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1. INTRODUCTION

The paper by Kleibergen and Mavroeidis (2009), hereafter
KM, is an excellent survey of the current state of the art in the
weak instrument robust econometrics for testing subsets of pa-
rameters in the generalized method of moments (GMM), and
provides an important and relevant application of the economet-
ric theory to the analysis of the new Keynesian Phillips curve.
We are extremely grateful to have the opportunity to comment
on this very nice paper. Our comments will focus on the weak
instrument robust tests for subsets of parameters, and in partic-
ular on the projection-based test that KM refer to as the Robins
(2004) test.

We show that KM’s implementation of the Robins test is in-
efficient, and provide an efficient implementation that performs
nearly as well as the MQLR test recommended by KM. Our
comment proceeds as follows. Section 2 reviews the tests used
for inference on subsets of parameters in GMM and discusses
in detail the implementation of the Robins test, which we call
the new method of projection. Section 3 reports the results of a
small simulation study to demonstrate that the new method of
projection performs nearly as well as the tests recommended by
KM. Section 4 contains our concluding remarks.

2. INFERENCE ON SUBSETS OF
PARAMETERS IN GMM

In this section we describe inference on subsets of parameters
in the GMM framework. We follow the notation and assump-
tions of KM regarding the GMM framework. Interest centers
on a p-dimensional vector of parameters θ identified by a set of
k ≥ p moment conditions

E[ft(θ)] = 0.

Let θ = (α′, β ′)′, where α is pα × 1 and β is pβ × 1. The pa-
rameters of interest are β , and α are considered nuisance para-
meters. The weak identification robust methods of inference on

θ are based on the (efficient) continuous updating (CU) GMM
objective function

Q(θ) = TfT(θ)′V̂ff (θ)−1fT(θ), (1)

where fT(θ) = T−1∑T
t=1 ft(θ) and V̂ff (θ) is a consistent esti-

mator of the k × k dimensional covariance matrix Vff (θ) of the

vector of sample moments. Let qt(θ) = vec( ∂ft(θ)
∂θ ′ ) and define

f̄t(θ) = ft(θ) − E[ft(θ)] and q̄t(θ) = qt(θ) − E[qt(θ)]. Assump-
tion 1 of KM states that

1√
T

T∑
t=1

[
f̄t(θ)

q̄t(θ)

]
d→
[

ψf (θ)

ψθ (θ)

]
∼ N(0,V(θ)),

V(θ) =
[

Vff (θ) Vf θ (θ)

Vθ f (θ) Vθθ (θ)

]
.

The gradient of (1) with respect to θ is given by

�θ Q(θ) = ∂Q(θ)

∂θ ′ = 2fT(θ)′V̂ff (θ)−1D̂T(θ),

where D̂T(θ) = ∑T
t=1 Dt(θ) and Dt(θ) = deveck[qt(θ) −

V̂θ f (θ)V̂ff (θ)−1ft(θ)]. For the definition of the devec operator
see Chaudhuri (2008).

2.1 Tests for the Full Parameter Vector

Valid tests of the hypothesis H0 : θ = θ0 were developed in
Stock and Wright (2000) and Kleibergen (2005). Stock and
Wright’s S-statistic is a generalization of the Anderson–Rubin
statistic (see Anderson and Rubin 1949) and is given by S(θ) =
Q(θ). Kleibergen’s K-statistic is a score-type statistic based on
Q(θ) and may be expressed as

K(θ) = 1

4
(�θ Q(θ))[D̂T(θ)′V̂ff (θ)−1D̂T(θ)]−1(�θ Q(θ))′. (2)
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Under the null H0 : θ = θ0, S(θ0)
A∼ χ2

k and K(θ0)
A∼ χ2

p .

2.2 Tests for Subsets of Parameters

For testing hypotheses on subsets of parameters of the form
H0 :β = β0, subset versions of the S- and K-statistics were also
considered by Stock and Wright (2000) and Kleibergen (2005).
These statistics are based on the plug-in principle and utilize
the constrained CU-GMM estimate α̃(β0) = arg minα Q(α,β0).
Letting θ̃0 = (α̃(β0)

′, β ′
0)

′, the subset S- and K-statistics are
given by S(θ̃0) and K(θ̃0), respectively. Under the null H0 :β =
β0 and under the assumption that α is well identified, Stock

and Wright (2000) and Kleibergen (2005) showed that S(θ̃0)
A∼

χ2
k−pα

and K(θ̃0)
A∼ χ2

pβ
. This result is based on the fact that

when α is well identified, α̃(β0) is
√

n consistent for α under
H0 :β = β0. When α is not well identified, α̃(β0) is no longer√

n consistent for α and hence the S- and K-statistics are not
asymptotically chi-square distributed. However, Theorem 1 of
KM shows that irrespective of the identification of α, the S- and
K-statistics are always bounded from above by the χ2

k−pα
and

χ2
pβ

distributions, respectively.

2.3 Usual Method of Projection

Dufour (1997), Dufour and Jasiak (2001), and Dufour and
Taamouti (2005, 2007) showed that the usual projection ap-
proach could always be used to obtain valid inference for
subsets of parameters provided there exists an asymptotically
(boundedly) pivotal statistic for testing the joint hypothesis
H0 : θ = θ0. Let R(θ) denote such a statistic and assume that

R(θ)
A∼ χ2

v . Suitable choices for R(θ) are S(θ), for which v = k,
and K(θ), for which v = p. The usual method of projection re-
jects H0 :β = β0 at level (at most) ζ if

inf
α∈�α

R(α,β0) > χ2
v (1 − ζ ),

where �α denotes the parameter space for α, and χ2
v (1 − ζ )

denotes the 1 − ζ quantile of the chi-square distribution with v
degrees of freedom. The asymptotic size of the projection test
cannot exceed ζ irrespective of the identification of α or β or
both. However, the power of the test can be very low if v is large
compared to pβ .

2.4 New Method of Projection

Chaudhuri et al. (2007), Chaudhuri (2008), and Chaudhuri
and Zivot (2008) proposed a new method of projection for
making inferences on subsets of parameters in the presence of
potentially unidentified nuisance parameters that are based on
ideas presented in Robins (2004). The new method of projec-
tion requires (i) a uniform asymptotic (1−ξ) ·100% confidence
set, Cα(1 − ξ,β0), for α when the null hypothesis H0 : β = β0
is true, and (ii) an asymptotically pivotal statistic R(θ). In most

cases, as described in Table 1, R(θ)
A∼ χ2

v for some v depending
upon the choice of R(θ).

Then the new method of projection rejects H0 : β = β0 if

(1) Cα(1 − ξ,β0) = ∅, or

Table 1. Confidence sets, test statistics, and degrees of freedom for
new-projection-type tests

Cα(1 − ξ,β0) R(α,β) v

CK
α (1 − ξ,β0) S(α,β0) k

CK
α (1 − ξ,β0) K(α,β0) p

CKα
α (1 − ξ,β0) Kβ.α(α,β0) pβ

CS
α(1 − ξ,β0) S(α,β0) k

CS
α(1 − ξ,β0) K(α,β0) p

CS
α(1 − ξ,β0) Kβ.α(α,β0) pβ

(2) infα0∈Cα(1−ξ,β0) R(α0, β0) > χ2
v (1 − ζ ).

Under the null hypothesis H0 :β = β0, Cα(1 − ξ,β0) asymp-
totically contains α with probability at least 1 − ξ , and hence
it follows from Bonferroni’s inequality that the asymptotic size
of the new projection type test cannot exceed ζ + ξ . The new
method of projection can be expected to be generally less con-
servative than the usual method of projection because the infi-
mum for the new method is only computed over Cα(1 − ξ,β0),
whereas the infimum is computed over the whole space �α for
the usual method. Similar projection methods have also been
employed by Dufour (1990), Berger and Boos (1994), and Sil-
vapulle (1996).

To implement the new method of projection in the context of
GMM, Cα(1 − ξ,β0) can be constructed by inverting the S- or
K-tests as

CS
α(1 − ξ,β0) = {α : S(α,β0) ≤ χ2

k (1 − ξ)} or

CK
α (1 − ξ,β0) = {α : K(α,β0) ≤ χ2

p (1 − ξ)}.

An advantage of using CK
α (1 − ξ,β0) is that it will never be

empty, and the asymptotic properties of the test will only de-
pend on R(θ) when α is well identified. However, it will also
include saddlepoints α∗ where K(α∗, β0) = 0 and these points
are associated with spurious declines in power of the K-statistic.
In contrast, the set CS

α(1 − ξ,β0) can be empty and this will oc-
cur for values β0 at which the overidentifying restrictions are
rejected (at level ξ ). As we show in the next section, this can
lead to improved power properties of the new method of pro-
jection.

While the new method of projection can be implemented
using any asymptotically pivotal statistic R(θ), Robins (2004)
showed that there are certain advantages of using an efficient
score-type statistic for R(θ). The efficient score for β (given
α), in the terminology of van der Vaart (1998), is the part of the
score (gradient of the objective function with respect to) for β

that is orthogonal to the score for α. The efficient score statistic
for β is a quadratic form in the efficient score for β with re-
spect to an estimator of its asymptotic variance. In the context
of GMM, Chaudhuri (2008) and Chaudhuri and Zivot (2008)
decomposed the K-statistic (2) into two orthogonal statistics:
a K-statistic for α (given β known) and an efficient (score) K-
statistic for β

K(θ) = Kα(θ) + Kβ.α(θ),
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where

Kα(θ) = 1

4
(∇αQ(θ))

(
D̂Tα(θ)′V̂ff (θ)−1/2D̂Tα(θ)

)−1

× (∇αQ(θ))′,

Kβ.α(θ) = 1

4
(∇β.αQ(θ))

(
D̂Tβ(θ)′V̂ff (θ)−1/2NV̂ff (θ)−1/2′D̂Tα(θ)

× V̂ff (θ)−1/2D̂Tβ(θ)
)−1

(∇β.αQ(θ))′,

and ∇β.αQ(θ) is the estimated efficient score for β defined as

∇β.αQ(θ) = fT(θ)′V̂ff (θ)−1/2

× NV̂ff (θ)−1/2′D̂Tα(θ)
V̂ff (θ)−1/2D̂Tβ(θ).

The above expressions use the partition D̂T(θ) = [D̂Tα(θ),

D̂Tβ(θ)] and V̂θ f = [V̂αf (θ)′, V̂βf (θ)′]′.
It can be shown that under H0 : θ = θ0, Kα(θ0)

A∼ χ2
pα

and Kβ.α(θ0)
A∼ χ2

pβ
. Furthermore, if θ0 belongs to the

√
n-

neighborhood of θ , then Kβ.α(θ0) = Kβ.α(θ) + op(1). This
latter property of Kβ.α(θ) makes it ideally suited for use
in the new method of projection. Indeed, Chaudhuri (2008)
proved that if Cα(1 − ξ,β0) is nonempty with probability
approaching one and if α is well identified then the new-
method-of-projection-type test that rejects H0 :β = β0 when
infα0∈Cα(1−ξ,β0) Kβ.α(θ0) > χ2

pβ
(1 − ζ ) is asymptotically equiv-

alent to the size (at most) ζ K-test for β against local alter-
natives. This means that the new method of projection with
R(θ) = Kβ.α(θ) is size controlled when α is not identified and
can be made asymptotically equivalent to Kleibergen’s K-test
when α is well identified.

Table 1 summarizes the possible ways of implementing the
new-method-of-projection-type tests for testing H0 :β = β0.
KM illustrated the use of the new method of projection with
Cα(1 − ξ,β0) = CK

α (1 − ξ,β0) and R(θ) = S(α,β0) and con-
cluded that the Robins test, proposed in Chaudhuri (2008) and
Chaudhuri et al. (2007), does not outperform the usual method
of projection based on R(θ) = S(α,β0). However, this is not
what Chaudhuri (2008) and Chaudhuri et al. (2007) refer to as
the Robins test. In the context of GMM, Chaudhuri (2008) and
Chaudhuri and Zivot (2008) recommend using Cα(1 − ξ,β) =
CS

α(1 − ξ,β) and R(θ) = Kβ.α(θ). The power of this method
is largely driven by the choice of the statistic R(θ). In addi-
tion, the choice R(θ) = Kβ.α(θ) (i.e., the efficient K-statistic)
can make this test asymptotically equivalent the K-test when α

is well identified. In the next section we show, using the same
simulation experiment as KM, that this latter implementation of
the new method of projection performs comparably to the tests
recommended by KM.

3. SIMULATIONS

To illustrate the finite sample properties of the new method
of projection based on CS

α(1− ξ,β0) and Kβ.α(α,β0) we utilize
the same simulation experiment described in Section 4 of KM.
We are grateful to Frank Kleibergen and Sophocles Mavroeidis
for sharing their Matlab code with us.

The data-generating process is

πt = λxt + γf Et[πt+1] + ut,

xt = ρ1xt−1 + ρ2xt−2 + vt,

πt+1 = (α0ρ1 + α1)xt + α0ρ2xt−1 + ηt+1,

where ηt = ut + α0vt. There error terms ηt and vt are jointly
normal with unit variances and correlation ρηv = 0.2. The para-
meter of interest is γf and λ is the nuisance parameter. Identifi-
cation of the structural parameters λ and γf is controlled by the
concentration parameter μ2, which is a complicated nonlinear
function of the model parameters.

KM’s Figure 3 illustrates the power curves for testing
H0 :γf = 1/2 against H1 :γf �= 1/2 at the 5% level for the subset
S, usual method of projection based on S, and the new method
of projection based on CK

λ (1 − ξ, γf = 1/2) and S(λ, γf = 1/2)

with ξ = 0.02 and ζ = 0.03. The figure shows that the power
curves of the usual method of projection and an inefficient ap-
plication of the new method are indistinguishable and are dom-
inated by the subset S-statistic.

Figure 1 in this note shows the power curves of the new
method of projection based on CS

λ(1 − ξ, γf = 1/2) and
Kλ.γf (λ, γf = 1/2) with ξ = 0.005 and ζ = 0.045,0.05, along
with the recommended tests of KM. The graphs show that
the new method of projection actually performs as well as the
MQLR and KJ tests recommended by KM. For the strong iden-
tification case, use of CS

λ(1 − ξ, γf = 1/2) avoids the spurious
decline in power observed for the KLM statistic.

4. CONCLUSION

KM show that the subset versions of the S, K, and MQLR
statistics are valid tests even when the nuisance parameters are
unidentified. This is an important theoretical and practical re-
sult. Their simulation results calibrated to a stylized new Key-
nesian Phillips curve show that projection-type tests are too
conservative and are dominated by the subset S, K, and MQLR
statistics. We show that a version of the Robins test, which we
call the new method of projection, based on an efficient score-
type statistic performs nearly as well as the MQLR statistic
and provides an alternative approach to weak instrument ro-
bust inference for subsets of parameters in models estimated
by GMM.

A practical drawback of the weak instrument robust tests is
that they are based on the CU-GMM objective function. The
CU-objective function can be ill-behaved, even for linear mod-
els, and finding the global minimum can be difficult. Moreover,
most commercial software implementations of GMM do not
support CU-GMM. Until commonly used software implemen-
tations of GMM catch up with the important theoretical devel-
opments surveyed by KM, it is not likely that weak instrument
robust methods will be widely used in practice.
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Figure 1. Power curves of 5% level tests for H0 :γf = 0.5 against H1 :γf �= 0.5. The sample size is 1,000 and the number of Monte Carlo
simulations is 10,000.
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1. INTRODUCTION

We would like to thank Fabio Canova, Saraswata Chaud-
huri, John Chao, Jean-Marie Dufour, Anna Mikusheva, Norman
Swanson, Jonathan Wright, Moto Yogo, and Eric Zivot for their
stimulating discussions of our article. We especially like the di-
versity of the different discussions, which caused them to have
hardly any overlap while all of them provide insightful com-
ments from the discussant’s own research perspective. Because
of the small overlap of the different discussions, we comment
on them separately and do so in alphabetical order.

2. CANOVA

In his discussion, Canova brings up the issue of the struc-
tural versus semistructural specifications of the model. Indeed,
we received similar comments when we presented the article
at the Joint Statistical Meetings (JSM) conference in Denver,
so we revised the article somewhat to give results for a particu-
lar structural specification proposed by Galí and Gertler (1999).
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