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Abstract

In many applications, estimation of the parameters of interest also requires modeling and esti-

mating nuisance parameters. Misspecification of nuisance parameters in general leads to incorrect

estimation of the parameters of interest. There are, however, important cases such as estimation

using missing-at-random data where doubly-robust estimators exit. These estimators are based

on estimating functions involving two types of nuisance parameters where misspecification of any

one (but not both) of which does not lead to incorrect estimation of the parameters of interest.

That is, these estimators are robust to two different types of misspecifications as long as those do

not happen simultaneously. However, possibly due to the technical nature of the related litera-

ture, these estimators have not enjoyed widespread use in economics. Our goal is pedagogical, and

we seek to provide a non-technical overview of these estimators to facilitate their use in economics.
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1 Introduction

Doubly-robust estimators were introduced by Robins et al. (1994), Robins et al. (1995), Robins and

Rotnitzky (1995), Holcroft et al. (1997), etc.; formalized in Scharfstein et al. (1999); and subsequently

studied and used widely in biostatistics, epidemiology and statistics. More recently, the econometrics

literature has also developed an active interest in these estimators; see, e.g., Hirano and Imbens

(2001), Wooldridge (2007), Graham et al. (2012), Busso et al. (2009, 2011), Chaudhuri and Guilkey

(2016), Rothe and Firpo (2016), Graham et al. (2016), Sloczynski and Wooldridge (2018), etc.

The innovations in these papers are technical in nature, and the discussion therein are specific to

the scenarios of their respective concern. Unfortunately, expository articles aimed at practitioners

seem missing; and perhaps as a consequence of this, the application of doubly-robust estimators is

rarely found in economics, although well-known contexts — such as missing data (due to attrition,

non-response, etc.), measurement error, program evaluation, etc. — for applications abound.

Our paper attempts to fill this gap by: (1) providing a non-technical overview of doubly-robust

estimators, their implementation and asymptotic properties, and (2) demonstrating their nice prop-

erties even in relatively small samples using a simulation study. Our paper is not intended as a

survey, nor does it provide strictly original results. Rather, its purpose is to assist the pedagogy of

doubly-robust estimators by relating them to the standard pedagogy of two-step/plug-in estimators.

Our paper proceeds as follows. Section 2 defines the generic doubly-robust estimator. Section 3

defines the estimation setup adopting the broad setup of Chen et al. (2008) that covers scenarios of

missing data (due to attrition, non-response, etc.), measurement error, program evaluation, etc. as

special cases. Section 4 describes a basic doubly-robust estimator for estimation under this setup,

with a focus on emphasizing the features that make a doubly-robust estimator special among the class

of two-step/plug-in estimators that are more familiar to economists. Section 5 is a simulation study

comparing doubly-robust and non-robust estimators in an instrumental variables (IV) regression with

missing IV, which has received attention recently; see, e.g., Mogstad and Wiswall (2012), Chaudhuri

and Guilkey (2016), Abrevaya and Donald (2017), Kennedy and Small (2018). Section 6 concludes.

2 Doubly-robust estimator: A general overview

Doubly-robust estimators for any parameter of interest θ are obtained by solving estimating equations

with doubly-robust population analogs. To fix ideas, consider the observed data O1, . . . , On that are
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independent and identically distributed (i.i.d.) copies of the random variable O ∈ Rdo which satisfies:

0 = E
[
ψ(O; θ0, h01(O), h02(O))

]
if and only if θ = θ0 (1)

where θ0 represents the true value of θ ∈ Θ ⊂ Rdθ . h01(O) and h02(O) are d1×1 and d2×1 dimensional

unknown functions of O, and they represent the “true” nuisance parameters in our paper.

To focus on the main idea, we will abstract from over-identified models and consider ψ(.) as a

dθ × 1 known function of its arguments specified in (1). Section 4 provide a number of common

examples of the moment function ψ(.) and the associated nuisance parameters h01(O) and h02(O).

(1) represents the population analog of the dθ estimating equations for θ, and it is referred to as

“doubly-robust” to the misspecification of the (true) nuisance parameters h01(O) and h02(O) if:

0 = E
[
ψ(O; θ0, h∗1(O), h02(O))

]
(2)

0 = E
[
ψ(O; θ0, h01(O), h∗2(O))

]
(3)

where h∗1(O) and h∗2(O) are any d1 × 1 and d2 × 1 dimensional functions of O. In words, double-

robustness of the estimating function ψ(.) means that the unbiasedness of the function ψ(.) for 0

holds at θ0 if either h01(O) or h02(O), but not necessarily both, is replaced by conformable functions.

Therefore, one would naturally construct an estimator θ̂n for θ as the solution of:

op

(
1√
n

)
=

1

n

n∑
i=1

ψ(Oi, θ, ĥ1,n(Oi), ĥ2,n(Oi)) (4)

where the op(1/
√
n) term in (4) is a useful generalization to accommodate for approximate solutions,

while ĥ1,n(O) and ĥ2,n(O) are intended to be consistent estimators of h01(O) and h02(O) respectively.

In practice, however, one postulates parametric models h∗1(O;β) and h∗2(O; γ) with β∗ ∈ Rdβ

and γ∗ ∈ Rdγ implicitly defined such that h∗1(O) ≡ h∗1(O;β∗) and h∗2(O) ≡ h∗2(O; γ∗). Ideally,

h∗1(O;β∗) = h01(O) and h∗2(O; γ∗) = h02(O), but the key point is that this is difficult to enforce in

practice, and hence β∗ and γ∗ are generally the pseudo-true values with respect to h01(O) and h02(O)

respectively. Letting β̂n and γ̂n denote the estimators of β∗ and γ∗ respectively obtained by methods

such as least squares, maximum likelihood, etc. – see, e.g., White (1981), White (1982) – using the

observed data O1, . . . , On, one obtains ĥ1,n(Oi) = h∗1(Oi; β̂n) and ĥ2,n(Oi) = h∗2(Oi; γ̂n).

Interestingly, one could show that θ̂n is consistent for θ0 under standard conditions by virtue of
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the unbiasedness conditions (2) and (3) if either one or both of the following specifications hold:

h∗1(O) = h01(O) (5)

h∗2(O) = h02(O). (6)

That is, the estimator θ̂n’s consistency for θ0 is doubly-robust to the misspecification of the nuisance

parameter models due to violation of (5) or (6). More generally, θ̂n would perhaps be consistent for

some pseudo-true value θ∗ ∈ Θ; and θ∗ = θ0 if at least one of the specifications (5) and (6) holds.

Now, consider the general form of the asymptotic distribution of this doubly-robust estimator

θ̂n. First, note that, under conditions as in, e.g., White (1981) and White (1982), β̂n and γ̂n have

the asymptotically linear representations:

√
n(β̂n − β∗) =

1√
n

n∑
i=1

L(Oi) + op(1) (7)

√
n(γ̂n − γ∗) =

1√
n

n∑
i=1

S(Oi) + op(1) (8)

with some influence function L(Oi) and S(Oi) respectively for which, in the case of two-step estima-

tion, it is conventional to assume (see, e.g., Section 6 of Newey and McFadden (1994)) that:

1√
n

n∑
i=1

ξi ≡
1√
n

n∑
i=1

(
ψ′(Oi), L

′(Oi), S
′(Oi)

)′ d−→ N(0,Σ) (9)

for some (dθ+dβ+dγ)×(dθ+dβ+dγ) positive definite Σ, and where ψ(Oi) ≡ ψ(Oi, θ
∗, h∗1(Oi;β

∗), h∗2,(Oi; γ
∗)).

Now, expanding (4) under standard regularity conditions (for ψ(.) smooth or non-smooth in θ) as in

Newey and McFadden (1994) or Chen et al. (2003) (parametric version) gives:

op(1) =
1√
n

n∑
i=1

ψ(Oi) + Ψθ

√
n
(
θ̂n − θ∗

)
+Ψβ

√
n
(
β̂n − β∗

)
+Ψγ

√
n (γ̂n − γ∗)

⇒
√
n(θ̂n − θ∗) = −Ψ−1

θ A
1√
n

n∑
i=1

ξi + op(1)
d−→ N(0,Ψ−1

θ AΣA′Ψ−1′

θ ) (10)

using (7)–(9), and where for each of η = θ, η = β and η = γ:

Ψη ≡ Ψη(θ
∗, h∗1(O), h∗2(O)) ≡

{
∂

∂η′
E [ψ(O; θ, h∗1(O;β∗), h∗2(O; γ∗)]

}
θ=θ∗,β=β∗,γ=γ∗

(11)

and A ≡
[
Idθ Ψβ Ψγ

]
. (12)
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Therefore, asymptotic normality follows in the standard way. Interestingly, when we consider (10)

for specific examples in Section 4, it will become evident that Ψβ = 0 when (3) holds, while Ψγ = 0

when (2) holds. In other words, estimation of one set of nuisance parameters would not affect the

asymptotic variance of θ̂n when the parametric model for the other set of nuisance parameters is

correctly specified. Importantly, when both sets of nuisance parameter models are correctly specified,

the asymptotic variance of θ̂n is not at all affected by the estimation of any nuisance parameters – it

is as if the true nuisance parameters have been plugged-in for the estimation of θ̂n in (4). Thus, it will

be evident that the doubly-robust estimators can enjoy the celebrated Neyman-C-alpha property.

3 Estimation framework with missing-at-random data

Now we describe an estimation framework following Chen et al. (2008) that has found wide applica-

bility in economics, and that is useful for a self-contained illustration of the doubly-robust estimator.

Generalizations of certain features of this framework have also proved useful – see, e.g., Graham

et al. (2016), Chaudhuri and Guilkey (2016), Chaudhuri et al. (2018), Chaudhuri (2017), Barnwell

and Chaudhuri (2018) – but the essential idea behind doubly-robust estimators remains the same.

Consider a random variable Z = (Z0,
′ Z ′

1)
′ where Z0 is always observed but Z1 can be missing.

Let R be a binary variable taking value 1 if Z1 is missing, and is 0 otherwise. The observed sample is

{Oi ≡ (Ri, Z
′
0i, (1−Ri)Z

′
1i)}ni=1 that are i.i.d. copies of the random variable O ≡ (R,Z ′

0, (1−R)Z ′
1)

′.

We will focus on a parameter value θ0 ∈ Θ ⊂ Rd that is uniquely defined by a set of moment

restrictions, and for this purpose we consider the following two distinct cases to define θ0:

E[g(Z; θ)] = 0 if and only if θ = θ0 (13)

E[g(Z; θ)|R = 1] = 0 if and only if θ = θ0. (14)

Chen et al. (2004) present five important examples in applied economics where moment restrictions

like (13) or (14) arise. These include common cases such as estimation under nonclassical measure-

ment error but with validation data (i.e., with R = 0), missing regressors, survey revisions, program

evaluation such as estimation of the average treatment effect (on the treated, untreated), etc. We

will also consider a new example – missing instrumental variables – that also fits the above frame-

work but has only begun to receive attention very recently; see, e.g., Mogstad and Wiswall (2012),

Chaudhuri and Guilkey (2016), Abrevaya and Donald (2017), Kennedy and Small (2018).
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With missing observations, identification of θ0 has traditionally been achieved by the “missing-at-

random”(MAR) assumption, and an assumption on the “overlap” between the two groups R = 0, 1;

see, among others, Rubin (1976), Rosenbaum and Rubin (1983), Robins et al. (1994), Robins and

Rotnitzky (1995), Rotnitzky and Robins (1995), Hahn (1998), Hirano et al. (2003), Wooldridge

(2007), Chen et al. (2008), Graham (2011), Graham et al. (2012, 2016). These are stated as follows.

MAR: The following conditional independence assumption holds for the missingness indicator:

P (R = 1|Z0, Z1) = P (R = 1|Z0). (15)

Strict overlap: For each Z0, the conditional probability of missingness is bounded away from 0 and

1:

P (R = 1|Z0) ∈ (1− p̄, p̄) for some p̄ satisfying 0 < p̄ < 1. (16)

Now we consider examples of estimation framework – linear regression, instrumental variables

regression and quantile regression – to illustrate the effect of MAR on the so-called “complete-case

estimator”that uses only the non-missing observations and ignores the missing ones. This practice

is common in applications. For brevity, we only consider the moment restrictions in (13) for now.

Example 1: Missing outcome variable in ordinary least squares regression

Let Z0 = X and Z1 = Y , and consider a model Y = Xθ0 + ϵ (all scalar). Let E[Xϵ] = E[ϵ] = 0.

This implies that θ0 = E[XY ]/E[X2] is defined by (13) with g(Z; θ) = X(Y −Xθ). The common

practice is to use only the non-missing observations for estimation, i.e., the estimating equations:

1

n

n∑
i=1

(1−Ri)Xi(Yi −Xiθ̃n,Comp-Case) = 0;

and the complete-case estimator θ̃n,Comp-Case
P−→ E[(1−R)XY ]

E[(1−R)X2]
=

E[(1− P (R = 1|X))XY ]

E[(1− P (R = 1|X))X2]
̸= θ0

generally unless the stronger assumption E[ϵ|X] = E[ϵ] = 0, i.e., E[Y |X] = Xθ0, holds. On the

other hand, using an inverse probability weighted (IPW) moment vector with the non-missing data

(1−R)g(Z; θ)/(1− P (R = 1|X)) solves this problem under (15) giving the estimating equations:

1

n

n∑
i=1

(1−Ri)

(1− P (R = 1|Xi))
Xi(Yi −Xiθ̂n,IPW) = 0; and the estimator

θ̂n,IPW
P−→ E

[
1−R

1− P (R = 1|X)
XY

]/
E

[
1−R

1− P (R = 1|X)
X2

]
=

E[XY ]

E[X2]
= θ0.
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Example 2: Missing explanatory variable in ordinary least squares regression

Let Z0 = Y and Z1 = X, and consider the same model as in Example 1. Now, the complete-case

estimator θ̃n is inconsistent for θ0 even under the much stronger condition E[ϵ|X] = 0 because

θ̃n,Comp-Case
P−→ E[(1−R)XY ]

E[(1−R)X2]
=

E[(1− P (R = 1|Y ))XY ]

E[(1− P (R = 1|Y ))X2]
̸= θ0.

On the other hand, the IPW moment vector, as before, solves the problem exactly as in Example 1,

with the minor difference that now the conditional probabilities are conditional on Y (and not X).

Example 3: Missing instrumental variable in instrumental variables regression

Let Z0 = (Y,X) and Z1 =W , and consider a model Y = Xθ0+ ϵ where E[Xϵ] ̸= 0 and E[ϵ] = 0.

Let E[Wϵ] = 0 and E[WX] ̸= 0, i.e., W is the IV. Hence, θ0 = E[WY ]/E[WX] is defined by (13)

with g(Z; θ) =W (Y −Xθ). Using only the non-missing observations gives the estimating equations:

1

n

n∑
i=1

(1−Ri)Wi(Yi −Xiθ̃n,Comp-Case) = 0;

and the estimator θ̃n,Comp-Case
P−→ E[(1−R)WY ]

E[(1−R)WX]
=

E[(1− P (R = 1|Y,X))E[W |Y,X]Y ]

E[(1− P (R = 1|Y,X))E[W |Y,X]X]
̸= θ0

generally even under the stronger assumption E[ϵ|W ] = E[ϵ] = 0. As before, an IPW moment vector

(1−R)g(Z; θ)/(1− P (R = 1|Y,X)) solves this problem under (15) giving the estimating equations:

1

n

n∑
i=1

(1−Ri)

(1− P (R = 1|Yi, Xi))
Wi(Yi −Xiθ̂n,IPW) = 0; and the estimator

θ̂n,IPW
P−→ E

[
1−R

1− P (R = 1|Y,X)
WY

]/
E

[
1−R

1− P (R = 1|Y,X)
WX

]
=

E[WY ]

E[WX]
= θ0.

Example 4: Missing explanatory variable in quantile regression

Let Z0 = Y and Z1 = X. Consider the model as in Example 2, but instead of a restriction on

the conditional mean of ϵ let it be on its τ ∈ (0, 1)-th conditional quantile as P (ϵ ≤ 0|X) = τ . Then,

θ0 defined by (13) with g(Z; θ) = X(1(Y −Xθ ≤ 0)− τ), where 1(.) denotes the indicator function,

typically does not have a closed form expression. However, θ0 is such that xθ0 is the τ -th conditional

quantile of Y given X = x. Using only the non-missing observations gives the estimating equations:

1

n

n∑
i=1

(1−Ri)Xi(1(Yi −Xiθ̃n,Comp-Case ≤ 0)− τ) = op

(
1√
n

)

where the op(1/
√
n) term on the right hand side (RHS) accommodates for non-exact solutions (see
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(4)). However, unless R is independent of Y and X, the right hand side (LHS) of the estimating

equations at θ cannot be unbiased or consistent for the expected moment function E[g(Z; θ)]. Hence,

θ̃n,Comp-Case cannot be consistent for θ
0. As before, an IPW moment vector (1−R)g(Z; θ)/(1−P (R =

1|Y )) solves this problem under (15) giving the estimating equations:

1

n

n∑
i=1

(1−Ri)

1− P (R = 1|Yi)
Xi(1(Yi −Xiθ̂n,IPW ≤ 0)− τ) = op

(
1√
n

)

because, the LHS at θ is now unbiased and, under standard conditions, consistent for E[g(Z; θ)].

The general principle by which the IPW moment vector solves the problem under MAR (15) in

these four examples under (13) (and, similarly, also under (14)) can be summarized as follows.

Lemma 3.1 Under (15) and standard existence conditions of expectations, the following identities

(i) and (ii) in θ apply to the cases of the moment restrictions in (13) and (14) respectively:

(i) E
[

1−R
1−P (R=1|Z0)

g(Z; θ)
]
= E[g(Z; θ)]

(ii) E
[
P (R=1|Z0)
P (R=1)

1−R
1−P (R=1|Z0)

g(Z; θ)
]
= E[g(Z; θ)|R = 1].

Weighting the moment vector for the sample units with Z fully observed (i.e., R = 0) by suitable

functions of P (R = 1|Z0) restores the original moment restrictions in (13) and (14) under MAR (15).

Then, estimation of θ based on estimating equations that are sample analogs of these reweighted

moment vectors leads to consistency of the estimator. Such estimators are known as IPW estimators.

P (R = 1|Z0) is unknown but can be estimated. (Do note that P (R = 1|Z) could not be estimated

without (15).) The parametric IPW estimator for θ uses an estimator of P (R = 1|Z0) based on a

parametric model. However, the parametric IPW estimator is generally inconsistent for θ0 if this

parametric model is incorrect. Even otherwise, its asymptotic variance does not generally attain a

suitable efficiency bound; see, e.g., Hahn (1998), Hirano et al. (2003), Wooldridge (2007).1

However, doubly-robust estimation can be applied in this context to alleviate both problems –

bias and inefficiency. We discuss this now by referring to our general discussion from Section 2.

4 Doubly-Robust estimators for θ in (13) and (14) under MAR

There exists a variety of ways of constructing doubly-robust estimators in this context; see, e.g., Tan

(2007), Cao et al. (2009), etc. for very innovative proposals. Here, we only describe the most basic

1Nonparametric estimation of P (R = 1|Z0) can “technically” solve both problems – misspecification and efficiency –
under suitable conditions; see, e.g., Hirano et al. (2003) and Chen et al. (2008). However, this is rarely used in practice.
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form of doubly robust estimators that is due to the pioneering work of Robins et al. (1994). This

should serve as a stepping stone for the interested reader into more sophisticated related methods.

The inefficiency of the parametric IPW estimator noted above leads to the natural question: What

needs to be the variance for an estimator to be efficient in this context? The answer is provided by

Theorem 1 of Chen et al. (2008). We restate it now in a slightly extended form. First, define:

φ(O; θ) =
1−R

1− P (R = 1|Z0)
(g(Z; θ)− E[g(Z; θ)|Z0]) + E[g(Z; θ)|Z0]

φ1(O; θ) =
P (R = 1|Z0)

P (R = 1)

1−R

1− P (R = 1|Z0)
(g(Z; θ)− E[g(Z; θ)|Z0]) +

R

P (R = 1)
E[g(Z; θ)|Z0],

and the expectation of their outer products as:

V (θ) = E[φ(O; θ)φ′(O; θ)] and V1(θ) = E[φ1(O; θ)φ′
1(O; θ)].

To accommodate for cases such as quantile regression, i.e., the g(Z; θ) in Example 4, we will allow

g(Z; θ) to be non-differentiable in θ. However, E[g(Z; θ)] or E[g(Z; θ)|R = 1] (as appropriate) needs

to be differentiable, which is also satisfied in the quantile regression example. Accordingly, define:

G(θ) =
∂

∂θ′
E[g(Z; θ)] and G1(θ) =

∂

∂θ′
E[g(Z; θ)|R = 1].

Proposition 4.1 Assume that the MAR condition (15) and the strict overlap condition (16) hold.

(i) Suppose that the moment restrictions in (13) hold. Let the Jacobian G ≡ G(θ0) be full rank, and

the variance matrix V ≡ V (θ0) be positive definite. Then, the asymptotic variance lower bound for

any regular estimator of θ0 is Ω ≡ G−1V G−1′. Any regular estimator θ̂n with asymptotic variance

equal to Ω has the asymptotically linear representation:

√
n
(
θ̂n − θ0

)
= −G−1 1√

n

n∑
i=1

φ(Oi; θ
0) + op(1).

(ii) Suppose that the moment restrictions in (14) hold. Let the Jacobian G1 ≡ G1(θ
0) be full rank,

and the variance matrix V1 ≡ V1(θ
0) be positive definite. Then, the asymptotic variance lower bound

for any regular estimator of θ0 is Ω1 ≡ G−1
1 V1G

−1′

1 . Any regular estimator θ̂n with asymptotic

variance equal to Ω has the asymptotically linear representation:

√
n
(
θ̂n − θ0

)
= −G−1

1

1√
n

n∑
i=1

φ1(Oi; θ
0) + op(1).
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Remark: See Chen et al. (2008) for the proof. Under MAR in (15) and the overlap condition in (16),

it is easy to verify that G(θ) = ∂
∂θ′E[φ(O; θ)], G1(θ) =

∂
∂θ′E[φ1(O; θ)]. Therefore, the asymptotically

linear representations in Proposition 4.1 suggest that an estimator θ̂n obtained as the solution to:

op

(
1√
n

)
=

1

n

n∑
i=1

φ(Oi; θ) or op

(
1√
n

)
=

1

n

n∑
i=1

φ1(Oi; θ)

would be efficient for θ0 in (13) or (14) respectively. However, the problem with this is that both

φ(O; θ) and φ1(O; θ) involve unknown nuisance parameters P (R = 1|Z0) and E[g(Z; θ)|Z0] that need

to be estimated (parametrically, in this paper,) for the above estimation strategy to be feasible.

Such estimation, however, runs the risk of misspecification of these nuisance parameters. This is

where the discussion of the doubly-robust estimator from Section 2 becomes relevant. We will now

revisit the general discussion from Section 2 and emphasize the simplifications and the interesting

aspects of the doubly-robust estimators evidenced under our setup of estimation with MAR data.

Accordingly, we will define ψ(.) in (1) informed by the structure of φ(.) and φ1(.) in the cases

of the moment restrictions (13) and (14) respectively. Under both cases (13) and (14), the nuisance

parameters E[g(Z; θ0)|Z0] and P (R = 1|Z0) will play the role of h01(O) and h02(O) respectively:

E[g(Z; θ0)|Z0] ≡ h01(O) ≡ h01(Z0) and P (R = 1|Z0) ≡ h02(O) ≡ h02(Z0). (17)

Lemma 4.2 Let the MAR condition (15) and the strict overlap condition (16) hold along with the

representation of the nuisance parameters in (17).

(i) Consider the moment restrictions in (13). Then, ψ(O; θ, h01(Z0), h
0
2(Z0)) defined as:

ψ(O; θ, h01(Z0), h
0
2(Z0)) =

1−R

1− h02(Z0)

(
g(Z; θ)− h01(Z0)

)
+ h01(Z0)

guided by φ(O; θ), satisfies the condition in (1) and the double-robustness conditions (2) and (3).

(ii) Consider the moment restrictions in (14). Then, ψ(O; θ, h01(Z0), h
0
2(Z0)) defined as:

ψ(O; θ, h01(Z0), h
0
2(Z0)) =

h02(Z0)

P (R = 1)

1−R

1− h02(Z0)

(
g(Z; θ)− h01(Z0)

)
+

R

P (R = 1)
h01(Z0)

guided by φ1(O; θ), satisfies the condition in (1) and the double-robustness conditions (2) and (3).

Remark: The important feature that enables the double-robustness conditions in Lemma 4.2 under

10



the MAR condition (15) is the structure of h01(O) and h02(O) in (17), namely that both are indeed

functions of only Z0 under the setup of Sections 3-5. To emphasize this, we will henceforth write

them as h01(Z0) and h
0
2(Z0) respectively as was done in (17) and Lemma 4.2; and also write similarly

for the related quantities h∗1(Z0) and h∗2(Z0). This feature leads to a further useful simplification

in the general results on the asymptotic distribution, more specifically, the asymptotic variance as

stated in (10), (11) and (12) in Section 2. We now make this explicit in Lemma 4.3 below.

Let h∗1(Z0, β) and h
∗
2(Z0; γ) be the postulated parametric models, possibly misspecified, for h01(Z0)

and h02(Z0) respectively. Let β
∗ and γ∗ be the pseudo-true values for β and γ, i.e., h∗1(Z0, β

∗) = h∗1(Z0)

and h∗2(Z0; γ) = h∗2(Z0). By definition, the functions h∗1(Z0;β) and h
∗
2(Z0; γ) are known up to β and

γ. Let θ∗ be the pseudo-true value for θ with θ∗ = θ0 if either or both of the following hold:

∆1(Z0) ≡ h01(Z0)− h∗1(Z;β
∗) = 0 (18)

∆2(Z0) ≡ h02(Z0)− h∗2(Z; γ
∗) = 0. (19)

Of course, if neither (18) nor (19) holds, then θ∗ ̸= θ0, and it is generally not possible to characterize

the pseudo-true value θ∗, if it exists, in a meaningful way. Hence, in the sequel, we will assume:

Assumption M:

At least one of (18) and (19) holds, i.e., the pseudo-true value θ∗ is the true value θ0.

Lemma 4.3 Let the MAR condition (15), the strict overlap condition (16), and Assumption M hold.

(i) Consider the moment restrictions in (13) and define ψ(O; θ, h∗1(Z0;β), h
∗
2(Z0; γ)) as:

ψ(O; θ, h∗1(Z0;β), h
∗
2(Z0; γ)) =

1−R

1− h∗2(Z0; γ)
(g(Z; θ)− h∗1(Z0;β)) + h∗1(Z0;β).

Then, the derivatives of the expectations, i.e., Ψβ and Ψγ defined in (11), but with θ∗ = θ0, are:

Ψβ ≡ ∂

∂β′
E
[
ψ(O; θ0, h∗1(Z0;β

∗), h∗2(Z0; γ
∗))
]

= E

[
∆2(Z0)

1− h∗2(Z0; γ∗)

{
∂

∂β′h
∗
1(Z0;β

∗)

}]
Ψγ ≡ ∂

∂γ′
E
[
ψ(O; θ0, h∗1(Z0;β

∗), h∗2(Z0; γ
∗))
]

= −E
[

1− h02(Z0)

(1− h∗2(Z0; γ∗))2
∆1(Z0)

{
∂

∂γ′
h∗2(Z0; γ

∗)

}]
.

(ii) Consider the moment restrictions in (14) and define ψ(O; θ, h∗1(Z0;β), h
∗
2(Z0; γ)) as:

ψ(O; θ, h∗1(Z0;β), h
∗
2(Z0; γ)) =

h∗2(Z0)

P (R = 1)

1−R

1− h∗2(Z0; γ)
(g(Z; θ)− h∗1(Z0;β)) +

R

P (R = 1)
h∗1(Z0;β).

11



Then, the derivatives of the expectations, i.e., Ψβ and Ψγ defined in (11), but with θ∗ = θ0, are:

Ψβ = E

[
∆2(Z0)

P (R = 1)(1− h∗2(Z0; γ∗))

{
∂

∂β′h
∗
1(Z0;β

∗)

}]
Ψγ = −E

[
1− h02(Z0)

P (R = 1)

h∗2(Z0; γ
∗)2

(1− h∗2(Z0; γ∗))2
∆1(Z0)

{
∂

∂γ′
h∗2(Z0; γ

∗)

}]
.

Remarks: Lemma 4.3 helps to make precise the Neyman-C-alpha property of doubly-robust esti-

mators, a key property that we discuss now. First, when (18) (∆1(Z0) = 0) holds, i.e., the model

for h01(Z0) is correctly specified, then the estimation of γ in the other nuisance parameter model

h∗2(Z0; γ) does not affect the asymptotic variance of the estimator for the parameter of interest θ.

This is seen by considering (10), (11) and (12) and noting that Ψγ = 0 by Lemma 4.3, and hence:

√
n(θ̂n − θ0) = −Ψ−1

θ

1√
n

n∑
i=1

ψ(Oi) − Ψ−1
θ Ψβ

√
n
(
β̂n − β∗

)
+ op(1)

d−→ N

(
0,Ψ−1

θ

[
Idθ Ψβ 0

]
Σ

[
Idθ Ψβ 0

]′
Ψ−1′

θ

)
. (20)

Similarly, when (19) (∆2(Z0) = 0) is satisfied, i.e., the model for h02(Z0) is correctly specified, then

the estimation of β in the other nuisance parameter model h∗1(Z0;β) does not affect the asymptotic

variance of θ̂n because, considering (10), (11) and (12), then Lemma 4.3 implies that Ψβ = 0, giving:

√
n(θ̂n − θ0) = −Ψ−1

θ

1√
n

n∑
i=1

ψ(Oi) − Ψ−1
θ Ψγ

√
n (γ̂n − γ∗) + op(1)

d−→ N

(
0,Ψ−1

θ

[
Idθ 0 Ψγ

]
Σ

[
Idθ 0 Ψγ

]′
Ψ−1′

θ

)
. (21)

Finally, when both (18) and (19) (∆1(Z0) = 0 and ∆2(Z0) = 0) hold, i.e., both nuisance parameter

models are correctly specified, then the estimation of neither β nor γ has any effect on the asymptotic

variance of θ̂n because, now Lemma 4.3 implies that Ψβ = 0 and Ψγ = 0, and hence:

√
n(θ̂n − θ0) = −Ψ−1

θ

1√
n

n∑
i=1

ψ(Oi) + op(1)
d−→ N

(
0,Ψ−1

θ

[
Idθ 0 0

]
Σ

[
Idθ 0 0

]′
Ψ−1′

θ

)

∼

 N(0,Ω) under the moment restrictions in (13)

N(0,Ω1) under the moment restrictions in (14).
(22)

That is, θ̂n is efficient according to Proposition 4.1.2 Nonparametric estimation of the nuisance

2This follows under the moment restrictions in (13) and (14) respectively by the definition of ψ(O) that links it to
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parameters h01(Z0) and h
0
2(Z0) as in, e.g., Cattaneo (2010) and Rothe and Firpo (2016), skips the first

two observations (20) and (21), and directly arrives at observations similar to (22). However, given

the practical relevance of parametric estimation, especially with real-life data, it is also important

to appreciate the first two observations. Collectively, these three observations (20)-(22) describe the

Neyman-C-alpha property of the doubly-robust estimation under the setup of Sections 3 and 4.3

Let us now describe the implementation of the doubly-robust estimators with the help of the

four examples introduced in Section 3. Since the nuisance parameter h02(Z0) ≡ P (R = 1|Z0) can

be modeled as h∗2(Z0; γ) without consideration of the moment function g(Z; θ), let us consider its

estimation first by (quasi)-maximum likelihood, under standard conditions as in White (1982), as:

ĥ2,n(Z0,i) ≡ h∗2(Z0,i; γ̂n) where

γ̂n ≡ argmax
γ

1

n

n∑
i=1

[Ri log (h
∗
2(Z0,i; γ)) + (1−Ri) log (1− h∗2(Z0,i; γ))] . (23)

This allows for fully general parametric specification for h∗2(Z0; γ). In practice, h∗2(Z0; γ) is typically

a logit or probit specification with an index r′(Z0)γ where r(Z0) is a dγ×1 vector of chosen functions

of Z0 such as powers with interactions of the elements, or discretization of Z0.

Now, consider the estimation of the nuisance parameter h02(Z0) ≡ E[g(Z; θ0)|Z0]. This would

typically be estimated by (non-) linear least squares under standard conditions as in White (1981):

ĥ1,n(Z0,i; θ) ≡ h∗1(Z0,i; β̂n(θ)) where

β̂n(θ) ≡ argmin
β

1

n

n∑
i=1

(1−Ri) (g(Z0,i, Z1,i; θ)− h∗1(Z0,i;β))
′ (g(Z0,i, Z1,i; θ)− h∗1(Z0,i;β)) (24)

for any θ. While this general expression is stated in a profiled form with respect to θ, inspection of

the four examples suggests that this would not always be necessary. To see this, first note that:

Example 1: E[g(Z; θ)|Z0] = E[X(Y −Xθ)|X] = XE[Y |X]−X2θ

Example 2: E[g(Z; θ)|Z0] = E[X(Y −Xθ)|Y ] = E[X|Y ]Y − E[X2|Y ]θ

Example 3: E[g(Z; θ)|Z0] = E[W (Y −Xθ)|Y,X] = E[W |Y,X]Y − E[W |Y,X]Xθ

Example 4: E[g(Z; θ)|Z0] = E[X(1(Y −Xθ ≤ 0)− τ)|Y ] = E[X1(Y −Xθ ≤ 0)|Y ]−E[X|Y ]τ .

φ(O; θ) and φ(O; θ), and hence results in Ψθ = G and G1, and the dθ × dθ upper diagonal block of Σ as V and V1.
3See Prokhorov and Schmidt (2009) for general discussion of the influence of the estimation of nuisance parameters

in missing data models on the asymptotic variance of the estimator for the parameter of interest.

13



Postulating a (possibly misspecified) parametric model h∗1(Z0;β) in Examples 1, 2 and 3 is a stan-

dard task because of the linearity in θ, since this essentially involves modeling E[Y |X], E[X|Y ] and

E[X2|Y ], and E[W |Y,X] respectively, which when combined with the respective complete expres-

sions above gives the parametric models h∗1(Z0;β)’s. Because of this linearity in θ, the doubly-robust

estimator θ̂n in (4) for the parameter of interest θ has closed form expressions in Examples 1, 2 and

3 under the moment restrictions in (13) and (14). Specifically, writing the estimated conditional ex-

pectations generically as Ên[.|Z0] to avoid notational clutter, while recognizing how they constitute

the estimated h∗1(Z0;β), i.e., ĥ2,n(Z0), one can obtain the following closed form and computationally

convenient expressions for θ̂n by simple algebra. (Their extension to vector-valued g(Z; θ) is obvious.)

Example 1: The doubly-robust estimators θ̂n for θ0’s defined in (13) and (14) are respectively:

θ̂n =

n∑
i=1

1−Ri

1− ĥ2,n(Xi)
Xi(Yi − Ên[Y |Xi]) +

n∑
i=1

XiÊn[Y |Xi]

n∑
i=1

X2
i

,

θ̂n =

n∑
i=1

ĥ2,n(Xi)
1−Ri

1− ĥ2,n(Xi)
Xi(Yi − Ên[Y |Xi]) +

n∑
i=1

RiXiÊn[Y |Xi]

n∑
i=1

RiX
2
i

.

Example 2: The doubly-robust estimators θ̂n for θ0’s defined in (13) and (14) are respectively:

θ̂n =

n∑
i=1

1−Ri

1− ĥ2,n(Yi)
(Xi − Ên[X|Yi])Yi +

n∑
i=1

Ên[X|Yi]Yi

n∑
i=1

1−Ri

1− ĥ2,n(Yi)
(X2

i − Ên[X
2|Yi]) +

n∑
i=1

Ên[X
2|Yi]

,

θ̂n =

n∑
i=1

ĥ2,n(Yi)
1−Ri

1− ĥ2,n(Yi)
(Xi − Ên[X|Yi])Yi +

n∑
i=1

RiÊn[X|Yi]Yi

n∑
i=1

ĥ2,n(Yi)
1−Ri

1− ĥ2,n(Yi)
(X2

i − Ên[X
2|Yi]) +

n∑
i=1

RiÊn[X
2|Yi]

.

Example 3: The doubly-robust estimators θ̂n for θ0’s defined in (13) and (14) are respectively:

θ̂n =

n∑
i=1

1−Ri

1− ĥ2,n(Yi, Xi)
(Wi − Ên[W |Yi, Xi])Yi +

n∑
i=1

Ên[W |Yi, Xi]Yi

n∑
i=1

1−Ri

1− ĥ2,n(Yi, Xi)
(Wi − Ên[W |Yi, Xi])Xi +

n∑
i=1

Ên[W |Yi, Xi]Xi

,
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θ̂n =

n∑
i=1

ĥ2,n(Yi, Xi)
1−Ri

1− ĥ2,n(Yi, Xi)
(Wi − Ên[W |Yi, Xi])Yi +

n∑
i=1

RiÊn[W |Yi, Xi]Yi

n∑
i=1

ĥ2,n(Yi, Xi)
1−Ri

1− ĥ2,n(Yi, Xi)
(Wi − Ên[W |Yi, Xi])Xi +

n∑
i=1

RiÊn[W |Yi, Xi]Xi

.

Unfortunately, however, when the moment restrictions in (13) and (14) are nonlinear in θ, a

closed form expression for the estimator of θ does not typically exist even without missing data.

Naturally, one cannot then expect a closed form expression with missing data. A popular (if slightly

extreme) example of such moment restrictions is quantile regression, i.e., our Example 4. It is also

under this example that the profiled estimator β̂n(θ) in the parametric model h∗1(Z0;β) becomes

necessary. In this case, the doubly-robust estimator θ̂n solves the following estimating equation:

Example 4: The doubly-robust estimators θ̂n for θ0’s defined in (13) and (14) solve respectively:

op

(
1√
n

)
=

1

n

n∑
i=1

(1−Ri)

1− ĥ2,n(Yi)
Xi(1(Yi −Xiθ̂n ≤ 0)− τ)

+
1

n

n∑
i=1

(
1− (1−Ri)

1− ĥ2,n(Yi)

)
Ên

[
X(1(Yi −Xθ̂n ≤ 0)− τ)|Yi

]
,

op

(
1√
n

)
=

1

n

n∑
i=1

ĥ2,n(Yi)
(1−Ri)

1− ĥ2,n(Yi)
Xi(1(Yi −Xiθ̂n ≤ 0)− τ)

+
1

n

n∑
i=1

(
Ri − ĥ2,n(Yi)

(1−Ri)

1− ĥ2,n(Yi)

)
Ên

[
X(1(Yi −Xθ̂n ≤ 0)− τ)|Yi

]
.

These are estimating equations that augment those for the IPW estimator in Section 3 with the last

set of terms (those on the respective second lines) in both the above equations. This only adds to the

computational burden, and does not cause problem with the theory of the asymptotic properties of

θ̂n. Similarly, the non-differentiability of this specific g(Z; θ) with respect to θ is also a computational

complexity that, evidently, even the IPW estimator defined in Section 3 (Example 4) cannot avoid.

The asymptotic theory in such cases is standard. Interested readers can, for example, use a

parametric nuisance parameter version of Theorem 2 in Chen et al. (2003) to obtain the conditions

that are sufficient for our general discussion in Section 2 (specifically, (10), (11) and (12)) to hold.

Finally, it should be noted that estimation of the asymptotic variance of θ̂n can proceed in the

standard way by computing the sample analogs of the relevant components of the asymptotic variance

for two-step/plug-in estimators using the generic expressions stated in our Section 2. Lemma 4.3 and

the remark following it, see, in particular, (20), (21) and (22), specify the (desired) probability limit

of such estimators under various scenarios of misspecification of the nuisance parameter models.
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5 Finite-sample behavior: Monte-Carlo experiment with MAR IV

We conduct a simulation experiment based on our Example 3 and demonstrate the inconsistency for

θ0 due to ignoring missing observations when the instrumental variable is MAR, the correction for it

due to the IPW estimator, and finally the further improvement due to the doubly-robust estimator.

5.1 Simulation design and the estimators

Consider a random sample {Yi, Xi,Wi}ni=1 drawn from the following model: Y = Xθ0 + (u + v),

X =W + v where (u, v) ∼ N(0, I2) are the model errors. We consider two designs that differ in the

specification for the unconditional distribution of the instrument W – Design-I: W ∼ N(0, 1) and

Design-II: W ∼ Bin(1, .5). In both cases W is independent of u, v. The parameter of interest is θ.

Its value θ0 (= −1) is defined by the moment restriction (13) with g(Z; θ) =W (Y −Xθ).

The full-observation IV estimator θ̃n,Full-Obsn. =
∑n

i=1WiYi/
∑n

i=1WiXi is consistent for θ
0. This

estimator sets the benchmark for bias and variance.

Now we construct the MAR-sample by drawing a random sample {Ri}ni=1 from R where

R|Y,X,W ∼ R|Y,X ∼ Bin

(
1, P (R = 1|Z0) =

1

4
+

1

π
arctan(Y 2)

)
,

and then by deleting the Wi’s corresponding to Ri = 1. The choice of P (R = 1|Z0) is influenced by

the strict overlap assumption in (16). (Being overly cautious, we use the additive factor 1/4 instead

of 1/2 unlike the standard Cauchy distribution function; it does not change our conclusions.)

With missing Wi’s, the full-observation estimator, our benchmark, is no longer feasible. We con-

sider the following feasible parametric estimators based on the available observations as alternatives

to the benchmark: the complete-case estimator, the IPW and the doubly-robust estimators that, in

the present context, were discussed under Example 3 in Sections 3 (for the former two) and 4.

We estimate the nuisance parameters E[g(Z; θ)|Z0] and P (R = 1|Z0) based on parametric models.

For E[g(Z; θ)|Z0] = E[W |Y,X](Y −Xθ), our postulated model is h1(Z0;β, θ) = t(Z0)(Y −Xθ)β

where t(Z0) = [1, Y,X]′. This model is correct for Design-I, i.e., Assumption M holds for (18).

For P (R = 1|Z0), we consider three options: (i) the infeasible true h∗2(Z0; γ
∗) = P (R = 1|Z0),

(ii) a correct h∗2(Z0; γ) =
1
4 +

1
π arctan(γ × Y 2) with γ∗ = 1, and (iii) two commonly used but wrong

models h∗2(Z0; γ) = exp(r′(Z0)γ)/[1 + exp(r′(Z0)γ)] where r(Z0) = [1, Y,X]′ (call it PM-1:h2) and

r(Z0) = [1, Y,X, Y 2, X2, Y X]′ (call it PM-2:h2). Assumption M holds for (19) under (i) and (ii).

16



5.2 Summary of results

Based on 10000 simulations we estimate the mean bias, absolute bias, standard deviation and inter-

quartile range of all the estimators for sample sizes n = 500 and 1000, and report them in Tables 1

(Design-1, n = 500), 2 (Design-1, n = 1000), 3 (Design-2, n = 500) and 4 (Design-2, n = 1000).

Parametric IV-Estimators Mean Bias Abs. Bias Stdev IQR

Full-Obsn -0.0016 0.0504 0.0632 0.0847
Comp-Case 0.1953 0.1968 0.0870 0.1140
Model for P (R = 1|Z0): option (i)
IPW -0.0022 0.0817 0.1035 0.1357
doubly-robust -0.0017 0.0607 0.0766 0.1021
Model for P (R = 1|Z0): option (ii)
IPW -0.0012 0.0817 0.1034 0.1353
doubly-robust -0.0017 0.0607 0.0766 0.1022
Model for P (R = 1|Z0): option (iii), PM-1:h2
IPW 0.1951 0.1967 0.0875 0.1145
doubly-robust -0.0019 0.0596 0.0753 0.1006
Model for P (R = 1|Z0): option (iii), PM-2:h2
IPW -0.1288 0.1443 0.1291 0.1663
doubly-robust -0.0014 0.0718 0.0914 0.1180

Table 1: Design-I (MAR instrument W ∼ N(0, 1)): Sample size n = 500. Results are based on
averages over 10000 replications in Matlab with seed 0 for random number generation.

Parametric IV-Estimators Mean Bias Abs. Bias Stdev IQR

Full-Obsn -0.0011 0.0357 0.0449 0.0601
Comp-Case 0.1965 0.1966 0.0612 0.0816
Model for P (R = 1|Z0): option (i)
IPW -0.0016 0.0581 0.0731 0.0982
doubly-robust -0.0015 0.0431 0.0544 0.0727
Model for P (R = 1|Z0): option (ii)
IPW -0.0011 0.0581 0.0731 0.0980
doubly-robust -0.0015 0.0431 0.0544 0.0729
Model for P (R = 1|Z0): option (iii), PM-1:h2
IPW 0.1963 0.1964 0.0614 0.0820
doubly-robust -0.0013 0.0422 0.0533 0.0715
Model for P (R = 1|Z0): option (iii), PM-2:h2
IPW -0.1384 0.1416 0.0930 0.1227
doubly-robust -0.0011 0.0515 0.0652 0.0857

Table 2: Design-I (MAR instrument W ∼ N(0, 1)): Sample size n = 1000. Results are based on
averages over 10000 replications in Matlab with seed 0 for random number generation.

The simulation results conform with the theoretical discussion. Ignoring the MAR instruments

leads to bias in the complete-case estimator and the bias does not vanish as sample size increases.

This is different from Mogstad and Wiswall (2012) and Abrevaya and Donald (2017). The bias is
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Parametric IV-Estimators Mean Bias Abs. Bias Stdev IQR

Full-Obsn -0.0048 0.0728 0.0915 0.1219
Comp-Case 0.2438 0.2462 0.1090 0.1420
Model for P (R = 1|Z0): option (i)
IPW -0.0067 0.1123 0.1428 0.1853
doubly-robust -0.0049 0.0861 0.1090 0.1456
Model for P (R = 1|Z0): option (ii)
IPW -0.0052 0.1119 0.1423 0.1856
doubly-robust -0.0048 0.0861 0.1090 0.1455
Model for P (R = 1|Z0): option (iii), PM-1:h2
IPW 0.1361 0.1487 0.1062 0.1408
doubly-robust 0.0026 0.0844 0.1065 0.1412
Model for P (R = 1|Z0): option (iii), PM-2:h2
IPW -0.1578 0.1824 0.1715 0.2216
doubly-robust 0.0139 0.0939 0.1186 0.1523

Table 3: Design-II (MAR instrument W ∼ Bin(1, .5)): Sample size n = 500. Results are based on
averages over 10000 replications in Matlab with seed 0 for random number generation.

eliminated by the IPW and the doubly-robust estimators using the infeasible true P (R = 1|Z0) or the

estimated correct model, i.e., using option (i) or (ii), both of which are likely infeasible in practice.

Parametric IV-Estimators Mean Bias Abs. Bias Stdev IQR

Full-Obsn -0.0026 0.0504 0.0632 0.0849
Comp-Case 0.2465 0.2466 0.0750 0.1007
Model for P (R = 1|Z0): option (i)
IPW -0.0041 0.0776 0.0982 0.1289
doubly-robust -0.0033 0.0600 0.0754 0.1011
Model for P (R = 1|Z0): option (ii)
IPW -0.0033 0.0774 0.0980 0.1292
doubly-robust -0.0033 0.0600 0.0754 0.1011
Model for P (R = 1|Z0): option (iii), PM-1:h2
IPW 0.1381 0.1405 0.0732 0.0983
doubly-robust 0.0041 0.0587 0.0735 0.0985
Model for P (R = 1|Z0): option (iii), PM-2:h2
IPW -0.1671 0.1728 0.1199 0.1587
doubly-robust 0.0180 0.0671 0.0825 0.1092

Table 4: Design-II (MAR instrument W ∼ Bin(1, .5)): Sample size n = 1000. Results are based on
averages over 10000 replications in Matlab with seed 0 for random number generation.

The IPW estimator with the wrong model for P (R = 1|Z0), i.e., option (iii) PPM-1:h2, or the

mildly wrong model, i.e., option (iii) PPM-2:h2, is badly biased. However, under both these realistic

scenarios involving option (iii), the doubly-robust estimator continues to avoid this bias problem

whenever the parametric model for E[g(Z; θ)|Z0] is correct (i.e., in Design-I). This is why the double-

robustness property is attractive. In fact, even with the mildly wrong model for E[g(Z; θ)|Z0] (i.e.,
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in Design-II), there is almost no bias in the doubly-robust estimator.

As expected under our setup, the doubly-robust estimator is more (often much more) precise

than the IPW estimator in all cases considered here.4 In all aspects – mean bias, absolute bias,

standard deviation and interquartile range – the doubly-robust estimator is closer to the infeasible

full-observation IV estimator and hence seems desirable in terms of its behavior in finite samples. The

same conclusion holds in the unreported simulation results under similar data generating processes.

6 Conclusion

The primary goal of our paper was to provide a non-technical overview of the so-called doubly-robust

estimators that have caught the interest of econometricians in recent years. These estimators origi-

nated from the biostatistics literature, and there are a variety of doubly-robust estimators available

for use; see, among others, Tan (2007) and Cao et al. (2009). However, the underlying mechanism

for and the consequences of double-robustness are the same for all such estimators. Hence, we hope

that our focus on the original formulation of doubly-robust estimators in Robins et al. (1994) should

provide the stepping stone to the reader for exploring the other more sophisticated estimators.

Our review focused on presenting the doubly-robust estimator as a special case of the widely used

two-step/plug-in estimators in econometrics where the first step estimates the nuisance parameters

and the second step estimates the parameters of interest using the first step estimates. The discus-

sion on double-robustness to misspecification is perhaps best appreciated that way. The additional

benefit of the doubly-robust estimator that is evident under the setup of estimation with MAR data

is the efficiency property that results from the correct specification of both nuisance parameters

models. This means that in such cases the estimation of the nuisance parameters has no effect on

the asymptotic variance of the estimator for the parameter of interest. However, we emphasized

that the general result/intuition is that the estimation of one set of nuisance parameters does not

affect the asymptotic variance when the other set of nuisance parameters is correctly specified. This

property in the general case and, more conventionally, in the special case of no misspecification is

due to the Neyman-C-alpha structure of the estimating function of the doubly-robust estimators.

Our small-scale simulation experiment demonstrates that the doubly-robust estimator can be

much more preferable to the better-known IPW estimator even in small samples in terms of bias,

4The apparently puzzling phenomenon giving a smaller standard deviation of the IPW estimator under option (ii)
than under the infeasible option (i) is already a well known fact [see, for e.g., Wooldridge (2007) and Graham (2011)].
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variance and other properties. Moreover, as evident from the four common examples, the doubly-

robust estimator is computationally not too demanding relative to the IPW estimator – closed form

expression for both estimators exists in three of these four examples. It is, therefore, our hope that

this demonstration of computational ease and desirable finite-sample properties, and the presentation

of the asymptotic properties of the doubly-robust estimators by linking them to the well known two-

step/plug-in estimators would encourage their adoption in empirical economics research.
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7 Technical Appendix

Proof of Lemma 3.1: Consider (i) and note that:

E

[
1−R

1− P (R = 1|Z0)
g(Z; θ)

]
= E

[
1− E[R|Z]

1− P (R = 1|Z0)
g(Z; θ)

]
= E

[
1− P (R = 1|Z0)

1− P (R = 1|Z0)
g(Z; θ)

]
= E[g(Z; θ)]

where the first equality holds by the law of iterated expectations (LIE) and the second equality by

the MAR condition (15). Now consider (ii), and note that:

E

[
P (R = 1|Z0)

P (R = 1)

1−R

1− P (R = 1|Z0)
g(Z; θ)

]
= E

[
P (R = 1|Z0)

P (R = 1)

1− P (R = 1|Z0)

1− P (R = 1|Z0)
g(Z; θ)

]
= E

[
P (R = 1|Z0)

P (R = 1)

1− P (R = 1|Z0)

1− P (R = 1|Z0)
g(Z; θ)

]
= E

[
P (R = 1|Z0)

P (R = 1)
g(Z; θ)

]
= E

[
R

P (R = 1)
g(Z; θ)

]
= E[g(Z; θ)|R = 1]

where the first equality uses LIE and MAR (15), and the fourth equality uses MAR (15) and LIE

(in that order).

Proof of Lemma 4.2: Consider (i) and note that the analog of (1) is satisfied because:

E
[
ψ(O; θ0, h01(Z0), h

0
2(Z0))

]
= E

[
1− P (R = 1|Z0)

1− P (R = 1|Z0)

{
E[g(Z; θ0)|Z0]−E[g(Z; θ0)|Z0]

}]
+E[g(Z; θ0)] = 0

by LIE and, respectively, using the MAR condition (15) and the moment restrictions (13) for the

first and second terms in the first equality. Similarly, the analogs of (2) and (3) are satisfied because:

E
[
ψ(O; θ0, h∗1(Z0), h

0
2(Z0))

]
= E

[
1− P (R = 1|Z0)

1− P (R = 1|Z0)
E[g(Z; θ0)|Z0]

]
+ E

[(
1− 1− P (R = 1|Z0)

1− P (R = 1|Z0)

)
h∗1(Z0)

]
= 0,

E
[
ψ(O; θ0, h01(Z0), h

∗
2(Z0))

]
= E

[
1− P (R = 1|Z0)

1− h∗2(Z0)

{
E[g(Z; θ0)|Z0]− E[g(Z; θ0)|Z0]

}]
+ E[g(Z; θ0)]

= 0.

This happens by LIE, MAR (15) and the moment restrictions (13) in the first equality in the first

relationship; and by LIE and, respectively, using the MAR condition (15) and the moment restrictions

(13) for the first and second terms in the first equality in the second relationship.
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Now consider (ii) and note that the analog of (1) is satisfied because:

E
[
ψ(O; θ0, h01(Z0), h

0
2(Z0))

]
= E

[
P (R = 1|Z0)

P (R = 1)

1− P (R = 1|Z0)

1− P (R = 1|Z0)

{
E[g(Z; θ0)|Z0]− E[g(Z; θ0)|Z0]

}]
+ E

[
R

P (R = 1)
E[g(Z; θ0)|Z0]

]
= 0 + E

[
P (R = 1|Z0)

P (R = 1)
E[g(Z; θ0)|Z0]

]
= E

[
R

P (R = 1)
g(Z; θ0)

]
= E[g(Z; θ0)|R = 1] = 0

where the second equality follows by LIE, the third one by MAR (15), the fourth one by LIE and, the

last one by the moment restrictions (14). Similarly, the analogs of (2) and (3) are satisfied because:

E
[
ψ(O; θ0, h∗1(Z0), h

0
2(Z0))

]
= E

[
P (R = 1|Z0)

P (R = 1)

1− P (R = 1|Z0)

1− P (R = 1|Z0)
E[g(Z; θ0)|Z0]

]
+ E

[(
R

P (R = 1)
− P (R = 1|Z0)

P (R = 1)

1− P (R = 1|Z0)

1− P (R = 1|Z0)

)
h∗1(Z0)

]
= E

[
P (R = 1|Z0)

P (R = 1)
E[g(Z; θ0)|Z0]

]
+ E

[(
R

P (R = 1)
− P (R = 1|Z0)

P (R = 1)

)
h∗1(Z0)

]
= E[g(Z; θ0)|R = 1] = 0,

E
[
ψ(O; θ0, h01(Z0), h

∗
2(Z0))

]
= E

[
h∗2(Z0)

P (R = 1)

1− P (R = 1|Z0)

1− h∗2(Z0)

{
E[g(Z; θ0)|Z0]− E[g(Z; θ0)|Z0]

}]
+ E

[
R

P (R = 1)
E[g(Z; θ0)|Z0]

]
= 0 + E[g(Z; θ0)|R = 1] = 0.

The steps in the above derivations are self-explanatory since they use LIE, MAR (15) and the moment

restrictions (13) and (14) exactly in the same way as in the other derivations so far.

Proof of Lemma 4.3: (i) Using the same arguments as in the previous proofs, we see that:

Ψβ = E

[(
1− 1− h01(Z0)

1− h∗2(Z0; γ∗)

){
∂

∂β′h
∗
1(Z0;β

∗)

}]
= E

[
∆2(Z0)

1− h∗2(Z0; γ∗)

{
∂

∂β′h
∗
1(Z0;β

∗)

}]
Ψγ = −E

[
1− h02(Z0)

(1− h∗2(Z0; γ∗))2
[(
g(Z; θ0)− h01(Z0)

)
+
(
h01(Z0)− h∗1(Z0;β

∗)
)]{ ∂

∂γ′
h∗2(Z0; γ

∗)

}]
= −E

[
1− h02(Z0)

(1− h∗2(Z0; γ∗))2
∆1(Z0)

{
∂

∂γ′
h∗2(Z0; γ

∗)

}]

under MAR (15). The second equality in the first relationship follows by the definition of ∆2(Z0);

and the second equality in the second relationship follows by LIE by recognizing that h01(Z0) =

E[g(Z; θ0)|Z0], and also by the definition of ∆1(Z0).
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(ii) Using the analogous arguments from the proof of (i), we see that:

Ψβ = E

[(
h02(Z0)

P (R = 1)
− h∗2(Z0; γ

∗)

P (R = 1)

1− h02(Z0)

1− h∗2(Z0; γ∗)

){
∂

∂β′h
∗
1(Z0;β

∗)

}]
= E

[
∆2(Z0)

P (R = 1)(1− h∗2(Z0; γ∗))

{
∂

∂β′h
∗
1(Z0;β

∗)

}]
Ψγ = E

[(
h∗2(Z; γ

∗)

P (R = 1)

1− h02(Z0)

1− h∗2(Z; γ
∗)

− h∗2(Z0; γ
∗)

P (R = 1)

1− h02(Z0)

(1− h∗2(Z0; γ∗))2

)
∆1(Z0)

{
∂

∂γ′
h∗2(Z0; γ

∗)

}]
= −E

[
1− h02(Z0)

P (R = 1)

h∗2(Z0; γ
∗)2

(1− h∗2(Z0; γ∗))2
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{
∂

∂γ′
h∗2(Z0; γ

∗)

}]
.
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