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In this paper we introduce a new method of projection-type inference and describe
it in the context of two stage least squares–based split-sample inference on subsets
of structural coefficients in a linear instrumental variables regression model. The use
of the new method not only guards against the uncontrolled overrejection of the true
value of the parameters of interest but also reduces the conservativeness of the usual
method of projection proposed by Dufour and his coauthors (Dufour, 1997, Econo-
metrica 65, 1365–1388; Dufour and Jasiak, 2001, International Economic Review
41, 815–843; Dufour and Taamouti, 2005, discussion paper; Dufour and Taamouti,
2005, Econometrica 73, 1351–1365; Dufour and Taamouti, 2007, Journal of Econo-
metrics 139, 133–153).

1. INTRODUCTION

Dufour (1997), Dufour and Jasiak (2001), and Dufour and Taamouti (2005b,
2007) show that projection based on a test for a set of parameters can be used
to test for subsets of parameters. If the former test has correct size, then such a
projection-type test for subsets of parameters cannot be oversized. The projection-
type test can subsequently be inverted to obtain confidence regions having
(at least) the correct coverage probability. We refer to this method of inference
as the “usual” (method of) projection-type inference for subsets of parameters.
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However, in spite of the attractiveness in terms of size and coverage, the usual
method of projection-type inference can often be too conservative (see, e.g.,
Moreira, 2003; Zivot, Startz, and Nelson, 2006). In this paper we address the prob-
lem of conservativeness. We propose a new method of projection-type asymptotic
inference that is quite generally less conservative than the usual method of projec-
tion, and at the same time retains the desirable characteristics in terms of size of
the resulting tests and coverage probability of the derived confidence regions. The
idea behind this new method of projection-type asymptotic inference is derived
from Robins (2004).

We introduce this new method in the context of split-sample-based inference
on structural coefficients in a linear instrumental variables (IV) regression. In par-
ticular, we restrict the focus of this paper to projection-type inference based on the
“split-sample statistic” for structural coefficients corresponding to the endogenous
regressors.

Linear IV regression with “weak instruments” has received considerable at-
tention recently. In the presence of weak instruments, the standard techniques of
asymptotic inference on structural coefficients are a poor guide to finite-sample
inference (see, among others, Dufour, 1997; Zivot, Startz, and Nelson, 1998).
However, the split-sample statistic can be used to (asymptotically) test for struc-
tural coefficients without overrejecting their true value (even in finite samples)
(see Staiger and Stock, 1997; Dufour and Jasiak, 2001; Kleibergen, 2002).

The split-sample statistic can be also interpreted as a split-sample version of
the two-stage-least-squares (TSLS) score statistic considered by Wang and Zivot
(1998) and Dufour and Taamouti (2005b). This split-sample (TSLS) score statistic
provides a simple and interesting framework for the exposition of our method of
projection-type inference.1

In Section 2, we state the linear IV model with multiple structural coefficients.
We describe the usual method of projection-type split-sample score test for subsets
of structural coefficients in Section 3, and we describe our method of projection-
type split-sample score test for subsets of structural coefficients and discuss the
asymptotic properties of the test in Section 4. Monte Carlo experiments in Section
5 indicate that the asymptotic results from Section 4 provide a good approxima-
tion to the finite-sample behavior of our projection-type split-sample score test.

We use the following notation throughout. For any n ×m matrix A, let P(A) =
A(A′ A)−1 A′ and N (A) = In − P(A).

2. LINEAR IV MODEL AND ASSUMPTIONS

Consider the following model:

y = Xβ + Wγ +u

X = Z�x + Vx

W = Z�w + Vw

⎫⎪⎪⎬⎪⎪⎭ , (2.1)
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where y is the dependent variable, X and W are the endogenous regressors, u,
Vx , and Vw are the unobserved correlated structural errors, and Z is the matrix of
instruments.2 Let the dimensions of β, γ , �x , and �w be, respectively, mx × 1,
mw ×1, k ×mx , and k ×mw. Let m = mx +mw and mx ,mw, and k be fixed and
finite integers. We assume that the order condition k ≥ m is satisfied. We do not,
however, impose the restriction of full column rank on � = [�x ,�w].

Suppose that there are n observations on y, X , W , and Z and we randomly split
the sample into two subsamples—the first one containing n1 observations and the
second one containing n2 = n − n1 observations such that min {n1,n2} > k and
limn→∞ n1/n = ζ ∈ (0,1) is a fixed number. Let yi , Xi , Wi , and Zi represent the
matrices containing the ni observations in the i th subsample (i = 1,2) where the
observations are stacked in rows.

Without loss of generality, let β be the parameters of interest. We are concerned
with the projection-type split-sample methods for testing hypotheses of the form
H : β = β0 and subsequently inverting the tests to obtain confidence regions for
arbitrary functions of β.

The sole purpose of this paper is to propose a modification to the usual method
of projection-type inference to reduce its conservativeness. The split-sample TSLS
score test in a linear IV regression provides a relatively simple framework for the
exposition of our method. The simplicity of the framework, however, comes at a
cost—loss of information. As a result, our method, in this context, does not neces-
sarily lead to a test as powerful as, say, the subset-K test of Kleibergen (2004) or
the tests described in Chaudhuri and Zivot (2008) and Chaudhuri (2009).3 There-
fore, the reference to local optimality, while we discuss the asymptotic properties
of our method, is confined to the somewhat restrictive framework of split-sample
TSLS score tests for H : β = β0 (treating γ as unknown).

The discussion on the asymptotic properties is facilitated by the following set
of high-level assumptions on the joint asymptotic behavior of the structural errors
and the instruments. We summarize them under Assumption M.

Assumption M (Structural errors and instruments). The following convergence
results hold jointly as n → ∞ for i = 1,2:

M1. n−1
i (ui ,Vxi ,Vwi )

′ (ui ,Vxi ,Vwi )
P−→ � =

(
σuu σux σuw
σxu σxx σxw
σwu σwx σww

)
where � is a

symmetric, positive definite matrix.

M2. n−1
i Z ′

i Zi
P−→ Q where Q is a symmetric, positive definite matrix.

M3. n−1/2
i Z ′

i (ui ,Vxi ,Vwi )
d−→ Q1/2 (�Zui ,�Z xi ,�Zwi ) where

vec(�Zui ,�Z xi ,�Zwi ) ∼ N (0,� ⊗ Ik).

M4. �Zu1,�Z x1,�Zw1 are uncorrelated with �Z x2 and �Zw2.

See Staiger and Stock (1997) and Kleibergen (2002) for discussion of Assump-
tions M1–M3. Assumption M4 ensures that the relevant random functions based
on subsample 1 are asymptotically uncorrelated with those based on subsample 2.
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It is well known that under Assumption M, the standard techniques of asymp-
totic inference on the structural coefficients degenerate when � is rank deficient
(see Phillips, 1989; Choi and Phillips, 1992).

Of more practical interest is the case where � is close to being rank defi-
cient (i.e., near rank deficient). Because not all convergences are uniform in �
the standard first-order asymptotic theory, which treats � as fixed, provides poor
approximation to the finite-sample behavior of the estimators and the tests for
the structural coefficients. In particular, the asymptotic size of the standard Wald,
likelihood ratio (LR), and score tests for the structural coefficients can hugely un-
derestimate the size in finite samples (see, e.g., Staiger and Stock, 1997; Zivot
et al., 1998).

To understand the properties of the projection-type tests, it is useful to char-
acterize the near rank deficiency of �x and �w following the weak-instrument
framework of Staiger and Stock (1997). This is summarized under Assumption WI.

Assumption WI (Partial identification of β and γ ). �x = 0k×mx 1[δx =0] +
(Cx/

√
n)1[δx =1/2] +Cx 1[δx =1] and �w = 0k×mw 1[δw=0] + (Cw/

√
n)1[δw=1/2] +

Cw1[δw=1] whereCx andCw are k×mx and k×mw matrices of fixed and bounded
elements such that C = [Cx ,Cw] is full column rank. The terms δx and δw are
constants such that 1[δx =0] + 1[δx =1/2] + 1[δx =1] = 1 and 1[δw=0] + 1[δw=1/2] +
1[δw=1] = 1.

The nonrandom indicator functions involving the δ’s delineate the nine cases of
partial identification of the structural coefficients β and γ : the (asymptotic) rank
deficiency of �x leads to the (asymptotic) nonidentification of β, and similarly
the (asymptotic) rank deficiency of �w leads to the (asymptotic) nonidentification
of γ .4 Under Assumption M, δx = δw = 0 (i.e., �x = 0 and �w = 0) corresponds
to the case of complete unidentification and is referred to as the “leading case”
by Phillips (1989). The case with δx = δw = 1 (i.e., �x = Cx and �w = Cw)
corresponds to the standard linear IV regression, and the standard techniques of
asymptotic inference can be reliably employed only under this case.

Although the preceding canonical representation of the different cases of (weak)
partial identification in Assumption WI is by no means exhaustive, it is sufficiently
rich to produce the nondegenerate asymptotic results in this paper. We maintain
Assumptions M and WI throughout the paper.

3. THE USUAL METHOD OF PROJECTION

The split-sample statistic for β and γ , considered by Staiger and Stock (1997) and
Dufour and Jasiak (2001), is defined as

SSLM(β,γ ) =
( y1 − X1β − W1γ )′ P

(
[X̂12, Ŵ12]

)
( y1 − X1β − W1γ )

1
n1−k ( y1 − X1β − W1γ )′N (Z1)( y1 − X1β − W1γ )

, (3.1)
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where X̂1i = Z1�̂xi , Ŵ1i = Z1�̂wi ,�̂xi = (Z ′
i Zi )

−1 Z ′
i Xi , and �̂wi = (Z ′

i Zi )
−1

Z ′
i Wi for i = 1,2. The asymptotic test “based on generated regressors,” pro-

posed by Dufour and Jasiak (2001), rejects the null hypothesis (β,γ ) = (β0,γ0)
against the alternative (β,γ ) �= (β0,γ0) if SSLM(β0,γ0) > χ2

m(1 − α). Al-
though Staiger and Stock (1997) call (3.1) the split-sample Anderson–Rubin statis-
tic, it is more naturally interpreted as a split-sample version of the score statistic
considered by Wang and Zivot (1998) and Dufour and Taamouti (2005b). This
interpretation follows once we note that (3.1) is the score statistic for (β,γ ) when
inference on these parameters is based on the objective function

min
β,γ

1

2
( y1 − X1β − W1γ )′[X̂12, Ŵ12]([X1,W1]′[X̂12, Ŵ12])−1

× [X̂12, Ŵ12]′( y1 − X1β − W1γ ).

Sample splitting ensures asymptotic independence between the normalized gra-
dient of the objective function and the estimator of its variance even under rank

deficiency of �, and thus, under Assumptions M and WI, SSLM(β,γ )
d→ χ2

m .
Following Dufour and Taamouti (2005b, 2007), the usual projection-type split-

sample score test for the null hypothesis H : β = β0 against the alternative K :
β �= β0 can be defined as

reject H : β = β0 against K : β �= β0 if inf
γ0∈Rmw

SSLM(β0,γ0) > χ2
m(1−α),

(3.2)

and a confidence region for any arbitrary function g(β) of β can be obtained as

C (g(β),1−α) =
{

g(β0) : inf
γ0∈Rmw

SSLM(β0,γ0) ≤ χ2
m(1−α)

}
. (3.3)

Analytic methods for computing (3.3) are discussed in Dufour and Taamouti
(2005b). Under Assumptions M and WI, the usual projection-type split-sample
score test in (3.2) has asymptotic size of at most α, and hence the confidence
region in (3.3) has asymptotic coverage probability of at least 1−α.

However, our simulations in Section 5 reveal that the test can be very conserva-
tive. The conservativeness of the usual method of projection can be attributed to
two factors: (i) the degrees of freedom implicitly used for the test is m, which can
be much larger than the number of restrictions being tested, i.e., mx ; and (ii) the
split-sample statistic SSLM(β0,γ), which asymptotically converges to χ2

m un-
der the null, can be much larger than the unrestricted infimum infγ0∈Rmw SSLM
(β0,γ0).5

4. AN ALTERNATIVE METHOD OF PROJECTION

Consider testing the null hypothesis H : β = β0 against the alternative K : β �= β0.
The size-α TSLS score test, based on subsample 1, rejects the null hypothesis
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H : β = β0 against the alternative K : β �= β0 if LMβ(β0, γ̂11(β0)) > χ2
mx

(1−α)
where

LMβ(β,γ ) =
( y1 − X1β − W1γ )′ P

(
N (Ŵ11)X̂11

)
( y1 − X1β − W1γ )

1
n1−k ( y1 − X1β − W1γ )′N (Z1)( y1 − X1β − W1γ )

and

γ̂11(β) =
(

Ŵ ′
11W1

)−1
Ŵ ′

11( y1 − X1β).

We note that LMβ(β,γ ) is the efficient score statistic for β and LMβ(β0,γ0) =
LMβ(β0,γ )+op(1) for any γ0 in a

√
n-neighborhood of γ, where LMβ(β0,γ )

is the infeasible efficient score statistic for β that uses the unknown true value
of γ . Under Assumptions M and WI, the statistic LMβ(β, γ̂11(β)) does not nec-
essarily converge to a χ2

mx
distribution unless � = C.

One way to (partly) avoid the problem of (near) rank deficiency of �x and
�w is to replace X̂11 and Ŵ11 by X̂12 and Ŵ12, respectively in LMβ(β,γ ) and
γ̂11(β) (see Angrist and Krueger, 1995; Dufour and Jasiak, 2001). The resulting
test rejects H : β = β0 against K : β �= β0 if SSLMβ(β0, γ̂12(β0)) > χ2

mx
(1−α)

where

SSLMβ(β,γ )=
( y1 − X1β − W1γ )′ P

(
N (Ŵ12)X̂12

)
( y1 − X1β − W1γ )

1
n1−k ( y1 − X1β − W1γ )′N (Z1)( y1 − X1β − W1γ )

and

(4.1)

γ̂12(β0) =
(

Ŵ ′
12W1

)−1
Ŵ ′

12( y1 − X1β0).

Although this leads to a size-α test irrespective of the (near) rank deficiency of
�x , the problem with the (near) rank deficiency of �w persists. This is because
γ̂12(β) is inconsistent unless �w = Cw. Chaudhuri, Richardson, Robins, and
Zivot (2007) call this the unbiased split-sample instrumental variables (USSIV)
score test and point out that the inconsistency of γ̂12(β) can cause severe upward
size distortion, especially if the regressors W are highly endogenous.

Under Assumption M, when �w = Cw and β0 = β + O(n−1/2), we show in
the Appendix that

SSLMβ(β0, γ̂12(β0)) = SSLMβ(β0,γ )+op(1), (4.2)

and hence the USSIV score test is (locally) asymptotically equivalent to the size-
α “infeasible” split-sample score test that rejects H : β = β0 against K : β �= β0
if SSLMβ(β0,γ ) > χ2

mx
(1 −α). The latter test is infeasible because it uses the

unknown true value of γ . The (local) asymptotic equivalence in (4.2) follows from
standard contiguity arguments once we note that γ̂12(β0) is

√
n-consistent for γ

whenever Assumption M holds, �w =Cw, and β0 = β+ O(n−1/2). Further, when
�w = Cw, the diameter of the confidence region based on inverting the USSIV
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score test corresponds to the semiparametric variance bound for β based on n1
observations in model (2.1).

Hence, although the USSIV score test for H : β = β0 should not be used unless
�w = Cw, it provides a valuable insight: if the unknown γ is replaced by a

√
n-

consistent estimator in SSLMβ(β0,γ ) then (local) asymptotic equivalence with
the infeasible split-sample score test can be achieved. This motivates our new
projection-type split-sample score test that achieves (local) asymptotic equiva-
lence with the infeasible split-sample score test when �w = Cw. Because it is
not possible to find a (

√
n-)consistent estimator of γ unless �w = Cw, the use of

the projection technique in our new test at least guards against the uncontrolled
overrejection of the true value of the parameters of interest β that occurs in the
USSIV test.

4.1. The New Projection-Type Split-Sample Score Test

The new projection-type split-sample score test rejects the null hypothesis H :
β = β0 against the alternative K : β �= β0 if

inf
γ0∈C(γ,1−τ,β0)

SSLMβ(β0,γ0) > χ2
mx

(1− ε), (4.3)

where C(γ,1−τ,β0) is a confidence region for γ (restricted by H : β = β0) such
that

C(γ,1− τ,β0) =
{

γ0 : SSLM∗
γ (β0,γ0) ≤ χ2

mw
(1− τ)

}
and (4.4)

SSLM∗
γ (β,γ ) = ( y1 − X1β − W1γ )′ P(Ŵ12)( y1 − X1β − W1γ )

1
n1−k ( y1 − X1β − W1γ )′N (Z1)( y1 − X1β − W1γ )

. (4.5)

This can be seen as a two-step procedure: in the first stage we construct a re-
stricted confidence region for γ such that the region has correct asymptotic cov-
erage probability 1 − τ under the null hypothesis H : β = β0, and in the second
step we reject the null hypothesis if the infimum (with respect to γ0 in the con-
fidence region) of the statistic SSLMβ(β0,γ0) is larger than the χ2

mx
(1 − ε)

critical value. This method is motivated by Theorem 5.1 in Robins (2004).
The new projection-type split-sample score test relies on projection based on

the statistic SSLMβ(β0,γ ), whose reference distribution is χ2
mx

, whereas the
usual projection-type test uses the statistic SSLM(β0,γ0), whose reference dis-
tribution is χ2

m . Furthermore, unlike the usual methods of projection, here we
project from a restricted space, a confidence region for γ , and not from the entire
parameter space for γ . Hence, this new projection-type split-sample score test
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is, by construction, at least as powerful as the projection-type test that rejects
H : β = β0 against K : β �= β0 if infγ0∈Rmw SSLMβ(β0,γ0) > χ2

mx
(1− ε).

Theorem 4.1 is helpful to understand the asymptotic properties of our
projection-type split-sample score test described in (4.3)–(4.4) under Assump-
tions M and WI.

THEOREM 4.1. Let 0 < ε,τ < 1, and β0 = β − n(δx )
−1dβ where n(δx ) =

n1/21[δx =1] +
(
1−1[δx =1]

)
and dβ ∈ Rmx . Under Assumptions M and WI,

(i) limn→∞ Prβ,γ

[SSLM∗
γ (β,γ ) > χ2

mw
(1− τ)

]= τ ,

(ii) limn→∞ Prβ,γ

[SSLMβ(β,γ ) > χ2
mx

(1− ε)
]= ε, and

(iii) if �w = Cw, then infγ0∈C(γ,1−τ,β0)SSLMβ(β0,γ0) = SSLMβ

(β0,γ )+op(1).

Theorem 4.1 holds for arbitrary “true values” β ∈ Rmx and γ ∈ Rmw . Hence
using Bonferroni’s inequality, it follows from (i) and (ii) that the asymptotic size
of our projection-type split-sample score test (described in (4.3)–(4.4)) cannot
exceed τ +ε. Furthermore, (iii) implies that when �w =Cw, then our projection-
type split-sample score test is asymptotically equivalent to the size-ε “infeasible”
split-sample score test.

A confidence region for any arbitrary function g(β) of β can be obtained by
inverting the new projection-type split-sample score test as

C(g(β),τ + ε) =
{

g(β0) : inf
γ0∈C(γ,1−τ,β0)

SSLMβ(β0,γ0) ≤ χ2
mx

(1− ε)

}
.

(4.6)

This is a conservative 1− (τ + ε) confidence region for g(β). Moreover, when
�w = Cw, it follows from Theorem 4.1(iii) that the asymptotic length and cov-
erage of this region are same as those of the infeasible region

{
g(β0) : SSLMβ

(β0,γ ) ≤ χ2
mx

(1 − ε)
}

obtained by inverting the size-ε infeasible split-sample
score test.

Remarks.

1. If α is the maximum allowable asymptotic size for testing H : β = β0, then
one should choose τ and ε such that τ + ε = α. Although an analytical
discussion on the choice of τ and ε is beyond the scope of this paper, we
can at least conclude that when �w = Cw, the choice of τ does not matter
asymptotically.

2. All the split-sample tests mentioned in this paper treat subsample 1 as the
working sample; information from subsample 2 is used only to deal with
the (asymptotic) rank deficiency of �. Hence the power of our test increases
with the proportion of observations in subsample 1. In fact, when �x = Cx

and �w = Cw, i.e., in a standard linear IV regression, the noncentrality
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parameter of the asymptotic χ2
mx

distribution of infγ0∈C(γ,1−τ,β0)SSLMβ

(β0,γ0) is ζ (= limn→∞ n1/n) times the noncentrality parameter of the
asymptotic χ2

mx
distribution of the standard score statistic that treats γ as

unknown (see eqn. (A.4) in the Appendix).

3. The rejection rule for the new projection-type split-sample score test
can alternatively be expressed as follows: reject H : β = β0 against K :
β �= β0 if{
γ0|γ ′

0 A1γ0 −2B1γ0 +C1 ≤ 0
}∩{γ0|γ ′

0 A2γ0 −2B2γ0 +C2 ≤ 0
}=∅,

(4.7)

where A1 = W ′
1 H1W1, B1 = W ′

1 H1( y1 − X1β0), C1 = ( y1 − X1β0)
′H1

( y1 − X1β0), H1 = P(Ŵ12)−(n1 −k)−1χ2
mw

(1−τ)N (Z1), A2 = W ′
1 H2W1,

B2 = W ′
1 H2( y1 − X1β0), C2 = ( y1 − X1β0)

′H2( y1 − X1β0), H2 = P(N
(Ŵ12)X̂12)− (n1 − k)−1χ2

mx
(1 − ε)N (Z1), and ∅ stands for an empty set.

This alternative representation does not require us to find the restricted in-
fimum infγ0∈C(γ,1−τ,β0)SSLMβ(β0,γ0) explicitly as discussed by Dufour
and Taamouti (2005b). As in the case of the usual projection-type split-
sample score test, this may significantly reduce the computational cost of
the new test.

4.2. Comparison with the Usual Method of Projection

The statistics on which the usual and the new projection-type split-sample score
tests have been designed are different, and these two statistics converge to different
distributions. As a result, a direct analytical comparison between the asymp-
totic conservativeness of the two tests is not possible without further assump-
tions. Hence we take recourse to Monte Carlo experiments in the next section to
compare the performance of these two methods in finite samples.

However, when �w =Cw and ε = α, we can appeal to (4.2) and Theorem 4.1(iii)
to conclude that for any fixed τ ∈ (0,1), the new projection-type split-sample
score test is (locally) asymptotically at least as powerful as the usual projection-
type split-sample score test. This is evident once we note that, when �w = Cw

and β0 = β + O(n−1/2),

inf
γ0∈C(γ,1−τ,β0)

SSLMβ(β0,γ0) = SSLMβ(β0,γ )+op(1)

= SSLMβ(β0, γ̂12(β0))+op(1) and

Prβ,γ

[
inf

γ0∈Rmw
SSLM(β0,γ0) ≤ χ2

m(1−α)

]

≥ Prβ,γ

[
SSLM(β0, γ̂12(β0)) ≤ χ2

m(1−α)
]
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= Prβ,γ

[
SSLMβ(β0, γ̂12(β0)) ≤ χ2

m(1−α)
]

≥ Prβ,γ

[
SSLMβ(β0, γ̂12(β0)) ≤ χ2

mx
(1−α)

]
.

Simulations in the next section suggest that the reduction in conservativeness
due to the new method can be significant in finite samples even for a small value
of τ .

The new method of projection-type split-sample score test hinges on two im-
portant considerations: (i) the projection is restricted to a

√
n-neighborhood of

the true value of γ whenever �w = Cw, and (ii) in the second step we use the
split-sample efficient score statistic, and not the usual score statistic, for the pa-
rameters of interest β. Whereas the first consideration helps in the reduction of
conservativeness, the second one ensures asymptotic equivalence with the size-ε
“infeasible” split-sample score test when �w = Cw.

A natural question is, What happens if such a restricted projection is applied
to the statistic (3.2) used in the usual method of projection? Of course this will
reduce its conservativeness, but not as much. To see this, note that the confidence
region C(γ,1 − τ,β0) always contains γ̂12(β0) and hence when �w = Cw and
β0 = β + O(n−1/2),

inf
γ0∈C(γ,1−τ,β0)

SSLM(β0,γ0) ≤ SSLMβ(β0, γ̂12(β0))

= inf
γ0∈C(γ,1−τ,β0)

SSLMβ(β0,γ0)+op(1).

Therefore, not only will our test statistic asymptotically (stochastically) domi-
nate the statistic infγ0∈C(γ,1−τ,β0)SSLM(β0,γ0), but also because of a less
conservative critical value, our method is as powerful as when the restricted pro-
jection is applied to the usual method.

5. FINITE-SAMPLE PROPERTIES: SIMULATION STUDY

In this section, we study the finite-sample properties of the usual and the new
projection-type split-sample score tests using Monte Carlo methods. The simula-
tions show that (1) the new test is not as conservative as the usual test and (2) in a
standard linear IV model in which there is no rank deficiency of �x and �w, the
finite-sample power of the new projection-type split-sample score test “almost”
attains the “infeasible power envelope” provided by the finite-sample power of
the infeasible split-sample score test.

We consider a data generating process similar to that in Dufour and Taamouti
(2005a) in which mx = mw = 1. This special case is the standard setup in simula-
tion studies in the weak instrument literature and is common in empirical applica-
tions. The results in this section are also supported by a more extensive simulation
study conducted by Chaudhuri et al. (2007).
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We generate data from the model in (2.1) such that we have the following
results.

1. The structural errors, (ut ,Vxt ,Vwt )
i.i.d.∼ N (0,�) for t = 1, . . . ,n where σuu =

σxx = σww = 1, σux = σuw = 0.8, and σxw = 0.3.
2. The first column of Z is an n × 1 column of ones, and the elements in the

other k −1 columns are generated as independent and identically distributed
(i.i.d.) N (0,1) variables but are kept fixed over simulations. We report the
results for k = 4 and k = 10 (for size comparison only). The results are sim-
ilar for other choices of k (not reported) that are not too large as compared
to n1 and n2.

3. The matrix � is constructed such that � = C/
√

n where C = [Cx ,Cw],
and the elements of Cj are set at 0, 1.1547, and 20 when δj = 0, 1/2, and
1, respectively, for j = X,W . This satisfies the classification of “unidenti-
fication,” “weak identification,” and “strong identification” by Dufour and
Taamouti (2005a).6

4. The structural coefficients are set at β = 0.5 and γ = 1.
5. We consider sample size n = 100 and randomly split the sample into two

subsamples, the first one containing n1 = 75 and the second one containing
n2 = 25 observations.

6. We report the simulation results based on 10,000 replications.

The results are summarized in Figure 1 and Table 1. The usual and new
projection-type split-sample score tests never overreject the true value of β even
in finite samples. In fact, if the allowable rate of type-I error (ARTIE) is 5% (say),
a gain in power can be achieved for the usual test by choosing less conservative
critical values. The results are similar even if we consider sample sizes as large
as 10,000 (n1 = 7,500 and n2 = 2,500). It is evident that the new method of pro-
jection is considerably less conservative than the usual method; e.g., the rejection
rate of the new test with (1% + 5% = ) 6% ARTIE uniformly dominates the re-
jection rate of the usual projection-type split-sample score test with 10% ARTIE
when γ is strongly identified. Regarding the choice of τ and ε: the conservative-
ness of the new test decreases more rapidly when ε increases. Moreover, when γ
is strongly identified, the effect of the choice of τ on the overall conservativeness
of the new test seems to be negligible. The simulations provide more pronounced
support to the (local) asymptotic equivalence between the new test and the infea-
sible split-sample score test when β is weakly identified or strongly identified.
Based on the preceding observations, better performance is achieved by fixing
ε = ARTIE and setting a less conservative value (say, equal to ARTIE itself) for τ
while testing the hypothesis H : β = β0 using the new projection-type split-sample
score test.

The simulations, without any exception, provide compelling evidence in sup-
port of the results discussed in this paper and show the usefulness of the new
method of projection. The new method reduces the conservativeness of the usual
method of projection by trimming the set of γ over which the projection is made
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FIGURE 1. Rejection rates for H : β = β0 when γ is strongly identified (n1 = 75,n2 = 25,
and k = 4). The pointers on the upper left plot respectively, point to the differences in
rejection rates of (1) the usual and the new method with 10% upper bound on size, (2) the
usual and the new method with 5% upper bound on size, (3) the new method with different
τ and ε such that τ + ε = 5%, (4) the new method with same ε but different τ , (5) the new
method and the power envelope (i.e., the infeasible split-sample score test).

and by decreasing the nominal critical value from the 1 −α quantile of a χ2
m to

that of a χ2
mx

. Such a reduction is likely to be even more significant when the
dimension of γ is large. In that sense the simulation results based on a scalar
probably reflect the lower bound of the reduction in conservativeness due to
our method.

NOTES

1. The framework of this paper is based on TSLS, and we do not mention “TSLS” explicitly here-
after unless there is a possibility of confusion.
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TABLE 1. Rejection rates for H : β = β0 in finite samples (n1 observations in subsample 1 and n2 observations in subsample 2)

Identification status for γ

Identification Unidentified Weakly identified Strongly identified
Sample status (i.e., δw = 0) (i.e., δw = 1/2) (i.e., δw = 1)
size for β No. of instruments k = 4 k = 10 k = 4 k = 10 k = 4 k = 10
n = 100 (n1 = 75, n2 = 25)

usual: 5% 0.0 0.0 0.7 0.7 1.6 1.4
usual: 10% 0.0 0.0 2.1 1.7 3.5 3.5
new (4% + 1%) 0.0 0.0 0.0 0.0 0.9 0.8

unidentified new (1% + 4%) 0.0 0.0 0.0 0.0 3.4 3.3
(i.e., δx = 0) new (1% + 5%) 0.0 0.0 0.2 0.1 4.2 4.2

new (5% + 5%) 0.0 0.0 0.5 0.4 4.4 4.5
infeasible (5%) 5.4 5.5 5.3 5.4 5.5 5.4

usual: 5% 0.0 0.0 0.8 0.7 2.0 1.5
usual: 10% 0.2 0.1 2.1 1.8 3.9 3.4
new (4% + 1%) 0.0 0.0 0.2 0.0 1.1 0.8

weakly new (1% + 4%) 0.0 0.0 0.2 0.0 3.8 3.2
identified new (1% + 5%) 0.0 0.0 0.2 0.1 4.6 4.1

(i.e., δx = 1/2) new (5% + 5%) 0.0 0.0 1.0 0.4 4.8 4.3
infeasible (5%) 5.4 5.5 5.4 5.4 5.7 5.2

usual: 5% 0.0 0.1 1.3 0.6 1.7 1.8
usual: 10% 0.2 0.2 3.0 1.6 3.4 3.5
new (4% + 1%) 0.0 0.0 0.2 0.1 1.0 1.1

strongly new (1% + 4%) 0.0 0.0 0.2 0.1 3.4 3.7
identified new (1% + 5%) 0.0 0.0 0.2 0.1 4.2 4.5

(i.e., δx = 1) new (5% + 5%) 0.0 0.0 0.8 0.4 4.4 4.7
infeasible (5%) 5.3 5.2 5.3 5.4 5.2 5.3
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n = 104 (n1 = 7500, n2 = 2500)
usual: 5% 0.1 0.1 0.7 0.9 1.6 1.5
usual: 10% 0.3 0.2 1.6 2.2 3.2 3.3
new (4% + 1%) 0.0 0.0 0.0 0.1 0.9 0.8

unidentified new (1% + 4%) 0.0 0.0 0.1 0.1 3.3 3.5
(i.e., δx = 0) new (1% + 5%) 0.0 0.0 0.1 0.1 4.0 4.5

new (5% + 5%) 0.0 0.0 0.4 0.5 4.3 4.6
infeasible (5%) 5.0 5.6 4.8 5.1 5.1 5.2

usual: 5% 0.1 0.0 0.7 0.9 1.4 1.4
usual: 10% 0.2 0.2 1.5 2.1 3.2 3.2
new (4% + 1%) 0.0 0.0 0.0 0.0 0.9 0.8

weakly new (1% + 4%) 0.0 0.0 0.0 0.1 3.0 3.4
identified new (1% + 5%) 0.0 0.0 0.0 0.1 3.8 4.2

(i.e., δx = 1/2) new (5% + 5%) 0.1 0.0 0.4 0.6 4.2 4.4
infeasible (5%) 5.4 5.1 4.8 5.2 5.2 5.0

usual: 5% 0.1 0.1 0.6 1.1 1.6 1.5
usual: 10% 0.2 0.1 1.5 2.8 3.3 3.2
new (4% + 1%) 0.0 0.0 0.0 0.2 1.0 1.0

strongly new (1% + 4%) 0.0 0.0 0.1 0.1 3.3 3.4
identified new (1% + 5%) 0.0 0.0 0.1 0.1 4.0 4.3

(i.e., δx = 1) new (5% + 5%) 0.0 0.0 0.3 0.6 4.2 4.5
infeasible (5%) 5.1 4.8 4.7 4.9 5.0 5.0
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2. Adding included-exogenous variables to the model does not entail any fundamental change in
our results because it is possible to find a

√
n-consistent, asymptotically unbiased estimator for the

corresponding coefficients, even when the true values of β and γ are unknown.
3. Likewise, our focus on TSLS also excludes LR-based tests from consideration. These are the

subject of active ongoing research on our part.
4. Under Assumptions M and WI, the parameters β (γ ) are identified as long as �x = Cx (�w =

Cw). However, the asymptotic normality of the unrestricted split-sample estimator (see Angrist and
Krueger, 1995) of β (γ ) does not hold unless �w = Cw (�x = Cx ). A general result along this line
can be found in Stock and Wright (2000).

5. The unrestricted infimum is the minimum eigenvalue of the matrix A−1 B where A = (n1 −
k)−1( y1 − X1β0,W1)′N (Z1)( y1 − X1β0,W1) and B=( y1 − X1β0,W1)′ P([X̂12, Ŵ12])( y1−X1β0,

W1). Nothing guarantees that its difference from SSLM(β0,γ ) is small unless � = C.
6. Although the magnitude of the minimum eigenvalue of the (population) concentration matrix,

ζ
k [Var(Vxt ,Vwt )]−1/2′

C
′ QC [Var(Vxt ,Vwt )]−1/2, is not meant to measure weak identification of in-

dividual structural coefficients, we note that our choice of � results in this minimum eigenvalue being
(i) zero if any coefficient is unidentified and (ii) at most 3.35 if one coefficient is weakly identified and
the other strongly identified (see Stock and Yogo, 2005). The (population) concentration parameter
corresponding to any structural coefficient (ignoring the others) is modeled as 0 and 1, respectively,
when that coefficient is unidentified and weakly identified.
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APPENDIX: Proofs

Proof of Theorem 4.1. We use the following definitions. Recall that limn→∞ n1/n =
ζ ∈ (0,1) is a fixed number. For a = x,w, we define λa = Q1/2

Ca and

n1(δa) = n1/2
1 1[δa=1] + (1−1[δa=1]

)
,

νa1 = (1−1[δa=1]
)
�Za1 + ζ 1/2λa

(
(1−1[δa=1])+ ζ−1/21[δa=1]

)
,

νa2 = (1−1[δa=1]
)
�Za2 + (1− ζ )1/2λa

(
(1−1[δa=1])+ ζ−1/21[δa=1]

)
.

Using Assumptions M and WI, it follows that for a,b = x,w and A, B = X,W ,

(a) n−1/2
1 n1/2

2 n1(δa)−1 Â′
12u1

d−→ ν′
a2�Zu1

(b) n−1/2
1 n1/2

2 n1(δa)−1n1(δb)−1 Â′
12 B1

d−→ ν′
a2νb1

(c) n−1
1 n2n1(δa)−1n1(δb)−1 Â′

12 B̂12
d−→ ν′

a2νb2.

Further define �n(β0,γ0) = [1, (β −β0)′, (γ −γ0)′]�[1, (β −β0)′, (γ −γ0)′]′. Then As-
sumption M implies that 1/(n1 − k)( y1 − X1β0 − W1γ0)′N (Z1)( y1 − X1β0 − W1γ0) −
�n(β0,γ0) = op(1).

Part (i). By Slutsky’s theorem we get

SSLM∗
γ (β0,γ0)

d−→ lim
n→∞

φ1(β0,γ0)′ P(νw2)φ1(β0,γ0)

�n(β0,γ0)
, (A.1)

where φ1(β0,γ0) = �Zu1 + νx1(β − β0)n1(δx ) + νw1(γ − γ0)n1(δw). Using Assump-

tion M4, it follows that SSLM∗
γ (β,γ )

d−→ σ−1
uu � ′

Zu1 P(νw2)�Zu1 ∼ χ2
mw

conditional on
�Zw2 (and hence unconditionally). This implies

1− lim
n→∞Prβ,γ

[
SSLM∗

γ (β,γ ) ≤ χ2
mw

(1− τ)
]

= 1−Pr
[
χ2

mw
≤ χ2

mw
(1− τ)

]
= τ.
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Part (ii). By Slutsky’s theorem we get

SSLMβ(β0,γ0)
d−→ lim

n→∞
φ1(β0,γ0)′ P (N (νw2)νx2)φ1(β0,γ0)

�n(β0,γ0)
. (A.2)

Using Assumption M4, it follows that

SSLMβ(β,γ )
d−→ σ−1

uu � ′
Zu1 P (N (νw2)νx2)�Zu1 ∼ χ2

mx

conditional on �Z x2 and �Zw2 (and hence unconditionally). Again, as before, this implies

1− lim
n→∞Prβ,γ

[
SSLMβ(β,γ ) ≤ χ2

mx
(1− ε)

]
= 1−Pr

[
χ2

mx
≤ χ2

mx
(1− ε)

]
= ε.

Part (iii). For any β0, SSLM∗
γ

(
β0, γ̂12(β0)

) ≡ 0 where γ̂12(β0) = (Ŵ ′
12W1)−1

Ŵ ′
12( y1 − X1β0). Therefore, C(γ,1 − τ,β0) cannot be empty, and hence

infγ0∈C(γ,1−τ,β0)SSLMβ(β0,γ0) exists. Furthermore, if �w = Cw , then by definition
of φ1(β0,γ0), we get that

φ1(β0,γ0)
d−→ �Zu1 + lim

n→∞νx1(β −β0)n1(δx )+ lim
n→∞λw(γ −γ0)n1/2

1 .

Hence noting the order of magnitude (as a function of γ − γ0) of the numerator and the

denominator of (A.1), it is evident that limn→∞ Prβ,γ

[
SSLM∗

γ (β0,γ0) < ∞
]

> 0 only

if γ −γ0 = Op(n−1/2). So, if γ0 is outside a
√

n-neighborhood of γ , then the probability
with which it is contained in C(γ,1 − τ,β0) is asymptotically equal to zero. Therefore,
if �w = Cw and n → ∞ then, by construction, infγ0∈C(γ,1−ζ,β0)SSLMβ(β0,γ0) is

attained at some γ̂ inf(β0) in a
√

n-neighborhood of γ with probability approaching one.
Now consider any γ0 in a

√
n-neighborhood of γ and model it as γ0 = γ −dγ n−1/2 for

some bounded dγ . If �w = Cw , then from (A.2) we get

SSLMβ(β0,γ0)

d−→ lim
n→∞

(
φ2(β0)+√

ζλwdγ
)′ P (N (λw)νx2)

(
φ2(β0)+√

ζλwdγ
)[

σuu +2σux (β −β0)+ (β −β0)′σxx (β −β0)
] , (A.3)

SSLMβ(β0,γ )
d−→ lim

n→∞
φ2(β0)′ P (N (λw)νx2)φ2(β0)[

σuu +2σux (β −β0)+ (β −β0)′σxx (β −β0)
] ,

where φ2(β0) = �Zu1 + νx1(β −β0)n1(δx ). Noting that by definition N (λw)λw = 0, it
follows that SSLMβ(β0,γ0) and SSLMβ(β0,γ ) converge in distribution to the same
random variable. Furthermore, to see that they even have the same probability, first note
that �n(β0,γ0) = �n(β0,γ )+op(1) �= 0. Second, when �w = Cw , from (A.2) and (A.3)

we have n1/2
2 n−3/2

1 N (Ŵ12)W1
P−→ 0, and hence the numerators of SSLMβ(β0,γ0) and

SSLMβ(β0,γ ) also have the same probability limit. Therefore, the statistics have the
same probability limit. Hence, when �w = Cw it follows from our previous arguments
that

inf
γ0∈C(γ,1−τ,β0)

SSLMβ(β0,γ0) = SSLMβ(β0,γ )+op(1)

and the asymptotic distribution is given by the right-hand side of (A.4). n
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Proof of Equation (4.2). For β0 = β − n(δx )−1dβ , as defined in the statement of
Theorem 4.1, note that

n1(δw)(γ̂12(β0)−γ ) = (ν′
w2νw1)−1ν′

w2

[
�Zu1 +νx1dβ

(
1[δx �=1] +√ζ1[δx =1]

)]
and hence when �w = Cw , the restricted USSIV estimator γ̂12(β0) is

√
n-consistent for

γ . Therefore, it follows using the same strategy as in the proof of Theorem 4.1(iii) that
SSLMβ(β0, γ̂12(β0)) = SSLMβ(β0,γ )+op(1). n

In this context it is also interesting to note that in a standard linear IV regression (where
�x = Cx and �w = Cw), if β0 = β −dβn−1/2 then

inf
γ0∈C(γ,1−τ,β0)

SSLMβ(β0,γ0)
d−→ χ2

mx
(A.4)

with noncentrality parameter ζσ−1
uu d ′

βλ′
x N (λw)λx dβ . The limiting distribution is the same

as that of the usual score test for β = β0 based on subsample 1 (see Wang and Zivot, 1998).


