.16

Since we allow for weak identification, it is well known that the score tests in (A), (B2) and (C2) do

not have correct asymptotic size. It is also known, at least since Kleibergen (2005) and GS-05, that

16Since GS-05 do not explicitly state which variance estimator is used in their equations (3.5) and (3.6), both EL-
Hybrid-1 and EL-Hybrid-3 are encompassed in their framework.
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the other tests have correct asymptotic size. For the sake of completeness, we briefly list below the

asymptotic properties of these other GEL score tests, i.e., (B1), (B3), (C1), (C3), under standard

assumptions that also allow for weakly identified θ. See GS-05 for a comprehensive treatment of

these tests.

Assumption Θ: (parameters and parameter spaces)

Θ = Θw × Θs and θ0 = (θ0
′

w , θ0
′

s )′ where θ0w ∈ interior(Θw) ⊂ Rpw , θ0w ∈ interior(Θs) ⊂ Rps and

Θw,Θw are compact. (The cross-product form of Θ is not necessary but taken for convenience.)

Definition of hypothesized value θ0:

θ0 ∈ Θn := interior (Θw ×Θn
s ) where Θn

s := {θns = θ0s + ds/
√
n for some ds ∈ Rps} ⊆ Θs.

Assumption ID: (weak identification)

The expectation of the average moment vector is E[ḡn(θ)] = mw
n (θ)/

√
n+m(θs) where

(i)mw
n (θ) : Θ 7→ Rk is a continuous function such thatmw

n (θ) → mw(θ) andMw
n (θ) := ∂mw

n (θ)/∂θ
′ →

Mw(θ) uniformly in θ ∈ Θn. mw(θ0) = 0, mw(θ) and Mw(θ) are uniformly bounded for θ ∈ Θn

and continuous in θs at {θ0s}.

(ii) m(θs) : Θs 7→ Rk is a continuous function and m(θs) = 0 if and only if θs = θ0s . M(θs) :=

∂m(θs)/∂θ
′
s such that it is uniformly bounded for θs ∈ Θn

s , and continuous with full column rank

at θs = θ0s .

Assumption S: (moment vector and its derivative)

(i) max1≤i≤n supθ∈Θn ∥gi(θ)∥ = op(
√
n).

(ii.a) gi(θ) is twice continuously differentiable in θ ∈ Θn.

(ii.b) Ḡn(θ) := ∂ḡn(θ)/∂θ
′ = [Ḡwn(θ), Ḡsn(θ)] = E[Ḡn(θ)] + op(1) uniformly in θ ∈ Θn where

E[Ḡn(θ)] = ∂E[ḡn(θ)]/∂θ
′ = Mw

n (θ)/
√
n + [0,M(θs)] by imposing interchangeability of the order

of differentiation and integration (and from Assumption ID).

(ii.c) ∂vec(Ḡw,n(θ))/∂θ
′
s = Gw(θ) + op(1) uniformly in θ ∈ Θn where Gw(θ) is uniformly bounded

for θ ∈ Θn and is continuous in θs at {θ0s}.

(iii) For θw ∈ interior(Θw), let θws0 := (θ′w, θ
0′

s )′. Assume that

 Ψg,n(θws0)
k×1

Ψw,n(θws0)
kpw×1

 :=
√
n

 ḡn(θws0)− E[ḡn(θws0)]

vec(Ḡwn(θws0)− E[Ḡwn(θws0)])

⇒

 Ψg(θws0)
k×1

Ψw(θws0)
kpw×1


where [Ψ′

g(θws0),Ψ
′
w(θws0)] is a mean zero Gaussian process with covariance matrix

∆(θwas0 , θwbs0) =

 ∆gg(θwas0 , θwbs0)
k×k

∆gw(θwas0 , θwbs0)
k×kpw

∆wg(θwas0 , θwbs0)
kpw×k

∆ww(θwas0 , θwbs0)
kpw×kpw
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for any two θwa , θwb
∈ Θw. Ψg(θws0) and Ψw(θws0) are uniformly bounded in probability for

θ ∈ interior(Θw)× {θ0s}.

(iv.a) Vgg(θ) and Vwg(θ) are respectively k × k and kpw × k matrices such that they are bounded

for θ ∈ Θw × {θ0s} and are continuous in θs at {θ0s}. Vgg(θ) (and V −1
gg (θ)) is also positive definite

for θ ∈ Θw × {θ0s}. Furthermore, Vwg(θws0) = ∆wg(θws0 , θws0) = ∆′
gw(θws0 , θws0) = V ′

gw(θws0) and

Vgg(θws0) = ∆gg(θws0 , θws0).

(iv.b) Ṽgg(θ) :=
∑n

i=1 gi(θ))[gi(θ) − ḡn(θ)]
′/n ≡ V̄n(θ) and Ṽwg(θ) :=

∑n
i=1 vec(Gw,i(θ))[gi(θ) −

ḡn(θ)]
′/n are respectively k × k and kpw × k matrices that are continuous in θ2 at {θ0s} and

uniformly bounded in probability for θ ∈ Θn. Furthermore, Ṽgg(θ) = Vgg(θ) + op(1) and Ṽwg(θ) =

Vwg(θ) + op(1) uniformly and Ṽgg(θ) is positive definite almost surely for θ ∈ Θn.

Theorem 3.1 For θ ∈ Θn define G̃n(θ) := [G̃wn(θ), Ḡsn(θ)] where G̃wn(θ) is a k×pw matrix such

that vec(G̃wn(θ)) :=
√
nvec(Ḡwn(θ)) − Ṽwg(θ)Ṽ

−1
gg (θ)

√
nḡn(θ). Then the following results hold as

n → ∞ under assumptions Θ, ID, S and ρ:

(A) If πG
i (θ) = πρ,i,n(θ) and πV

i (θ) = 1/n or πρ,i,n(θ) for all i = 1, . . . , n, then

LMn,θ

(
θ;πG(θ), πV (θ)

)
= l̃′n,θ(θ)Ĩ−1

n,θ(θ)l̃n,θ(θ) + op(1)

uniformly in θ ∈ Θn where l̃n,θ(θ) := G̃′
n(θ)Ṽ

−1
gg (θ)

√
nḡn(θ) and Ĩn,θ(θ) := G̃′

n(θ)Ṽ
−1
gg (θ)G̃n(θ).

(B) Let the hypothesized value θ0 be such that θ0 := θwsn = (θ′w, θ
n′

s )′ ∈ Θn where θw ∈ is fixed and

θns = θ0s+ds/
√
n for some fixed ds. Define G̃(θw, ds) := [G̃w(θw, ds),M(θ0s)] where G̃w(θw, ds)

is a k × pw matrix such that

vec(G̃w(θw, ds)) := Ψw.g(θws0) +
[
Gw(θws0)ds − Vwg(θws0)V

−1
gg (θws0)[m

w(θws0) +M(θ0s)ds]
]︸ ︷︷ ︸

Compare with Corollary-2.2(A)

,

θws0 := (θ′w, θ
0′

s )′ and where Ψw.g(θws0) := Ψw(θws0)− Vwg(θws0)V
−1
gg (θws0)Ψg(θws0) is inde-

pendent of Ψg(θws0) by construction. If πG
i (θ) = πρ,i,n(θ) and πV

i (θ) = 1/n or πρ,i,n(θ) for

all i = 1, . . . , n, then

LMn,θ

(
θ0;π

G(θ0), π
V (θ0)

) d−→ g̃′(θw, ds)V
−1/2
gg (θws0)P

(
V −1/2′

gg (θws0)G̃(θw, ds)
)
V −1/2′

gg (θws0)g̃(θw, ds)

where g̃(θw, ds) := Ψg(θws0) + [mw(θws0) +M(θ0s)ds)].

Part(A) of the theorem states that the score statistics in which the estimator of the Jacobian is

re-weighted by the GEL implied probabilities are first-order asymptotically equivalent under our

assumptions. This, naturally, is a sufficient condition for the first-order asymptotic equivalence of
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the corresponding score tests.

Part(B) of the theorem specifies the hypothesized value θ0 and states the asymptotic distribu-

tion of the score statistic at this particular value. When θw = θ0w and ds = 0, i.e., at θ0 = θ0, the

score statistic LMn,θ

(
θ0;π

G(θ0), π
V (θ0)

) d−→ χ2
p conditional on Ψw.g(θ

0), and hence uncondition-

ally. Therefore, the score test has correct asymptotic size. On the other hand, for deviations from

the truth in the form of θw ̸= θ0w and/or ds ̸= 0, the statistic LMn,θ

(
θ0;π

G(θ0), π
V (θ0)

)
, condi-

tional on Ψw.g(θws0), converges in distribution to a non-central χ2
p with non-centrality parameter

µ(θw, ds)
′µ(θw, ds) where

µ(θw, ds) :=
[
G̃′(θw, ds)V

−1
gg (θws0)G̃(θw, ds)

]−1/2′

G̃′(θw, ds)V
−1
gg (θws0)[m

w(θws0) +M(θ0s)ds)]

=
[
M ′(θ0s)V

−1
gg (θws0)M(θ0s)

]1/2′
ds if pw = 0.

Therefore, in the presence of both weakly and strongly identified parameters the score test (con-

ditional on Ψw.g(θws0)) has nontrivial power against
√
n-deviations along the strongly identified

components. Along the weakly identified components, the score test can have nontrivial power

only against fixed deviations from the true value. The second line of the above equality leads to

the standard (unconditional) power function of a score test when all the elements of θ are strongly

identified, and holds for all the score tests (A), (B1)-(B3), (C1)-(C3) considered here.

Finally, we note that unlike the problem with weak identification, which manifests itself in the

first-order asymptotics (O(1)), the problem with the skewed moment vector only manifests in the

second order (O(n−1/2)), and hence a convenient and convincing theoretical modeling of it is more

difficult. For this reason, simulation based study of their effect in finite samples seems to be useful.

We study the finite sample properties (rejection rates for true and false values of θ) of the score

tests based on all the above score statistics in Monte-Carlo Experiments I and II.

3.2 Monte-Carlo Experiment I

3.2.1 Design

This is similar to Design III of GS-05 that studies the robustness of the score test to the skewness

in the distribution of the structural errors in a linear IV model. We modify the design slightly so

that the regressor is actually endogenous, while preserving the skewed distribution of the structural
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error. We draw i.i.d. copies of wi = (yi, Xi, Z
′
i) for i = 1, . . . , n from the following DGP-I:

y = Xθ0 + u,

X = Z ′Π+ ϑ,

u = ρϑ+

√
1− ρ2

2
(e2 − 1),

and (e, ϑ) ∼ N(0, I2) independent of Z ∼ N(1k, Ik). We define Π := C/
√
n where C = c1k is gener-

ated such that the concentration parameter µ = Π′∑n
i=1 ZiZ

′
iΠ/k is 0 (complete un-identification),

1 (weak identification) or 10 (strong identification). The sample size n is chosen to be 100 (small

sample) and 1000 (reasonable for a micro-econometric application). The number of instruments is

chosen as k = 2, 4, 8, 16 in a way that attempts to capture the fixed (number of) moment asymp-

totics, the many weak moment asymptotics (for n = 100, k = 8, 16 and µ = 1) and the many strong

moment asymptotics (for n = 100, k = 8, 16 and µ = 10). The level of endogeneity, ρ, of X and

the skewness of the moment vector are made to vary inversely – skewness is 0 when ρ = 1. This

helps to disentangle the effects of these two factors – endogeneity of the regressor and skewness of

the structural error – on the inference of the structural coefficient θ. In particular, we choose ρ = 0

(skewness ≈ 11.3), ρ = .5 (skewness ≈ 7.4) and ρ = .9 (skewness ≈ .9) to signify low, medium and

high level of endogeneity (high, medium and low level of skewness) respectively.

In this case the moment vector is

gi(θ) ≡ g(wi, θ) = Zi(yi −Xiθ), where wi = (yi, Xi, Z
′
i)

′ is i.i.d. ∀ i = 1, . . . , n, (3.3)

and the specification of endogeneity, skewness, strength of instruments, etc. described above models

certain relevant elements of the infinite dimensional nuisance parameters η to check the robustness

of the approximation results in Theorem-3.1. The score tests only use the information/restriction

(2.1) based on this moment vector. We ignore the other facets (such as independence of Z

and u) of the DGP described above because the researcher is often reluctant to make these as-

sumptions a priori. In particular, while estimating the asymptotic variance, we only assume that

Asym V ar[
√
nḡn(θ

0)] = E[ZiZ
′
i(yi −Xiθ

0)2] and not E[ZiZ
′
i]×V ar[yi −Xiθ

0] although the latter

is also true for DGP - I.17 Hence the EEL Hybrid-1 version should not be confused with Kleibergen

(2002)’s K test.

17A logical extension will be to ignore the i.i.d. nature of the data and use a HAC variance matrix for the average
moment vector. However, we avoid this so as not to confound the answers to our primary questions by issues (like the
choice of bandwidth) related to the HAC estimator.
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3.2.2 Results

Based on 5000 Monte-Carlo trials, we report in Table-1 (for n = 100) and Table-2 (for n = 1000)

the empirical rejection rates of the true value θ = θ0(= 1) for all the tests with nominal level 5 %.

The 2S-GMM score test performs well where it is supposed to do so. However, with weak

identification and/or skewed moment vector, it is severely size-distorted – the upward size-distortion

is more prominent in case of the former. (The problem gets worse when the number of moment

restrictions increases.) With the level of skewness and weak identification specified in this design,

it seems that proper weighting is more necessary for the estimator of the Jacobian than for the

estimator of the variance matrix, and is borne out by comparing the results corresponding to

the Hybrid-1 versus the Hybrid-2 versions of the EEL and EL score tests. This should not be

surprising because weak identification manifests as distortion in the first-order asymptotics (O(1))

while skewness in the the second order (O(n−1/2)). We find that the Hybrid-3 version of the EL

score test provides more improvement over the Hybrid-1 version. However, contrary to ABR-07’s

result of the higher-order equivalence between EL and 3S-EEL, this is not true for EEL. Overall,

considering the size-distortion due to endogeneity/weak identification, skewed moment vector and

many moments (weak and strong), we find that the Hybrid-3 version of the EL score test performs

the best. This is even more true when the sample size is large (n = 1000) as is found commonly in

micro-econometric applications.

3.3 Monte-Carlo Experiment II

3.3.1 Design

This design is commonly employed in papers studying the properties of GEL-type estimators. See,

for example, Hall and Horowitz (1996), Imbens et al. (1998) (Model 2), Kitamura (2001), Schennach

(2007) and Dovonon (2008) (Design D) for discussions on the rationale behind this design. We draw

i.i.d. copies of wi = (X1i, X2i, . . . , Xki) for i = 1, . . . , n from the DGP-II:

X1 ∼ N(0, .16), X2 ∼ N(0, .16), Xj ∼ χ2
1 for j = 3, . . . , k,

and X1, X2, . . . , Xk are independent. The moment vector is defined as

gi(θ) ≡ g(wi, θ) = Zir(X1i, X2i, θ),

where Zi = (1, X2i, X3i, . . . , Xki)
′,

r(X1i, X2i, θ) = exp [−.72− (X1i +X2i)θ + 3X2i]− 1
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and the moment restrictions in (2.1) are satisfied for θ = θ0 = 3.

We choose the sample size n = 100, 200, 500, 1000 and the number of moments k = 3, 10.

3.3.2 Results

Based on 5000 Monte-Carlo trials, we report in Table-3 the empirical rejection rates of the true

value θ = θ0(= 1) for all the tests with nominal level 5%.

While, in general, the finite-sample size for none of the score tests is very close to the nominal

level (which, in this experiment is the first-order asymptotic size for all the score tests), the EL

Hybrid-3 score test performs uniformly better than the rest for all specifications. Note that, unlike

in Monte-Carlo Experiment I, here EEL Hybrid-3 can provide size-refinement over EEL Hybrid-1,

and this is observed for relatively larger sample sizes. In this experiment, there is no problem of

endogeneity but the moment vector is skewed. Hence proper weighting in the estimator of the

variance matrix (i.e., Hybrid-2) should be more important than the same for the Jacobian (i.e.,

Hybrid-1). This is evident for the EL score tests but only supported for the EEL score tests with

large sample size and large number of moments. The performance of 2S-GMM score test is poor

but better than that of the EEL score tests and the EL Hybrid-1 score test. The ranking between

the 2S-GMM score test and the EL Hybrid-2 score test is not clear. We conclude by noting again

that the EL Hybrid-3 score test performs the best, unambiguously.

4 Testing for sub-vectors, H10 : θ1 = θ10

The last section provided evidence of the superior performance of score tests for the entire parameter

vector, i.e, of H0 : θ = θ0, when the EL implied probabilities are used to re-weight the estimators of

both the Jacobian and the variance matrix. However, the computational advantage of score tests,

especially with the use of the EL implied probabilities, is less when we are only interested in a

sub-vector of θ. This is because the elements of θ that are not specified by the null hypothesis need

to be estimated.

4.1 Various Score tests: computation and other considerations

We briefly describe below the procedure for designing the conventional score statistic. Then we

suggest an alternative and computationally convenient form of the score statistic following Neyman

(1959)’s C(α) principle. This alternative form is considered throughout the paper as the plug-in

score statistic. Finally we extend the projection-based score statistic proposed by Chaudhuri and

Zivot (2011) to the GEL setup of our paper. Unlike the plug-in based tests, this GEL-projection test
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guarantees against uncontrolled upward size-distortion when any element of θ is weakly identified.

Consider the partition of θ = (θ′1, θ
′
2)

′ where θ1 is p1 × 1 and θ2 is p2 × 1 with p = p1 + p2.

Accordingly, let θ01 and θ02 be such that θ0 = (θ0
′

1 , θ0
′

2 )′ satisfies the moment restrictions given

in (2.1). The null hypothesis specifies θ1 = θ10. However, the unknown ”nuisance parameter”

θ2 is unspecified and the user needs to fix some value of θ2 to plug-in, along with θ01, in the

score statistic given in (3.2). The standard practice is to plug-in θ̃0n = (θ′10, θ̃
′
2n(θ10))

′, where

θ̃2n(θ10) := θ̃2n

(
θ10;π

G(θ̃0n), π
V (θ̃0n)

)
is the estimator of θ2 under the restriction θ1 = θ10 and

solves the (approximate) first-order conditions, i.e., the last p2 rows of (2.2) with θ1 replaced by

θ10,:
18

ln,2

(
θ̃0n;π

G(θ̃0n), π
V (θ̃0n)

)
:=

[
n∑

i=1

πG
i (θ̃0n)G2,i(θ̃0n)

]′ [ n∑
i=1

πV
i (θ̃0n)Vi(θ̃0n)

]−1
√
nḡn(θ̃0n) = oP (1).

(4.1)

In connection with (2.2), note that we have used the partitionGi(θ) := ∂gi(θ)/∂θ
′ = [G1,i(θ), G2,i(θ)]

where Gl,i(θ) := ∂gi(θ)/∂θ
′
l is the k×pl matrix of partial derivatives of gi(θ) with respect to θl (for

l = 1, 2). So ln,2
(
θ;πG(θ), πV (θ)

)
constitutes of the last p2 = p− p1 rows of ln,θ

(
θ;πG(θ), πV (θ)

)
.

One can similarly define ln,1
(
θ;πG(θ), πV (θ)

)
as the first p1 rows of ln,θ

(
θ;πG(θ), πV (θ)

)
that

corresponds to the k × p1 sub-matrix G1,i(θ) of Gi(θ).

The conventional plug-in based score test rejects H10 : θ1 = θ10 at the nominal level α if

LMn,θ

(
θ̃0n;π

G(θ̃0n), π
V (θ̃0n)

)
> χ2

p1,1−α. Therefore, with the conventional form of the score

statistic, one cannot hope to exploit the information in the EL implied probabilities and at the

same time avoid the EL estimation of θ2.

To avoid such estimations, we suggest the use of an alternative form of the score statistic that

can also be viewed as Neyman’s C(α) statistic. This statistic is defined as

LMn,1.2

(
θ;πG(θ), πV (θ)

)
:= l′n,1.2

(
θ;πG(θ), πV (θ)

)
I−1
n,11.2

(
θ;πG(θ), πV (θ)

)
ln,1.2

(
θ;πG(θ), πV (θ)

)
.

(4.2)

The notations used in (4.2) are as follows. For the triplet ξ :=
(
θ;πG(θ), πV (θ)

)
,

ln,1.2(ξ) := ln,1 (ξ)− In,12 (ξ) I−1
n,22 (ξ) ln,2 (ξ) ,

In,11.2 (ξ) := In,11 (ξ)− In,12 (ξ) I−1
n,22 (ξ) In,21 (ξ) ,

where In,ll′
(
θ;πG(θ), πV (θ)

)
:=

[
n∑

i=1

πG
i (θ)Gl,i(θ)

]′ [ n∑
i=1

πV
i (θ)Vi(θ)

]−1 [ n∑
i=1

πG
i (θ)Gl′,i(θ)

]
18Unless, there is a chance of confusion we suppress the dependence of the estimator of θ2 on the weights used for the

estimator of the Jacobian and the variance matrix in (4.1). In cases where this dependence is made explicit, we suppress
the dependence on the hypothesized value θ10 for the parameter of interest because that is obvious.
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for l, l′ = 1, 2. When (4.1) holds exactly (and not just up to oP (1/
√
n)), we obtain the following

numerical equivalence,

LMn,1.2

(
θ̃0n;π

G(θ̃0n), π
V (θ̃0n)

)
= LMn,θ

(
θ̃0n;π

G(θ̃0n), π
V (θ̃0n)

)
.

The computational advantage of this alternative form was exploited by Chaudhuri and Zivot (2011).

In the context of 2S-GMM and EEL-Hybrid-1 and in the absence of weak identification, they showed

that for any hypothesized value θ10 in the
√
n-neighborhood of the true value θ01,

LMn,1.2

(
(θ01, θ2n);π

G(θ01, θ2n), π
V (θ01, θ2n)

)
= LMn,1.2

(
(θ01, θ

0
2);π

G(θ01, θ
0
2), π

V (θ01, θ
0
2)
)
+ oP (1)

where θ2n is any
√
n-consistent estimator of θ02. It is obvious that under the same scenario this

nice property extends to all the score tests considered in our paper. We prefer this C(α) form

over the conventional form because the former allows the practitioner, who wishes to use the

EL(GEL) implied probabilities for re-weighting but wants to avoid the EL(GEL) estimation of θ2, to

simply plug-in the computationally convenient 2S-GMM estimator of θ2 and obtain asymptotically

equivalent results in cases where the conventional plug-in score tests have correct asymptotic size.19

In the current paper we will refer to the GEL plug-in score test as the test that rejects H10 :

θ1 = θ10 at the nominal level α if

LMn,1.2

(
θ̃0n;π

G(θ̃0n), π
V (θ̃0n)

)
> χ2

p1,1−α,

i.e., the test that plugs in θ̃2n(θ10) obtained as the solution of (4.1).

However, it is also known since GS-05 that when the elements of θ2 are weakly identified, neither

the conventional plug-in score test nor the GEL plug-in score test has correct asymptotic size.20

As mentioned in the Introduction, there seems to be some confusion in the literature regarding the

asymptotic size of these plug-in tests. In the context of CU-GMM, while Kleibergen and Mavroeidis

(2009) contend that such score tests are downward size-distorted, Chen and Guggenberger (2011)

contend that they can be upward size-distorted.

In the view of this confusion we think it is safer to use some kind of projection methods for such

tests of sub-vectors. Accordingly we extend here the projection-based test proposed by Chaudhuri

and Zivot (2011) to the entire GEL framework in the full generality characterized by (2.2). We

19This convenience is similar in spirit to the higher-order asymptotic equivalence between ABR-7’s 3S-EEL estimator
with the EL estimator. Recall that ABR-07’s asymptotic equivalence, unfortunately, did not translate into similar finite-
sample properties of the EEL-Hybrid-3 and EL-Hybrid-3 score tests in the last section. Therefore, it will be important
to check the accuracy of this computation-facilitating approximation in the subsequent Monte-Carlo experiments.

20Recall that if the empirical probabilities (1/n) are used for πG(θ̃0n), then the test has incorrect asymptotic size when
any element of θ is weakly identified.
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call this the GEL-projection test. Chaudhuri and Zivot (2011) demonstrated that this particular

kind of projection is less conservative than the usual projection-based tests (also see Zivot and

Chaudhuri (2009), Chaudhuri et al. (2010)). This GEL-projection test, in its generic form, rejects

H10 : θ1 = θ10 if

inf
θ2∈C2n(1−τ,θ10)

LMn,1.2

(
(θ01, θ2);π

G(θ01, θ2), π
V (θ01, θ2)

)
> χ2

p1,1−α (4.3)

where C2n(1 − τ, θ10) is a region, possibly dependent on θ10 and n, such that it contains θ02 with

probability approaching (at least) 1 − τ whenever θ01 = θ10. Additionally, for the asymptotic

equivalence with the plug-in GEL score tests in the absence of weak identification, we would require

that if θ01 = θ10 + d1/
√
n, then C2n(1 − τ, θ10) belongs in the

√
n-neighborhood of θ02 almost

surely. Finding such a region is not difficult. When θ2 is weakly identified one can invert a weak-

identification robust test such as the Anderson-Rubin-type tests, Kleibergen (2005)’s K test, or more

generally the tests described in GS-05. When θ2 is not weakly identified, one can simply obtain a

Wald-type confidence region based on the estimator θ̃2n(θ10) := θ̃2n

(
θ10;π

G(θ̃0n), π
V (θ̃0n)

)
with a

convenient choice of πG(θ̃0n) and πV (θ̃0n).

4.2 GEL-projection test: asymptotic properties

The conventional plug-in tests have already been extensively studied in Kleibergen (2005), GS-05 ,

Kleibergen and Mavroeidis (2009) and Chen and Guggenberger (2011). Since it is not clear that they

are never size-distorted upwards under our setup, in this section we do not report their asymptotic

properties. However, there is some thing apparently new about our claim to the computational

advantage of the alternative form of plug-in tests. We claimed that when the conventional plug-in

tests are known to have correct asymptotic size, i.e., when θ2 is not weakly identified, one can safely

replace θ2 by, say, its computationally convenient 2S-GMM estimator and at the same time use the

EL implied probabilities to design the sub-vector score test. We prove this result in Lemma-4.1.

Other than this, we focus exclusively on the projection-GEL test in this sub-section. By virtue

of projection, and using the results of the full-vector tests in GS-05, it is straightforward to show

by Bonferroni arguments that the asymptotic size of this test can always be bounded by any

pre-specified level (τ + α).21 What is important about this test is the following: This test is

asymptotically equivalent to the plug-in based tests when there is no problem of weak identifica-

tion. No other projection-based test shares this property. Hence in our discussion (theoretical and

simulation-based) of the projection-GEL test we will focus on this particular property.

The assumptions under which the asymptotic properties are stated are same as those for the

21Note that no test has correct asymptotic size under the assumptions our paper.
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test of H0 : θ = θ0. However, since our interest is in the sub-vector test under the scenario where

the elements of θ1 and θ2 can both be weakly and strongly (not weakly) identified, it will be useful

to point out the connection by specifying the regrouping and partition of the spaces, vectors and

matrices defined in assumptions Θ, ID and S and definition Θn. We list them below:

(Θ): θ := (θ′1, θ
′
2)

′, θ1 := (θ′1w, θ
′
1s)

′, θ2 := (θ′2w, θ
′
2s)

′ and accordingly the partition Θ1 = Θ1w×Θ1s

and Θ2 = Θ2w × Θ2s, Θw := Θ1w × Θ2w, Θs = Θ1s × Θ2s where Θlj ⊆ Rplj is compact for

l = 1, 2, j = w, s.

(Θn): Same as Θ.

(ID): Mw(θ) = [Mw
1w(θ),M

w
1s(θ),M

w
2w(θ),M

w
2s(θ)] where Mw

lj (θ) := ∂mw(θ)/∂θ′lj for l = 1, 2 and

j = w, s. M(θs) = [M1(θs),M2(θs)] where Ml(θs) := ∂m(θs)/∂θ
′
ls for l = 1, 2.

(S): (ii.b) E[Ḡn(θ)] = ∂E[ḡn(θ)]/∂θ
′ = Mw

n (θ)/
√
n+ [0,M1(θs), 0,M2(θs)].

(S): (ii.c) Holds for ∂vec(Ḡlw,n(θ))/∂θ
′
s for l = 1, 2.

(S): (iii) The partition of Ψw = [Ψ′
1w,Ψ

′
2w]

′, ∆gw = [∆g1,∆g2] = ∆′
wg and ∆ww = (∆ll′)l,l′=1,2

follows the partition of θw = (θ′1w, θ
′
2w)

′, i.e., the partition of the weakly identified elements

of θ into those from θ1 and θ2 respectively.

(S): (iv.a) Same as S(iii).

(S): (iv.b) Same as S(iii).

In Lemma-4.1 we show the computational convenience provided by the alternative form of plug-

in tests. As the reference test, we consider the EL-Hybrid-3 just for the sake of being specific. The

result extends to entire GEL class of tests when the reference is known to have correct asymptotic

size.

Lemma 4.1 Let the hypothesized value θ10 be such that θ10 := (θ′1w, θ
n′

1s)
′ ∈ Θn where θn1s =

θ01s + d1/
√
n for some fixed d1. Assume that p2w = 0 i.e., there is no weakly identified element in

θ2.
22 Consider the following two estimators of θ2 under the restriction imposed by H10 : θ1 = θ10:

(i) θ̂n2 := θ̃n2(θ10, π
G, πV ) obtained by solving (4.1) for θ2 with πG = 1/n or any πρ,i,n and

πV = 1/n or any κρ,i,n,
23

(ii) θEL
n2 := θ̃n2(θ10, πEL,i,n, κEL,i,n) obtained by solving (4.1) for θ2, i.e., the EL estimator.

Then the following holds as n → ∞ under assumptions Θ, ID, S and ρ:

LMn,1.2

(
(θ10, θ

EL
n2 );πEL,i,n(θ10, θ

EL
n2 ), κEL,i,n(θ10, θ

EL
n2 )

)
= LMn,1.2

(
(θ10, θ̂n2);πEL,i,n(θ10, θ̂n2), κEL,i,n(θ10, θ̂n2)

)
+ oP (1).

22This is crucial for our proof and also for the fact that the plug-in GEL tests are known to have correct asymptotic
size under this assumption (see Kleibergen (2005) and GS-05).

23The recursive nature of the relationship in the expressions of πρ,i,n and κρ,i,n is suppressed for notational convenience.
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Remarks: This result follows directly from the proof Theorem 6 in GS-05 once we note that
√
n
(
θEL
n2 − θ̂n2

)
= oP (1) (see Theorem 1 of Qin and Lawless (1994) and Lemma A1 of Stock and

Wright (2000)). In fact, in the absence of any weakly identified parameters, i.e., when pw = 0,

a stronger result holds: one can use any θ2 in the
√
n-neighborhood of θ02 to obtain the same

asymptotic equivalence. This is the result that follows from Neyman (1959) and is exploited in

Theorem-4.2(B) below following Chaudhuri and Zivot (2011). On the other hand, the result in

Lemma-4.1 is the modification necessary to allow for weakly identified elements in the hypothesized

parameter θ1.

In the next result, we describe the relevant asymptotic properties of the GEL-projection test.

Theorem 4.2 The following result holds as n → ∞ under assumptions Θ, ID, ρ and S:

(A) If the region C2,n(1− τ, θ10) is such that lim infn→∞ Pθ0

{
θ02 ∈ C2,n(1− τ, θ01)

}
≥ 1− τ when

θ10 = θ01 then the asymptotic size of the projection-based GEL score test defined in (4.3)

cannot exceed τ + α.

(B) Let the hypothesized value θ10 be such that θ10 := (θ′1w, θ
n′

1s)
′ ∈ Θn where θn1s = θ01s + d1/

√
n

for some fixed d1 and assume that pw = 0 i.e., when there are no weakly identified pa-

rameters. Let the region C2,n(1 − τ, θ10) be non-empty and inside Θn
2 almost surely. Then

the projection-based GEL score test defined in (4.3) is asymptotically equivalent to the in-

feasible (because it uses unknown true θ02) GEL score test that rejects H10 : θ1 = θ10 if

LMn,1.2

(
(θ01, θ

0
2);π

G(θ01, θ
0
2), π

V (θ01, θ
0
2)
)
> χ2

p1,1−α.

Remarks:

(i) The first part of the theorem establishes that, like the other projection-based tests suggested in

the literature (see Dufour (1997), Dufour and Jasiak (2001), Dufour and Taamouti (2005b, 2007),

etc.), the asymptotic size of the GEL-projection test can also be bounded from above by any pre-

specified upper bound τ + α. To the best of our knowledge, this property has not yet been proved

for the plug-in-based GEL score tests of GS-05 when elements of θ2 can be weakly identified.

(ii) The asymptotic equivalence of the projection-based score test with the infeasible score test (that

plugs in the unknown true value θ02 of θ2) described in the second part is important. Note that the

plug-in based GEL score tests of GS-05 are asymptotically equivalent to this infeasible test in the

absence of weak identification. By virtue of the C(α) form of the test statistic and the restricted

nature of the projection, one does not lose any asymptotic power in this regular case, i.e., when

there is no problem of weak identification. This is not possible with the other projection-based

tests. See Chaudhuri and Zivot (2011) for more discussion on these results.

(iii) We have not specified what C2,n(1−τ, θ01) is. The weak identification robust confidence regions

for θ2, such as those obtained by inverting the K or the MQLR tests or their GEL counterparts, are
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possible candidates for such regions. Typically in addition to our assumptions, one would require

that M2(θs) is full column rank and Vgg(θ) is positive definite for θ ∈ Θw × Θn
1s × Θ2s for the

condition required in Theorem 4.2(ii) to be satisfied. Computational advantage over the typical

sub-vector tests can be achieved if one uses, for example, C2,n(1−τ, θ01) based on EEL, in sub-vector

test based on the EL implied probabilities.

4.3 Monte-Carlo Experiment III

4.3.1 Design

There is no reason to believe that the problems with the score tests for the entire parameter vector

will disappear when testing sub-vectors. Given the additional complications of inference for sub-

vectors, such as consistent estimation of the nuisance parameters, we first consider a very simple

design by abstracting from the issues of weak identification. In this experiment we mainly focus on

the issues related to the variance estimator of the average moment vector. We draw i.i.d. copies of

wi for i = 1, . . . , n from the DGP-III:

wi ∼ Gamma(β0 = 1, δ0 = 2)

and wish to use the first two moments of the Gamma distribution, i.e., E[wi] = β0δ0 and E[w2
i ] =

β0δ0
2

+β02δ0
2

to conduct the score tests. However, in order to avoid the constrained estimation of

the nuisance parameters (note that, by definition, the shape parameter β and the scale parameter

δ of a Gamma distribution have to be positive) we re-parameterize them as

θ1 = exp[β] and θ2 = exp[δ],

giving θ01 = 0 and θ02 = .6931 (approximated). Accordingly, the moment vector is defined as

gi(θ) ≡ g(wi, (θ1, θ2)) =

 wi − exp[θ1 + θ2]

w2
i − exp[θ1 + 2θ2]− exp[2θ1 + 2θ2]

 ,

and satisfies the moment restrictions in (2.1) for θ = θ0 = (θ0
′

1 , θ0
′

2 )′. Now note that, for this

experiment

Gi(θ) = [G1,i(θ), G2,i(θ)] = −

 exp[θ1 + θ2] exp[θ1 + θ2]

exp[θ1 + 2θ2] + 2 exp[2θ1 + 2θ2] 2 exp[θ1 + 2θ2] + 2 exp[2θ1 + 2θ2]
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is a constant (for given θ1, θ2), and hence there is no problem (e.g. size-distortion) due to weak

identification. So weights for the estimator of the Jacobian is moot. However, the moment vectors

are skewed – the first element of gi(θ
0) has skewness 2, while the second element has skewness

6.6 (approx). Moreover, the fourth moments of the two elements of the moment vector are large -

144 (kurtosis = 36) and 8687616 (kurtosis = 84.84) respectively. Hence problem with the variance

estimator might be an issue and, therefore, proper weighting for the estimator of the variance

matrix need not be inconsequential. In this experiment we ignore the Hybrid-1 versions (which is

same as 2S-GMM) and focus on the relative efficacy of the Hybrid-2 (equivalent to Hybrid-3 in this

case) EEL and EL score tests over the 2S-GMM score test.

We choose the sample size n = 100, 1000.

4.3.2 Results

Based on 5000 Monte-Carlo trials, we report in Table-4 (columns 3-5) the empirical rejection rates

of the true value θ1 = θ01(= 1) for the 2S-GMM, EEL Hybrid-2 (3) and EL Hybrid-2 (3) score tests

with nominal level 5%. Since we observe that the finite-sample size of all these tests is much closer

to the nominal level as compared to what we saw in the previous experiments, we also report the

rejection rate (finite-sample power) for a grid of false hypothesized values in the same table.

A word on computation is in order here. The restricted EL estimator of θ2 is computed using

the Matlab code of John Zedlewski (web link – http://www.people.fas.harvard.edu/∼jzedlews/

matelike14.zip). The availability of this package greatly improved the computational efficiency.

Nevertheless, even in this simple framework, we find it extremely difficult to the compute the EL

estimator of the nuisance parameter θ2 for some of the false values of the parameter of interest

θ1, especially when the sample size is small, n = 100. As a result, we are unable to the report

the finite-sample power of the EL Hybrid-2 test with n = 100 because repeating the exercise of

finding the restricted EL estimator 5000 times at each hypothesized value θ10 of θ1 seemed quite

formidable to us and the final solution was not stable.

The C(α) form of the score statistic in (4.2) becomes useful in this scenario. Recall that

unlike the asymptotic size of the conventional plug-in score tests, the same based on the C(α)

statistic is not affected when the nuisance parameter is replaced by any
√
n-consistent estimator.24

In this case, we consider the EL Hybrid-2 (3) score test for which the nuisance parameter θ2 is

replaced by the restricted 2S-GMM estimator θ̃2n (θ10; 1/n, 1/n) instead of restricted EL estimator

θ̃2n

(
θ10;πEL,i,n(θ̃0n), πEL,i,n(θ̃0n))

)
. We report the finite-sample rejection rates of EL Hybrid-2

(3) score test (with the 2S-GMM estimator plugged-in) in column 6 of Table-4.

24For this experiment the
√
n-local asymptotic power of the score test based on the C(α) statistic is also not affected

by such replacements of the nuisance parameter θ2. This holds because there is no problem of weak identification.
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To compare the reported finite-sample power of these tests with respect to a fixed benchmark

we report in column 7 of the same table an estimate of the infeasible asymptotic power obtained

from

Pθ0

{
χ2
1

(
ncp = n

(
θ10 − θ01

)′
G′

1V
−1/2N

(
V −1/2′G2

)
V −1/2′G1

(
θ10 − θ01

))
> χ2

1,.95

}
. (4.4)

We note that the 2S-GMM score test does not perform as poorly as it did in the other experiments.

The EEL Hybrid-2(3) score test performs the worst (unlike in the previous experiments).25 The

problem is compounded by the undesired decline in power for positive deviations from the truth.

This problem was already noted by Kleibergen (2005) in a different context. However, his solution

of using the so-called JKLM test in conjunction with the EEL score test cannot be used here

because that requires an over-identified model whereas ours is just-identified. Finally we note that

the performances of the EL Hybrid-2(3) score test, both with the EL and the 2S-GMM estimator

of the nuisance parameter θ2, are comparable. This indicates that not much is lost in terms of

finite-sample size and power of the EL score test by plugging-in for the nuisance parameter the

2S-GMM estimator as opposed to the computationally more demanding EL estimator.

Although the size-distortions in this experiment are not as large as compared to the rest, there

is still some upward size-distortion. In Table-5 we report the finite-sample size and power of the

corresponding projection tests. The finite-sample size of these tests are much closer to the nominal

level of 5% and the finite-sample power is not much lower than that of the corresponding plug-

in tests (as was stated in Theorem-4.2(B)). This clearly demonstrates the benefits of using the

projection test even when there is no problem of weak identification.

4.4 Monte-Carlo Experiment IV

4.4.1 Design

Here we focus mainly on weak identification of the sub-vector of interest θ1 and do not allow θ2 to be

weakly identified. Under this scenario the conventional GEL plug-in tests have correct asymptotic

size. This design follows Chaudhuri and Zivot (2011) where they study the projection-based tests

for subsets of parameters in a linear instrumental variables regression. We draw i.i.d. copies of

25Since the EEL probabilities can be negative and thus cannot guarantee the positive (semi) definiteness of the variance
estimator, finding the restricted estimator of θ2 by minimizing the EEL objective function becomes a problem. To avoid
this we used the shrinkage estimator of θ2 by using the modified EEL implied probabilities proposed by Dovonon (2008).
Asymptotically it should not matter.
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wi = (yi, X1i, X2i, Z
′
i) for i = 1, . . . , n from the following DGP-IV:

yi = X1iθ
0
1 +X2iθ

0
2 + ui,

X1i = Z ′
iΠ1 + ϑ1i,

X2i = Z ′
iΠ2 + ϑ2i,

where ui, ϑ1i, ϑ2i are jointly normal with mean zero, unit variance, Cov(ui, ϑ1i) = Cov(ui, ϑ2i) = .8

and Cov(ϑ1i, ϑ2i) = .3, and are independent of Zi ∼ N(0k, Ik). We define Πj := Cj/
√
n for

j = 1, 2, where C1 = c11k is generated such that µ1 := Π′
1

∑n
i=1 ZiZ

′
iΠ1/k is approx 4/3 or 20,

and C2 = c21k is generated such that µ2 := Π′
2

∑n
i=1 ZiZ

′
iΠ2/k is 20. These quantities, µ1 and µ2,

are not exactly the elements of the so-called concentration matrix because the covariance between

ϑ1 and ϑ2 has not been taken into account. However, individually µ1 and µ2 can be regarded as

the concentration parameters (as in Monte-Carlo Experiment I) and with everything else same, the

identification of θ1 (θ2) gets weaker as µ1 (µ2) decreases.

The true values θ01 = .5 and θ02 = 1 satisfy the moment restrictions in (2.1) for the moment

vector

gi(θ) ≡ g(wi, (θ1, θ2)) = Zi(yi −X1iθ1 −X2iθ2)

for i = 1, . . . , n. The number of instruments is chosen as k = 4 and the sample size is chosen

n = 1000.26 Note that while we allow the number of moments (instruments) k to be as large as 16,

it is still small relative to the sample size in this experiment.

4.4.2 Results

Based on 5000 Monte-Carlo trials, we report in Table-6 the empirical rejection rates of the true

value θ = θ0(= .5) for the EEL Hybrid-1, EEL Hybrid-3, EL Hybrid-1 and EL Hybrid-3 score tests

(tests that are known to have correct asymptotic size under this scenario). As in Monte-Carlo Ex-

periment 1, while estimating the asymptotic variance, we only assume that Asym V ar[
√
nḡn(θ

0)] =

E[ZiZ
′
i(yi − X1iθ

0
1 − X2iθ

0
2)

2] and not E[ZiZ
′
i] × V ar[yi − X1iθ

0
1 − X2iθ

0
2] although the latter is

also true for DGP - IV. Hence the EEL Hybrid-1 version should not be confused with Kleibergen

(2004)’s subset-K test.

While there is not much difference, in this design the Hybrid-3 version performs better than the

Hybrid-1 version of the EEL score test. For EL score test also the rejection rate (both true and

26Results for other choices of k are available upon request. Unlike the other experiments, we do not present here the
results for n = 100. We faced too many problems with the estimation of the restricted EL estimator of the nuisance
parameter θ2 to be reasonably certain about the reliability of the simulations. However, the results for EEL with n = 100
are available in Chaudhuri and Zivot (2011).
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false) of the Hybrid-3 version is more than the Hybrid-1 version. Unlike in the other Monte-Carlo

Experiments, here EEL dominates EL both in terms of (less) finite-sample size and (more) finite-

sample power. In fact, the only case where EL (Hybrid-3 only) is more powerful than EEL is when

the number of moment restrictions is relatively large (16) and θ1 is weakly identified. However, EL

also has a large upward size-distortion here and hence cannot be recommended. (As in Monte-Carlo

Experiment I, simulation results for EL with many moments are less trustworthy because chances

of making an error in computing the implied probabilities is really high.)

To assess the effectiveness of the C(α) form and the projection-GEL test, we report in Table-

7 the finite-sample size and power of these tests based on EL for k = 4. These tests perform

remarkably better than the conventional plug-in test (reported in column 3 of the same table).
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A Appendix: Proofs

The proofs in this Appendix are direct applications of the results in Lemma-2.1 and Corollary-2.2.

Hence we prove these two results elaborately.

Proof of Lemma 2.1:

(A) A mean-value expansion of the RHS of the (approximate) first-order condition of the max-

imization problem in (2.3) gives,

oP

(
1√
n

)
=

1

n

n∑
i=1

ρ1
(
λ′
ρ,n(θ)gi(θ)

)
gi(θ)

=
1

n

n∑
i=1

ρ1(0)gi(θ) +
1

n

n∑
i=1

ρ2(0)gi(θ)g
′
i(θ)λρ,n(θ) +Rλ,n(θ)

= −ḡn(θ)− V̄n(θ)λρ,n(θ) +Rλ,n(θ), (A.1)

where v̄i are the mean-values satisfying |v̄i| ≤ |λ′
ρ,n(θ)gi(θ)| for all i = 1, . . . , n, and the remainder

term Rλ,n(θ) = 1
n

∑n
i=1 [ρ2(v̄i)− ρ2(0)] gi(θ)g

′
i(θ)λρ,n(θ). Ignoring the contribution of Rλ,n(θ) in

(A.1), i.e., ignoring the term V̄ −1
n (θ)Rλ,n(θ) gives

λρ,n(θ) = −V̄ −1
n (θ)ḡn(θ) + V̄ −1

n (θ)× oP

(
1√
n

)
= OP

(
1√
n

)
.

since V̄n(θ) and V̄ −1
n (θ) are assumed to be OP (1) in (iv) and ḡn(θ) = OP (n

−1/2) by (ii) and (iii).

Precisely for this reason, if we can show that ∥Rλ,n(θ)∥ = oP (n
−1/2) that will be sufficient for result

(A). This is what we prove below.

∥Rλ,n(θ)∥ =

∥∥∥∥∥
(
1

n

n∑
i=1

[ρ2(v̄i)− ρ2(0)] gi(θ)g
′
i(θ)

)
λρ,n(θ)

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

[ρ2(v̄i)− ρ2(0)] gi(θ)g
′
i(θ)

∥∥∥∥∥× ∥λρ,n(θ)∥

≤ max
1≤i≤n

|ρ2(v̄i)− ρ2(0)| ×

∥∥∥∥∥ 1n
n∑

i=1

gi(θ)g
′
i(θ)

∥∥∥∥∥× ∥λρ,n(θ)∥ since gi(θ)g
′
i(θ) psd

≤ b× max
1≤i≤n

|v̄i| × ∥V̄n(θ)∥ × ∥λρ,n(θ)∥

≤ b× max
1≤i≤n

|g′i(θ)λρ,n(θ)| × γmax(θ)× ∥λρ,n(θ)∥

≤ b× max
1≤i≤n

∥gi(θ)∥ × bmax × ∥λρ,n(θ)∥2 using (iv),

≤ b× bmax ×OP (cn)× ∥λρ,n(θ)∥2 = OP

(
cn∥λρ,n(θ)∥2

)
= oP

(
n−1/2

)
, (A.2)

by repeated use of Cauchy-Schwartz and triangle inequalities and because cn = oP (
√
n) and

∥λρ,n(θ)∥ = OP (n
−1/2). Therefore, (A.2) gives our desired result and hence the result (A).

(B) Expanding the numerator and denominator of the RHS of (2.4), and using the result
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obtained in (A) we get for any given i = 1, . . . , n

πρ,i,n(θ) =
1
n

[
ρ1(0) + ρ2(0)λ

′
ρ,n(θ)gi(θ) + {ρ2(v̄i)− ρ2(0)}λ′

ρ,ngi(θ)
]

1
n

∑n
j=1

[
ρ1(0) + ρ2(0)λ′

ρ,ngi(θ) + {ρ2(v̄j)− ρ2(0)}λ′
ρ,ngj(θ)

]
=

1
n

[
ρ1(0)− ρ2(0)g

′
i(θ)

{
V̄ −1
n (θ)ḡn(θ) + oP (n

−1/2)
}
+ {ρ2(v̄i)− ρ2(0)}λ′

ρ,n(θ)gi(θ)
]

1
n

∑n
j=1

[
ρ1(0)− ρ2(0)g′i(θ)

{
V̄ −1
n (θ)ḡn(θ) + oP (n−1/2)

}
+ {ρ2(v̄j)− ρ2(0)}λ′

ρ,n(θ)gj(θ)
]

=
1
n

[
1− (gi(θ)− ḡn(θ))

′V̄ −1
n (θ)ḡn(θ)

]
+RNUM,i,n

1− ḡ′n(θ)V̄
−1
n (θ)ḡn(θ) +RDEN,n

(A.3)

where the remainder terms in the numerator and the denominator are respectively

RNUM,i,n :=
1

n
{ρ2(v̄i)− ρ2(0)}λ′

ρ,n(θ)gi(θ)−
1

n
ρ2(0)g

′
i(θ)× oP (n

−1/2) +
1

n
ḡ′n(θ)V̄

−1
n (θ)ḡn(θ),

RDEN,n :=
1

n

n∑
j=1

[
{ρ2(v̄j)− ρ2(0)}λ′

ρ,n(θ)gj(θ)− ρ2(0)g
′
i(θ)× oP (n

−1/2)
]
.

First note that i is given (fixed) in the remainder term RNUM,i,n. Now exactly following the steps

as in (A) to deal with the remainder term we obtain for a given i = 1, . . . , n

|RNUM,i,n| ≤ 1

n
|ρ2(v̄i)− ρ2(0)| × ∥λρ,n(θ)∥ × ∥gi(θ)∥+

1

n
∥gi(θ)∥ × oP

(
1√
n

)
+

1

n
ḡ′n(θ)V̄

−1
n (θ)ḡn(θ)

≤ 1

n
b× |λ′

ρ,n(θ)gi(θ)| × ∥λρ,n(θ)∥ × ∥gi(θ)∥+ ∥gi(θ)∥ × oP

(
1

n3/2

)
+

1

n
∥ḡn(θ)∥2 × γ−1

min(θ)

≤ 1

n
b× ∥λρ,n(θ)∥2 × ∥gi(θ)∥2 + ∥gi(θ)∥ × oP

(
1

n3/2

)
+

1

n
∥ḡn(θ)∥2 × b−1

min using (iv),

= OP

(
1

n1+1

)
×OP (1) +OP (1)× oP

(
1

n3/2

)
+OP

(
1

n1+1

)
= oP

(
1

n3/2

)
(A.4)

because ∥gi(θ)∥ = OP (1) by (i), ∥ḡn(θ)∥ = OP (n
−1/2) by (ii) and (iii), and λρ,n(θ) = OP (n

−1/2)

by (A). We will use a similar technique to find the order of magnitude of |RDEN,n|. However, there

is an important difference: now we cannot work with a given i = 1, . . . , n and hence what will be

important here is the order of magnitude of cn := max1≤j≤n ∥gj(θ)∥ and not simply ∥gi(θ)∥. So,

proceeding as before, we obtain that

|RDEN,n| ≤ 1

n

∣∣∣∣∣∣
n∑

j=1

{ρ2(v̄j)− ρ2(0)}λ′
ρ,n(θ)gj(θ)

∣∣∣∣∣∣+ ∥ḡn(θ)∥ × oP (n
−1/2)

≤ max
1≤j≤n

|ρ2(v̄j)− ρ2(0)| × ∥ḡn(θ)∥ × ∥λρ,n(θ)∥+ ∥ḡn(θ)∥ × oP (n
−1/2)

≤ b× max
1≤j≤n

|λ′
ρ,n(θ)gj(θ)| × ∥ḡn(θ)∥ × ∥λρ,n(θ)∥+ ∥ḡn(θ)∥ × oP (n

−1/2)

≤ b× max
1≤j≤n

∥gj(θ)∥ × ∥ḡn(θ)∥ × ∥λρ,n(θ)∥2 + ∥ḡn(θ)∥ × oP (n
−1/2)

= oP

(
n1/2−3/2

)
+ oP (n

−1) = oP (n
−1)
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because cn := max1≤j≤n ∥gj(θ)∥ = oP (
√
n) by (i) and λρ,n(θ) = OP (n

−1/2) by (A). Also, ḡ′n(θ)V̄
−1
n (θ)ḡn(θ)

in the denominator of (A.3) is OP (n
−1) because ∥ḡn(θ)∥ = OP (n

−1/2) by (ii) and (iii). Therefore,

the entire denominator of (A.3) is 1+OP (n
−1). Hence the result (B) follows from (A.3) and (A.4).

Proof of Corollary 2.2:

(A) This follows directly from (vi) and the definition of the πEEL,i,n(θ).

(B) Since our result in Lemma-2.1(B) is not uniform in i = 1, . . . , n we cannot appeal to max1≤i≤n |πρ,i,n(θ)−

πEEL,i,n(θ)| after applying Cauchy-Schwartz inequality. Instead, we directly work with the expres-

sion of the difference {πρ,i,n(θ)− πEEL,i,n(θ)} = RNUM,i(= RNUM,i/(1 + oP (1)) as was obtained

in (A.3). Also for notational simplicity, only in this proof, denote Ỹi,n := Yi,n − µn, gi := gi(θ),

ḡn := ḡn(θ), V̄n := V̄n(θ) and λ := λρ,n(θ). Accordingly, using Lemma-2.1(A), and (ii)-(vi), we

obtain∥∥∥∥∥√n
n∑

i=1

Ỹi,n {πρ,i,n(θ)− πEEL,i,n(θ)}

∥∥∥∥∥
=

∥∥∥∥∥√n
n∑

i=1

Ỹi,nRNUM,i,n

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

{ρ2(v̄i)− ρ2(0)} Ỹi,ng
′
i

∥∥∥∥∥×√
n∥λ∥+ oP (1)×

∥∥∥∥∥ 1n
n∑

i=1

Ỹi,ng
′
i

∥∥∥∥∥+ ḡ′nV̄
−1
n ḡn ×

∥∥∥∥∥ 1√
n

n∑
i=1

Ỹi,n

∥∥∥∥∥
≤

√√√√ 1

n

n∑
i=1

{ρ2(v̄i)− ρ2(0)}2 ×

√√√√ 1

n

n∑
i=1

∥∥∥Ỹi,ng′i

∥∥∥2 ×√
n ∥λ∥+ oP (1)×

∥∥∥∥∥ 1n
n∑

i=1

Ỹi,ng
′
i

∥∥∥∥∥+ ḡ′nV̄
−1
n ḡn ×

∥∥∥∥∥ 1√
n

n∑
i=1

Ỹi,n

∥∥∥∥∥
≤ b×

√√√√ 1

n

n∑
i=1

|λ′gi|2 ×

√√√√ 1

n

n∑
i=1

∥∥∥Ỹi,ng′i

∥∥∥2 ×√
n ∥λ∥+ oP (1)×

∥∥∥∥∥ 1n
n∑

i=1

Ỹi,ng
′
i

∥∥∥∥∥+ ḡ′nV̄
−1
n ḡn ×

∥∥∥∥∥ 1√
n

n∑
i=1

Ỹi,n

∥∥∥∥∥
≤ b×

√√√√∥λ∥2 1

n

n∑
i=1

∥gi∥2 ×

√√√√ 1

n

n∑
i=1

∥∥∥Ỹi,n

∥∥∥2 ∥g′i∥2 ×√
n ∥λ∥+ oP (1)×

∥∥∥∥∥ 1n
n∑

i=1

Ỹi,ng
′
i

∥∥∥∥∥+ ḡ′nV̄
−1
n ḡn ×

∥∥∥∥∥ 1√
n

n∑
i=1

Ỹi,n

∥∥∥∥∥
≤ b×

(
1

n

n∑
i=1

∥gi∥2
) 1

2

×

(
1

n

n∑
i=1

∥gi∥4
) 1

4

×

(
1

n

n∑
i=1

∥Ỹi,n∥4
) 1

4

×
√
n ∥λ∥2

+oP (1)×

∥∥∥∥∥ 1n
n∑

i=1

Ỹi,ng
′
i

∥∥∥∥∥+ ḡ′nV̄
−1
n ḡn ×

∥∥∥∥∥ 1√
n

n∑
i=1

Ỹi,n

∥∥∥∥∥
= OP (1)×OP (1)×OP (1)×OP (n

−1/2) + oP (1)×OP (1) +OP (n
−1)×OP (1) = oP (1),

from the standard arguments.

Lemma-A.1 lists some intermediate results that are useful in proving the lemmas and theorems

stated in Sections 3 and 4 of the text.

Lemma A.1 The following results hold as n → ∞ under assumptions Θ, ID, S and ρ:
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(i.a)
√
n
∑n

i=1 πGEL,i,n(θ)Glw,i(θ) = G̃lwn(θ) + op(1) and
∑n

i=1 πi(θ, ρ)Gls,i(θ) = G̃lsn(θ) + op(1)

uniformly in θ ∈ Θn for l = 1, 2. (G̃lwn(θ) and G̃lsn(θ) are defined in (i.b).)

(i.b) For θ ∈ Θn and l = 1, 2 let G̃lsn(θ) be a k × pls matrix such that G̃lsn(θ) := Ḡlsn(θ) and

G̃lwn(θ) be a k×plw matrix such that vec(G̃lwn(θ)) :=
√
nvec(Ḡlwn(θ))−Ṽlg(θ)Ṽ

−1
gg (θ)

√
nḡn(θ).

For any given sequence θwsn = ((θ′1w, θ
n′

1s), (θ
′
2w, θ

n′

2s))
′ ∈ Θn such that for l = 1, 2, θnls =

θ0ls + d1/
√
n and ds = (d′1, d

′
2)

′, the following hold:

(b1) vec(G̃lwn(θwsn))
d−→ Ψl.g(θws0)+

[
Glw(θws0)ds − Vlg(θws0)V

−1
gg (θws0)[m̃(θws0) +M(θ0s)ds]

]
where Ψl.g(θws0) := Ψlw(θws0)− Vlg(θws0)V

−1
gg (θws0)Ψg(θws0) is independent of Ψg(θws0),

(b2) G̃lsn(θwsn)
P−→ Ml(θ

0
s).

(ii)
∑n

i=1 πGEL,i,n(θ)Vi(θ) = Ṽgg(θ) + op(1)
P−→ Vgg(θws0) uniformly in θ ∈ Θn.

Proof:

Point-wise convergence for any θ ∈ Θn follows when we consider all these matrices column by

column and then use Corollary 2.2. Uniformity in θ ∈ Θn follows from our assumptions ID and S.

Proof of Theorem 3.1:

(A) For θ ∈ Θn, we know that

sup
θ∈Θn

∥ḡn(θ)∥ ≤ sup
θw∈Θw

∥ḡn(θws0)∥+ sup
θ∈Θn

∥Ḡns(θ)∥ ×OP (n
−1/2)

≤ sup
θw∈Θw

1√
n
{∥Ψg,n(θws0)∥+ ∥mw

n (θws0)−mw(θws0)∥+ ∥mw(θws0)∥}+OP (n
−1/2)×

× sup
θ∈Θn

{
∥Ḡns(θ)− E[Ḡns(θ)]∥+ ∥Mw

ns(θ)−Mw
s (θ)∥/

√
n+ ∥Mw

s (θ)∥/
√
n+ ∥M(θs)∥

}
=

1√
n

{
{OP (1) + o(1) +OP (1)}+ {op(1) + op(n

−1/2) +OP (n
−1/2) +OP (1)}

}
= OP (n

−1/2) (A.5)

by using assumptions ID, S (iii) and (iv.a), and assumption S (ii.b) respectively. Therefore, the

result follows directly from Lemma A.1(ii.a).

(B) For θ0 = θwsn ∈ Θn (as defined in the statement of the Theorem) it follows from assumptions

ID, S(ii.b) and (iii) that

√
nḡn(θ0) =

√
nḡn(θws0) +M(θ0s)ds + op(1)

=
√
n (ḡn(θws0)− E[ḡn(θws0)]) +mw(θws0) +M(θ0s)ds + op(1)

d−→ Ψg(θws0) + [mw(θws0) +M(θ0s)ds] = g̃(θw, ds). (A.6)

The result then directly follows from Lemma A.1(ii.b) and assumption S(iv.b).
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Proof of Lemma 4.1:

The first-order asymptotic behavior of LMn,1.2

(
(θ10, θ

EL
n2 );πEL,i,n(θ10, θ

EL
n2 ), κEL,i,n(θ10, θ

EL
n2 )

)
is given in Theorem 6 of GS-05. To see the consequences of replacing θEL

n2 by θ̂n2, first note that

under the assumptions of this lemma,

√
n
(
θEL
n2 − θ̂n2

)
= oP (1), (A.7)

√
n
(
θEL
n2 − θ02

)
= OP (1) (A.8)

(see, for e.g., Theorem 1 of Qin and Lawless (1994) and Lemma A1 of Stock and Wright (2000)).

This implies that all the results in Lemma-2.1 and Corollary-2.2 hold irrespective of whether θEL
n2

or θ̂n2 is used for θ2 when θ1 = θ10 as specified by this lemma.27

For the sake of completeness, now let us consider the relevant OP (1) components of the statis-

tic LMn,1.2

(
(θ10, θ̂n2);πEL,i,n(θ10, θ̂n2), κEL,i,n(θ10, θ̂n2)

)
one by one. We show below that these

components are asymptotically equivalent (up to oP (1)) with the corresponding components of the

statistic LMn,1.2

(
(θ10, θ

EL
n2 );πEL,i,n(θ10, θ

EL
n2 ), κEL,i,n(θ10, θ

EL
n2 )

)
.

Guided by (A.8), consider any θn2 such that
√
n(θn2−θ02) = OP (1). The asymptotic equivalence

is trivial for the weighted averages that are not scaled up (multiplied) by
√
n, i.e., for G̃1sn(θ10, θn2),

G̃2sn(θ10, θn2),
∑n

i=1 πEL,i,n(θ)Vi(θ10, θn2) and Ṽ1g(θ10, θn2)Ṽ
−1
gg (θ10, θn2) (the first three are defined

in Lemma-A.1). This holds by virtue of boundedness and continuity of their non-random probability

limits. So we focus on the sclaed up terms
√
nḡn(θ10, θn2) and

√
nG̃1sn(θ10, θn2):

√
nḡn(θ10, θn2) =

√
nḡn(θ10, θ

0
2) +M2s(θ

0
s)
√
n(θn2 − θ02)︸ ︷︷ ︸
key term

+ oP (1) (A.9)

√
nG̃1sn(θ10, θn2) =

√
nvec(Ḡ1wn(θ10, θn2))− Ṽ1g(θ10, θ

0
2)Ṽ

−1
gg (θ10, θ

0
2)
√
nḡn(θ10, θn2)

=
[√

nvec(Ḡlwn(θ10, θ
0
2))− V1g(θ10, θ

0
2)V

−1
gg (θ10, θ

0
2)
√
nḡn(θ10, θ

0
2)
]

+
[
G(2)
1w (θ10, θ

0
2)− V1g(θ10, θ

0
2)V

−1
gg (θ10, θ

0
2)M2s(θ

0
s)
]√

n(θn2 − θ02)︸ ︷︷ ︸
key term

+ oP (1)

(A.10)

where G(2)
1w (θ10, θ

0
2) is a kp1w × p2s matrix containing the last p2s columns of the kp1w × ps matrix

G1w(θ10, θ
0
2). As can be seen from (A.9) and (A.10), both

√
nḡn(θ10, θn2) and

√
nG̃1sn(θ10, θn2)

remain asymptotically equivalent (up to oP (1)) when θ2 is replaced by θEL
n2 or θ̂n2 once we note

(A.7) and (A.8).

27The main reason behind this is that the remainder terms that are explicitly considered in Lemma-2.1 and Corollary-
2.2 remain of the same order.
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Remarks: Note that when, additionally, p1w = 0, one can replace θEL
n2 by any θn2 such that

√
n(θn2 − θ02) = OP (1). This is because, in the absence of the term

√
nG̃1sn(θ10, θn2), the only ef-

fect of this replacement is on
√
nḡn(θ10, θn2). However, by virtue of the C(α) form, the occurrence

of
√
nḡn(θ10, θn2) is always (immediately) preceded by N

(
Ṽ

−1/2′

gg (θ0)M2s(θ
0)
)
Ṽ

−1/2′

gg (θ0)+ oP (1).

Hence the dependence of (A.9) on
√
n(θn2 − θ02) vanishes up to order oP (1). This was the original

justification behind Neyman’s C(α) form.

Proof of Theorem 4.2: Unlike in the case of Theorem 3.1, here we provide more details for

the proof because, to our knowledge, this proof for the GEL family has not yet appeared in any

published papers.

(i) First, by taking θw = θ0w and ds = 0 i.e., for θwsn = θ0, we note from Lemma A.1(ii.b), (A.6)

and Assumption S(iv.b) that

LMn,1.2

(
θ0;πG(θ0), πV (θ0)

)
d−→ g̃′(θ0w, 0)V

−1/2
gg (θ0)P

(
N
(
V −1/2′

gg (θ0)G̃2(θ
0)
)
V −1/2′

gg (θ0)G̃1(θ
0)
)
V −1/2′

gg (θ0)g̃(θ0w, 0),

where, by construction, g̃(θ0w, 0) := Ψg(θ
0) is independent of G̃1(θ

0) and G̃2(θ
0). Note that for

l = 1, 2, G̃l(θ
0) := [Ψ̃l.g(θ

0),Ml(θ
0
s)] where Ψ̃l.g(θ

0) is a k × plw matrix such that vec(Ψ̃l.g(θ
0)) =

Ψl.g(θ
0) and Cov(Ψg(θ

0),Ψl.g(θ
0)) = 0 by construction (element-by-element). Therefore, from

Assumption S(ii), it follows that LMn,1.2

(
θ0;πG(θ0), πV (θ0)

) d−→ χ2
p1

conditional on Ψ1.g(θ
0) and

Ψ2.g(θ
0), and hence unconditionally. Hence, conditional on the event that C2n(1 − τ, θ01) contains

θ02, infθ2∈C2n(1−τ,θ0
1)
LMn,1.2

(
(θ01, θ2);π

G(θ01, θ2), π
V (θ01, θ2)

)
≤ LMn,1.2

(
θ0;πG(θ0), πV (θ0)

)
where

the RHS has just been proved to converge in distribution to a central χ2
p1

distribution. Under

the condition of the theorem, the event that C2n(1 − τ, θ01) contains θ02 occurs with probability

approaching 1− τ (at least). Therefore, a simple application of the Bonferroni inequality gives that

the asymptotic size of the projection-based GEL score test cannot exceed 1−(1−τ)(1−α) ≤ τ+α.

(ii) If pw = 0, i.e., if θ1 = θ1s and θ2 = θ2s then for any θ̃n := (θ′01, θ
n′

2s)
′ where θn2s = θ0s +d2/

√
n

for some d2 = OP (1) (not required to be fixed), we know from Lemma A.1(ii.a), Assumption S(iv.b)
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and a mean-value expansion of
√
nḡn(θ̃n) (around (θ′01, θ

0′

2s)
′ and using Assumption ID(ii)) that

LMn,1.2

(
θ̃n;π

G(θ̃n), π
V (θ̃n)

)
= n

[
ḡn(θ01, θ

0
2) +M2(θ

0
s)d2

]′
V −1/2
gg (θ0)P

(
N
(
V −1/2′

gg (θ0)M2(θ
0
s)
)
V −1/2′

gg (θ0)M1(θ
0
s)
)
V −1/2′

gg (θ0)

×
[
ḡn(θ01, θ

0
2) +M2(θ

0
s)d2

]
+ op(1)

= nḡ′n(θ01, θ
0
2)V

−1/2
gg (θ0)P

(
N
(
V −1/2′

gg (θ0)M2(θ
0
s)
)
V −1/2′

gg (θ0)M1(θ
0
s)
)
V −1/2′

gg (θ0)ḡn(θ01, θ
0
2) + op(1)

(A.11)

because N
(
V

−1/2′

gg (θ0)M2(θ
0
s)
)
V

−1/2′

gg (θ0)M2(θ
0
s)d2 = 0. The most important thing to note here

is that
√
n-deviation (random or non-random) from the true value θ02 of the nuisance parameter

does not matter asymptotically, i.e., it does not matter asymptotically if we replace θ2 by the true

θ02 or any p2s×1 vector in its
√
n-neighborhood – a feature of the C(α) form of the statistic used in

this paper. As a consequence, a test that replaces θ2 by any p2s×1 vector in the
√
n-neighborhood

of θ02 is asymptotically equivalent to the infeasible test (that uses the unknown θ02) defined in the

statement of the theorem.

Now since C2n(1 − τ, θ01) ∈ Θn
1s is assumed to be non-empty and inside Θn

2 almost surely, by

construction, θinf2s (θ01) := arg infθ2∈C2n(1−τ,θ01) LMn,1.2

(
(θ01, θ2);π

G(θ01, θ2), π
V (θ01, θ2

)
is inside

Θn
2s almost surely. Hence, except in the negligible set (with probability 0), by definition of Θn

2s

there exists a
{
dinf2s,n(θ01)

}
n
= OP (1) such that θinf2s (θ01) = θ02s + dinf2s,n(θ01)/

√
n. Therefore, the

asymptotic equivalence with the infeasible test follows from (A.11).
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Specifications Score tests
(n = 100) 2S-GMM EEL Hybrid EL Hybrid

k ρ Moments 1 2 3 1 2 3
Skew Strength

2 0 high none 9.7 9.0 14.4 14.5 14.4 14.5 9.7
2 0 high weak 9.2 8.4 13.9 13.4 13.9 13.4 8.9
2 0 high strong 9.9 9.4 13.4 12.8 13.4 12.8 9.9
2 .5 med none 9.3 6.6 16.2 13.4 16.2 13.4 6.8
2 .5 med weak 6.4 7.9 13.2 13.4 13.2 13.4 7.4
2 .5 med strong 7.1 7.9 13.9 13.5 13.9 13.5 7.9
2 .9 low none 13.9 5.6 19.7 10.1 19.7 10.1 5.7
2 .9 low weak 9.4 6.4 15.0 10.2 15.0 10.2 6.4
2 .9 low strong 5.2 5.1 10.0 9.3 10.0 9.3 5.4
4 0 high none 13.3 11.4 24.0 21.9 23.2 21.8 12.5
4 0 high weak 14.3 11.9 23.0 20.7 22.2 20.1 13.3
4 0 high strong 17.9 15.4 22.8 19.6 22.8 20.4 16.6
4 .5 med none 17.9 8.5 31.1 20.6 32.2 21.2 9.4
4 .5 med weak 7.6 10.2 21.6 19.9 24.0 21.7 10.2
4 .5 med strong 7.8 10.4 19.9 20.0 20.1 19.6 10.2
4 .9 low none 39.4 5.7 51.0 14.4 49.5 14.5 7.2
4 .9 low weak 18.0 5.5 30.9 14.2 30.5 14.3 6.5
4 .9 low strong 6.8 5.6 16.9 14.1 16.6 13.2 5.8
8 0 high none 16.8 13.8 36.8 34.8 36.6 33.8 17.5
8 0 high weak 26.5 19.6 39.2 33.9 39.4 34.1 23.2
8 0 high strong 36.0 27.4 40.8 32.6 40.3 32.2 29.0
8 .5 med none 35.6 12.6 55.0 37.1 56.6 36.0 13.4
8 .5 med weak 9.2 14.2 36.9 35.6 39.2 37.1 17.0
8 .5 med strong 10.9 14.9 34.9 35.0 35.6 35.1 16.7
8 .9 low none 79.8 6.1 84.3 26.5 84.2 27.3 7.7
8 .9 low weak 38.0 5.8 60.4 25.9 60.5 26.4 7.7
8 .9 low strong 9.9 5.1 32.3 25.0 31.5 24.3 6.8
16 0 high none 24.9 17.2 58.1 55.2 25.5 29.6 29.5
16 0 high weak 55.6 30.9 63.9 54.8 36.2 47.4 33.2
16 0 high strong 72.4 46.8 69.2 58.7 51.9 61.9 40.6
16 .5 med none 63.6 17.7 66.0 57.3 21.7 78.7 31.6
16 .5 med weak 13.7 24.1 57.2 58.4 27 34.8 32.7
16 .5 med strong 19.3 22.8 58.4 58.1 28.3 24.9 32.2
16 .9 low none 99.3 7.1 69.7 50.7 11.9 99.6 20.5
16 .9 low weak 70.8 5.2 70.4 50.0 10.4 83.5 18.2
16 .9 low strong 17.2 5.4 56.6 48.9 10 34 17.3

Table 1: DGP-I: Finite-sample rejection rate (in %) of the true parameter value by score tests for
H0 : θ = θ0 with nominal level 5%. Number of Monte-Carlo trials is 5000.
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Specifications Score tests
(n = 1000) 2S-GMM EEL Hybrid EL Hybrid

k ρ Moments 1 2 3 1 2 3
Skew Strength

2 0 high none 5.4 5.1 6.9 6.5 5.9 6.4 6.6
2 0 high weak 5.7 5.5 6.8 6.6 5.6 6.6 6.4
2 0 high strong 5.5 5.5 5.6 5.5 5.1 5.8 5.6
2 .5 med none 7.9 5.4 8.8 6.4 4.9 8.4 5.8
2 .5 med weak 6.3 6.3 7.9 7.1 5.5 7.2 6.4
2 .5 med strong 4.8 5.3 5.6 5.8 5.4 5.8 5.9
2 .9 low none 13.5 5.1 14.3 5.6 5.0 13.9 5.4
2 .9 low weak 8.6 5.1 9.4 5.5 4.9 8.7 5.3
2 .9 low strong 4.6 4.7 5.2 5.1 4.7 4.9 5.1
4 0 high none 6.1 5.8 7.9 7.7 6.1 8.2 7.9
4 0 high weak 6.6 6.5 7.7 7.4 6.1 7.8 7.8
4 0 high strong 7.1 7.0 6.9 6.9 6.9 6.8 6.6
4 .5 med none 14.8 5.9 17.7 7.4 6.4 17.5 7.8
4 .5 med weak 7.3 6.9 11.6 7.9 6.1 10.8 7.3
4 .5 med strong 5.1 5.9 7.4 6.8 6.0 6.7 6.4
4 .9 low none 35.5 4.7 37.0 5.4 4.8 37.3 5.5
4 .9 low weak 16.3 5.1 18.5 5.8 4.8 18.2 5.5
4 .9 low strong 6.5 5.3 7.7 6.0 5.6 7.9 6.3
8 0 high none 6.3 6.4 10.1 10.3 6.5 11.0 10.4
8 0 high weak 8.6 8.3 10.3 10.0 8.4 9.7 9.3
8 0 high strong 11.0 10.5 8.6 8.3 10.8 8.9 8.6
8 .5 med none 28.5 6.7 34.9 9.9 6.3 33.8 8.9
8 .5 med weak 10.3 7.9 19.6 10.4 8.5 20.3 10.3
8 .5 med strong 5.0 7.8 10.8 9.0 7.8 10.6 8.9
8 .9 low none 75.0 5.1 77.0 6.6 4.8 76.7 6.2
8 .9 low weak 37.8 6.0 42.1 7.4 5.6 40.8 7.1
8 .9 low strong 9.7 5.5 12.6 7.0 5.6 12.9 7.2
16 0 high none 9.1 8.6 18.5 17.9 9.3 8.5 8.7
16 0 high weak 16.9 16.1 16.4 15.3 16.2 8.4 8.2
16 0 high strong 24.3 22.8 15.0 13.1 24.2 8.3 7.8
16 .5 med none 54.0 8.1 64.4 14.3 9.0 54.6 9.1
16 .5 med weak 14.4 12.6 37.5 15.1 11.6 25.7 8.1
16 .5 med strong 6.4 13.6 17.1 13.7 13.6 7.7 7.1
16 .9 low none 98.5 5.0 98.8 8.0 6.2 98.5 6.1
16 .9 low weak 70.0 5.6 76.2 8.0 5.7 71.2 5.4
16 .9 low strong 14.2 4.8 22.0 8.0 5.7 17.1 5.9

Table 2: DGP-I: Finite-sample rejection rate (in %) of the true parameter value by score tests for
H0 : θ = θ0 with nominal level 5%. Number of Monte-Carlo trials is 5000.

39



Specifications Score tests
2S-GMM EEL EL

n k Hybrid-1 Hybrid-2 Hybrid-3 Hybrid-1 Hybrid-2 Hybrid-3

100 3 15.8 18.5 25.5 20.5 21.9 15.4 13.6
100 10 31.8 25.8 54 42.5 41.3 35.3 25.3
200 3 13.2 16.2 20.2 15.9 18.5 12.3 10.5
200 10 28.3 39 46.1 32.9 46.7 23.1 19.1
500 3 9.8 12.4 14.4 11.8 13.2 9 7.7
500 10 21.9 38.7 34.3 23.6 41.4 16.6 13.6
1000 3 8.8 10.8 11.8 10.1 11.3 7.8 7
1000 10 18.9 33.9 27.9 19.2 35.4 12.6 10.9

Table 3: DGP-II: Finite-sample rejection rate (in %) of the true parameter value by score tests for
H0 : θ = θ0 with nominal level 5%. Number of Monte-Carlo trials is 5000.

Score tests Infeasible
n θ10 − θ01 2S-GMM EEL Hybrid-2 (3) EL Hybrid-2 (3) estimated

(EL θ2) (2S-GMM θ2) Asym. Power

100 -1 99.7 97.5 - 99.5 99.9
100 -0.8 98.6 92.5 - 97.6 97.9
100 -0.6 93.4 78.4 - 91.2 85.1
100 -0.4 76.2 50.9 - 72.6 51.6
100 -0.2 42.1 20.3 - 39.1 17.0
100 0 10.6 7.8 11.9 13.0 5
100 0.2 6.6 21.8 - 26.1 17.0
100 0.4 34.4 57.4 - 68.4 51.6
100 0.6 74.4 76.4 - 94.7 85.1
100 0.8 92.3 62.5 - 99.8 97.9
100 1 96.2 37.8 - 100.0 99.9

1000 -0.3162 99.3 99.3 96.6 97.1 99.9
1000 -0.253 96.9 97.6 90.4 91.6 97.9
1000 -0.1897 86.9 91.2 74.9 76.4 85.1
1000 -0.1265 60.5 73.1 46.7 48.1 51.6
1000 -0.0632 25.6 39.5 18.0 18.9 17.0
1000 0 6.2 11.9 6.4 6.8 5
1000 0.0632 11.4 15.8 20.4 21.3 17.0
1000 0.1265 45.1 33.2 59.9 61.1 51.6
1000 0.1897 85.6 24.8 91.6 92.0 85.1
1000 0.253 98.5 8.9 99.5 99.5 97.9
1000 0.3162 100.0 1.5 100.0 100.0 99.9

Table 4: DGP-III: Finite-sample rejection rate (in %) of score tests for H10 : θ1 = θ10 with nominal
level 5%. In columns 5 and 6 we plug-in θ̃2n(θ10) obtained from EL and 2S-GMM respectively in the
EL Hybrid-2 score statistic. Number of Monte-Carlo trials is 5000.
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nominal level Plug-in vs Projection-based score tests with 2S-GMM (1− τ) CI
α = 5% 2S-GMM EEL Hybrid-2 (3) EL Hybrid-2 (3)

n θ10 − θ01 plug-in τ = 5% τ = 1% plug-in τ = 5% τ = 1% plug-in τ = 5% τ = 1%

100 -1 99.7 99.3 98.4 97.5 96.3 95.2 99.5 99.4 98.9
100 -0.8 98.6 96.9 93.7 92.5 89.5 87.0 97.6 96.7 95.2
100 -0.6 93.4 87.7 79.2 78.4 72.3 67.3 91.2 88.7 83.5
100 -0.4 76.2 64.0 50.4 50.9 42.9 37.6 72.6 64.9 55.4
100 -0.2 42.1 28.6 18.1 20.3 15.2 12.2 39.1 29.3 21.3
100 0 10.6 6.1 2.9 7.8 5.6 4.6 13.0 7.7 5.4
100 0.2 6.6 6.1 6.0 21.8 18.6 17.9 26.1 20.5 20.1
100 0.4 34.4 34.4 34.4 57.4 50.8 48.5 68.4 63.8 63.6
100 0.6 74.4 74.4 74.4 76.4 66.5 61.6 94.7 93.4 93.4
100 0.8 92.3 92.3 92.3 62.5 49.0 43.1 99.8 99.8 99.8
100 1 96.2 96.2 96.2 37.8 23.2 18.5 100.0 100.0 100.0

1000 -0.3162 99.3 99.3 99.1 99.3 97.6 92.9 97.1 96.1 94.9
1000 -0.253 96.9 96.3 95.7 97.6 93.4 84.7 91.6 88.1 86.1
1000 -0.1897 86.9 84.9 83.1 91.2 81.5 68.4 76.4 71.1 67.1
1000 -0.1265 60.5 57.3 53.8 73.1 56.9 41.4 48.1 42.3 37.5
1000 -0.0632 25.6 23.2 20.6 39.5 24.7 14.8 18.9 14.9 12.4
1000 0 6.2 5.6 4.8 11.9 6.1 3.1 6.8 4.8 4.0
1000 0.0632 11.4 11.4 11.3 15.8 7.4 5.8 21.3 18.8 18.8
1000 0.1265 45.1 45.1 45.1 33.2 16.0 13.0 61.1 58.2 58.2
1000 0.1897 85.6 85.6 85.6 24.8 13.3 11.1 92.0 90.8 90.8
1000 0.253 98.5 98.5 98.5 8.9 5.1 4.3 99.5 99.4 99.4
1000 0.3162 100.0 100.0 100.0 1.5 1.0 0.8 100.0 100.0 100.0

Table 5: DGP-III: Finite-sample rejection rate (in %) of Projection-based score tests for H10 : θ1 = θ10
with nominal level α = 5%. Asymptotic size cannot exceed α + τ . Number of Monte-Carlo trials is
5000. (Since we could not reliably find the power when n = 100 by plugging-in the EL estimator of
θ2, the results for plug-in-EL are with the 2S-GMM estimator plugged-in.)
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θ10 − θ01 k = 2 k = 4 k = 8 k = 16
EL EEL EL EEL EL EEL EL EEL

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

-5 24 25 29 29 25 29 34 35 21 28 30 31 19 32 22 24
-4.5 23 24 28 28 25 29 34 34 21 28 29 30 19 32 21 23
-4 23 24 27 27 25 28 33 34 20 28 28 29 19 31 21 22
-3.5 22 23 25 25 24 27 32 32 20 27 27 28 18 31 21 22
-3 21 22 24 24 23 26 30 31 19 26 27 27 18 31 20 21
-2.5 20 20 22 22 22 25 28 29 19 25 25 26 18 31 18 20
-2 18 19 20 20 20 23 26 26 18 24 23 23 17 30 17 18
-1.5 16 16 17 18 17 20 22 22 16 22 20 21 17 28 15 15
-1 12 13 14 14 14 16 17 18 13 18 16 16 15 26 12 14
-0.5 8 9 8 8 9 11 9 9 10 14 10 10 13 23 7 8
0 5 5 5 5 6 8 4 4 7 10 5 5 11 19 5 5
0.5 18 19 24 24 20 23 26 26 17 23 24 25 17 29 17 18
1 61 61 75 75 39 44 50 51 26 36 37 38 21 38 23 25
1.5 63 65 76 76 37 43 44 45 23 32 30 30 18 34 17 18
2 56 57 69 69 38 44 52 53 25 34 37 39 22 37 24 26
2.5 50 52 63 63 39 45 53 54 26 35 42 43 21 37 29 31
3 47 48 59 59 39 44 54 54 27 35 43 44 21 37 30 32
3.5 44 45 55 55 38 43 53 53 27 35 43 44 21 37 32 33
4 42 44 53 53 37 42 52 53 27 35 44 45 21 37 31 33
4.5 41 42 51 51 36 41 51 52 27 35 44 45 21 37 31 33
5 40 41 49 49 36 41 51 51 27 35 44 44 21 37 31 32

-0.1 64 65 74 74 82 86 93 93 83 90 96 96 76 92 97 98
-0.09 55 57 65 65 75 79 86 86 76 84 92 92 70 88 94 94
-0.08 47 48 55 56 66 70 77 77 67 77 84 84 62 82 88 89
-0.07 38 40 45 45 55 60 66 66 57 67 74 75 53 74 79 80
-0.06 30 31 36 36 43 49 54 54 46 56 59 60 43 64 65 65
-0.05 23 24 26 26 33 38 41 41 34 44 47 47 34 53 49 51
-0.04 16 17 18 18 23 26 29 29 24 32 33 34 25 42 34 35
-0.03 12 12 12 13 15 18 18 19 17 23 22 22 18 31 20 22
-0.02 8 9 8 8 10 12 10 10 11 15 11 12 12 22 11 11
-0.01 6 6 6 6 6 8 5 5 8 12 6 6 10 17 5 6
0 5 5 5 5 6 7 4 4 6 10 4 4 8 15 3 4

0.01 6 6 5 5 6 8 5 5 8 11 5 6 9 17 5 6
0.02 8 9 6 6 10 12 9 10 11 15 11 11 12 22 10 11
0.03 12 13 13 13 15 18 18 18 16 23 20 20 17 30 19 21
0.04 17 18 23 23 23 27 29 30 25 32 33 33 25 41 33 35
0.05 24 26 31 32 34 38 42 43 34 43 47 48 33 52 48 50
0.06 34 35 45 45 45 50 57 57 45 56 62 62 43 63 65 66
0.07 44 46 56 56 56 62 70 70 57 68 75 75 53 73 78 79
0.08 55 57 67 68 69 73 81 81 68 78 85 86 62 82 88 89
0.09 66 68 80 80 79 82 91 91 77 86 93 94 70 89 95 96
0.1 75 77 87 88 86 89 96 96 85 92 98 98 77 93 98 98

Table 6: DGP-IV: Finite-sample rejection rate (in %) of the EEL and EL Hybrid-1 (respective 1st
columns) and Hybrid-3 (respective 2nd columns) score tests (GS-05) for H10 : θ1 = θ10 with nominal
level 5%. Number of Monte-Carlo trials is 5000 and identification. In the upper panel the moment
conditions are weak for θ1 and the in the lower panel they are strong.
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Specifications EL Hybrid-3 tests using plug-in and projection for nuisance parameter θ2
(n = 1000, k = 4) plug-in θ̃2n(θ10) from

Moments θ10 − θ01 EL estimator 2S-GMM estimator (1− τ) 2S-GMM confidence region for θ2
for θ1 α = 5% α = 5% α = 4.5%, τ = .5% α = 5%, τ = 5%

weak -5 29 34 31 33
weak -4.5 29 34 31 33
weak -4 28 33 30 32
weak -3.5 27 32 29 31
weak -3 26 30 28 30
weak -2.5 25 28 26 27
weak -2 23 26 24 25
weak -1.5 20 22 21 22
weak -1 16 18 15 17
weak -0.5 11 9 8 9
weak 0 8 4 3 3
weak 0.5 23 26 24 25
weak 1 44 50 43 46
weak 1.5 43 44 32 36
weak 2 44 52 43 47
weak 2.5 45 53 46 50
weak 3 44 53 47 51
weak 3.5 43 53 47 50
weak 4 42 52 46 49
weak 4.5 41 51 45 49
weak 5 41 51 45 48

strong -0.1 86 89 87 89
strong -0.09 79 82 80 82
strong -0.08 70 73 70 72
strong -0.07 60 61 58 60
strong -0.06 49 50 47 49
strong -0.05 38 37 35 37
strong -0.04 26 26 24 26
strong -0.03 18 17 16 17
strong -0.02 12 11 9 10
strong -0.01 8 7 5 6
strong 0 7 5 4 5
strong 0.01 8 7 6 6
strong 0.02 12 10 9 10
strong 0.03 18 17 15 17
strong 0.04 27 27 24 26
strong 0.05 38 39 37 39
strong 0.06 50 52 50 52
strong 0.07 62 66 63 65
strong 0.08 73 77 75 77
strong 0.09 82 86 85 86
strong 0.1 89 92 91 92

Table 7: DGP-IV: Finite-sample rejection rate (in %) of nominal-level-α EEL Hybrid-3 score test for
H10 : θ1 = θ10 using as plug-in the estimator of θ2 obtained by EL (in column 3) and 2S-GMM (in
column 4), and the (τ+α) projection-based EL Hybrid-3 score test using a 2S-GMM confidence region
of θ2. Number of Monte-Carlo trials is 5000.
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