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Abstract

This paper develops tests for hypotheses concerning subvectors of parameters in models de-

�ned by moment conditions. It is well-known that conventional tests such as Wald, Likelihood-

ratio and Score tests tend to overreject when the identi�cation is weak. To prevent uncontrolled

size distortion and introduce re�ned �nite-sample performance, we extend the projection based

test of Chaudhuri and Zivot (2011) to a modi�ed version of the score test using implied proba-

bilities obtained by Information theoretic criteria. Our test is performed in two steps, the �rst

step reduces the space of parameter candidates, while the second one involves the modi�ed score

test mentioned earlier. We derive the asymptotic properties of this procedure for the entire class

of Generalized Empirical Likelihood implied-probabilities. Simulations show that the test has

very good �nite-sample size and power. Finally, we apply our approach to the veteran earnings

and �nd a negative impact of veteran status.
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1 Introduction

We are interested in developing tests for hypothesis concerning subvectors of an unknown pa-

rameter � 2 Rd� : The true value of the parameter �; denoted �0; satis�es a vector of moment

conditions:

E
�
g
�
W ; �0

��
= 0

where the vector g 2 Rdg is known and dg � d�:

Based on a random sampleWi, i = 1; 2; :::; n; the standard approach of inference is to conduct

a Wald test based on the Generalized Method of Moments (GMM) estimator of � or a score

test. Wald tests have been shown to be inappropriate in the presence of weak identi�cation

(Dufour (1997)). Moreover, the GMM-based score test proposed by Newey and West (1987) is

plagued by size distortions under common scenarios such as skewed moment vectors or models

with weak identi�cation. To improve the �nite sample properties of this test, Chaudhuri and

Renault (2015) and Chaudhuri and Renault (2020) propose to replace the uniform weights by

implied probabilities obtained from an Information Theory criterion. These probabilities exploit

the information from the model, namely that E [g (Wi; �)] = 0. So the implied probabilities b�i
are selected such that the moments hold exactly:

nX
i=1

b�ig (Wi; �) = 0:

However, given that the number of moments, dg; is smaller than the sample size n, there is an

in�nity of possibilities for b�i, i = 1; 2; :::; n. The estimation of �i is an ill-posed problem. Which
distribution should be used? A solution inspired from the entropy literature is to select the

distribution obtained by minimizing the Cressie-Read divergence measure under the moment

restrictions. Equivalently, one could also work with the Generalized Empirical Likelihood (GEL)

that is characterized by the dual problem of this Cressie-Read divergence minimization. Two

notable members of this class are the Empirical Likelihood estimator and the Exponential Tilting

estimator (see Newey and Smith (2004)). All these estimators can be viewed as Information

Theory estimators (see Kitamura and Stutzer (1997) and Golan (2006)).

Chaudhuri and Renault (2020) focus on tests for the entire parameter vector, i.e. H0 :

� = �0 and they show that implied probability based score tests lead to improved �nite sample

properties compared to the conventional score test. In particular, they have better size control

and remain powerful.

In this paper, we are concerned with testing subsets of parameters �1 � �. More precisely,
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we want to test H0 : �1 = �10: The subset version of score tests su¤ers from important size

distortion as shown by Guggenberger et al. (2012). To address this issue, we suggest to use the

projection-based test developed by Chaudhuri and Zivot (2011) coupled with the score test that

includes the GEL implied probabilities.

The contribution of our paper is to provide a framework that opens up the possibility of

applying any type of the Generalized Empirical Likelihood or Cressie-Read implied probabilities

to the type of score tests discussed in Chaudhuri and Zivot (2011); see also Smith (1997), Newey

and Smith (2004). We derive the asymptotic properties of the resulting tests using the properties

of the implied probabilities obtained in Chaudhuri and Renault (2020) and generalized to include

all the GEL estimators. Special care is taken to allow for weak identi�cation. The simulations

show that these tests perform well in terms of �nite-sample size and exhibits strong power under

the alternative. We complete the paper with an empirical illustration examining the e¤ect of

veteran status on earnings. Using our proposed test, we construct con�dence intervals for the

returns to veteran status on earnings, leveraging instrumental variables. This analysis, inspired

by Chaudhuri and Rose (2009), builds on the seminal natural experiment framework developed

by Angrist (1990) and Card (1995), which earned them the 2021 Sveriges Riksbank Prize in

Economic Sciences in Memory of Alfred Nobel. Our �ndings provide evidence of a negative

impact of veteran status on earnings.

The related literature is vast. The application of Information Theory measures to the esti-

mation of econometric models goes back to Golan et al. (1996), Kitamura and Stutzer (1997),

Imbens et al. (1998), etc. The use of the implied probabilities in the context of testing of hypoth-

esis in the GMM setup was pioneered by Guggenberger and Smith (2005) and further developed

by Caner (2010), Chaudhuri and Renault (2015), and Chaudhuri and Renault (2020). Our cur-

rent paper builds on this literature. Extensive research in econometrics has demonstrated that

testing of subsets of parameters in the face of commonly encountered problems such as weak

identi�cation is a much more di¢ cult problem than test of the full parameter vector studied

in Chaudhuri and Renault (2020); see, e.g., Guggenberger et al. (2012), Andrews et al. (2019).

Chaudhuri and Zivot (2011) provide an early contribution to weak identi�cation robust testing

of subsets of parameters that was subsequently extended and re�ned in Andrews (2017) and

Andrews (2018), and that is particularly suitable for application of the Information Theory. In

the current paper, we demonstrate that application of Information Theory in the form of the

implied probabilities to Chaudhuri and Zivot (2011)�s test for subsets of parameters delivers

improved �nite-sample performance.
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The remainder of this paper is organized as follows. Section 2 describes the GMM framework

and the implied probabilities in the context of the null hypothesis for subsets of parameters that

is the focus of our interest. Section 3 discusses the score test for subsets of parameters and

establishes its asymptotic properties. Section 4 provides evidence of the improved performance

of this test using simulation results in empirically relevant settings. Section 5 includes the

empirical application. Finally, Section 6 concludes. The main proofs are collected in Appendix.

2 Implied probabilities for hypothesis on subsets of para-

meters in the GMM framework

2.1 Background

LetW1; : : : ;Wn be independent and identically distributed (i.i.d.) copies of the random variable

W . Let g(W ; �) : Rdw �� 7! Rdg be the dg- dimensional moment vector, W a dw dimensional

random vector, � � Rd� the parameter space and let dg � d�. Suppose that we have a set of

moment restrictions:

E[g(W ; �0)] = 0 (1)

which holds for the true value of the parameter �0:

Our goal is testing of hypotheses on subsets of parameters, i.e., a subvector of �. Without

loss of generality, let � = (�01; �
0
2)
0, and let the null hypothesis of interest be

H0 : �1 = �10: (2)

The parameter �1 is the parameter of primary interest while �2 is the nuisance parameter.

The usual approach to tackle this problem consists in estimating � by constrained GMM.

Constrained estimators are obtained by imposing the null hypothesis, the estimator takes the

form � = (�010; �
0
2)
0 that restricts �1 by H0 but lets the �2 parameters be unrestricted. Given a

�rst-step consistent estimator of �, denoted �, the constrained GMM estimator is solution of

e� = arg min
�2�1

Qn (�) � �gn(�)0b
n(�)�1�gn(�)
where �1 is the set of elements (�

0
1; �

0
2)
0 of � such that �1 = �10, �gn(�) :=

Pn
i=1 g(Wi; �)=n,

and b
n(�) := 1
n

Pn
i=1 g(Wi; �)g

0(Wi; �): Let Gn (�) = (1=n)
Pn

i=1 @g(Wi; �)=@�
0. The score-test
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proposed by Newey and West (1987) is

LMn =

0@@Qn
�e��
@�

1A0

I�1n
�e��

0@@Qn
�e��
@�

1A
where

@Qn (�) =@� = Gn (�)
0 b
n(�)�1�gn(�) and (3)

In (�) = Gn (�)
0 b
n(�)�1Gn (�) :

According to Chaudhuri and Renault (2015) and Chaudhuri and Renault (2020), the poor

�nite sample properties of the score test can be improved by replacing the averages in Gn (�) andb
n(�) by weighted sum using Information Theory. Instead of averaging using an equal weight

1=n; one should use the implied probabilities obtained from Information theoretic criteria. The

criterion considered is the Cressie-Read family.

The optimization problem solved by the implied probabilities �̂(
)n (�) for � 2 � is

min
�2Rn

1


(
 + 1)

nX
i=1

�
(n�i)

1+
 � 1
�
subject to

nX
i=1

�i = 1 and
nX
i=1

�ig(Wi; �) = 0: (4)

The objective function (4) is de�ned for any real 
, including the two limit cases 
 ! 0 and 
 !

�1: 
 = �1 corresponds to Empirical likelihood (EL), and 
 = 1 corresponds to the Euclidean

empirical likelihood (EEL), and 
 ! 0 to the Kullback Leibler Information Criterion (KLIC)

that is consistent with Shannon�s entropy. The so-called Generalized empirical likelihood (GEL)

estimator of � is obtained by minimizing the criterion in (4) with respect of � or alternatively by

minimizing the dual problem based on the Lagrange multipliers associated with the constraintsPn
i=1 �ig(Wi; �) = 0; see Guggenberger and Smith (2005) and Chaudhuri and Renault (2020).

Here, however, the aim is not to estimate � but to perform a test. Therefore, we need to

go further than the aforementioned references and devise the two-step approach described in

Section 3 to address the additional inferential issues of uncontrolled over-rejection of the truth

without unnecessary loss in power.
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2.2 Assumptions

Let us de�ne

V (�) := V ar
�p
n�gn(�)

�
and bVn(�) := 1

n

nX
i=1

g(Wi; �) [g(Wi; �)� �gn(�)]0 :

Remark that this de�nition of bVn(�) corresponds to the appropriate estimator of V (�) for EEL
estimator.

Consider a sequence of subsets �n : n � 1 of � containing �0. �n is a neighborhood of �
0

which width depends on the identi�cation strength in (1). Typically, �n is narrower for strongly

identi�ed parameters and wider for weakly identi�ed parameters.

For illustration, consider the example of the linear instrumental variable regression:

yi = Xi�
0 + ui;

where the endogenous variable Xi is a scalar random variable related to the instruments Zi

through the reduced-form equation

Xi = Z
0
i�+ Vi

where E [Ziui] = 0. Let Wi = (yi; Xi; Z
0
i)
0, the moment condition corresponding to the orthog-

onality between Zi and ui is

g (Wi; �) = Zi (yi �Xi�) :

If � is non null and independent of n, the instruments Zi are strongly correlated with the

endogenous regressor Xi and hence the instruments are said to be strong. In that case, � is

identi�ed in the sense that Eg (Wi; �) = 0 , � = �0: Then, the GMM estimator is consistent

with
p
n rate of convergence. When � = C=

p
n, the correlations between Zi and Xi go to zero,

and the instruments are said to be weak (in the sense of Staiger and Stock (1997)). In that case,

the GMM estimator of � is not consistent because E [g(Wi; �)] ! 0 as n ! 1 for all � 6= �0

(with � � �0 �xed): Then, the standard con�dence intervals and tests are not reliable. In the

semi-weak/semi-strong case, i.e. when � = C=n� with 0 < � < 1=2, the GMM estimator of � is

consistent with a slower rate of convergence than the usual
p
n:

We will maintain Assumptions 1 and 2 below to show the asymptotic equivalence of the im-

plied probabilities for � 2 �n; see Guggenberger and Smith (2005) and Chaudhuri and Renault

(2020) for more discussion.
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Assumption 1:

(i) sup�2�n
kE [�gn(�)]k = O

�
1p
n

�
.

(ii) max1�i�n sup�2�n
kg(Wi; �)k = op (

p
n).

(iii) sup�2�n
kg(Wi; �)k = Op(1) for i = 1; : : : ; n.

(iv) sup�2�n
k�gn(�)� E [�gn(�)]k = Op

�
1p
n

�
.

Assumption 2:

(i) sup�2�n





̂n(�)� V (�)


 = op(1), sup�2�n




bVn(�)� V (�)


 = op(1),
sup�2�n





̂�1n (�)� V �1(�)



 = op(1) and sup�2�n




bV �1n (�)� V �1(�)



 = op(1).

(ii) 0 < inf�2�n
bmin(�) < sup�2�n

bmax(�) < +1 where bmin(�) and bmax(�) stand for the

smallest and largest eigenvalues respectively of V (�).

Assumption 1 is not restrictive if �n is reduced to �
0 for all n: In that case, Assumptions

1(i) and 1(iii) are ful�lled by de�nition. Assumptions 1(ii) and 1(iv) follow from the fact that

g(Wi; �
0) is i.i.d. with zero mean and �nite variance. Assumption 1(ii) is a consequence of

the Borel-Cantelli Lemma. Assumption 1(iv) can be proved by Lindeberg-Levy Central Limit

Theorem. Validity of Assumption 1 when �n is a local neighborhood of �
0, where the de�nition

of local depends on the identi�cation strength of �, follows under mild conditions.

Regarding Assumption 2(i), it requires the uniform law of large numbers for the sample

covariance matrix only. The two convergences on the �rst line of (i) are equivalent, provided

Assumptions 1(i) and 1(iv) hold. The same is true for the convergence on the second line under

the extra condition of Assumption 2(ii), which ensures that the population covariance matrix is

positive de�nite and �nite.

2.3 Properties of GEL implied probabilities

In this section, we investigate the properties of weighted sums based on implied probabilities.

To do so, it is convenient to use the dual representation of the estimators introduced in Section

2.1.

The GEL class of estimators of �0 is indexed by the function � and is de�ned as

b��;n := argmin
�2�

sup
�2�n(�)

Q̂�;n(�; �)

where Q̂�;n(�; �) :=
1

n

nX
i=1

�(�0g(Wi; �))� �(0);

and �n(�) := f� 2 Rk : �0g(Wi; �) 2 O;8 i = 1; : : : ; ng:
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Di¤erent choices of �(:) lead to di¤erent GEL estimators. The Continuous�Updating GMM or

Euclidean empirical likelihood (EEL) estimator is a special case with (�(v) = �(1+v)2=2;O = R)

corresponding to 
 ! �1 in Equation (4), the empirical likelihood (EL) estimator (�(v) =

ln(1 � v);O = (�1;1)) corresponds to 
 = 1, the exponential tilting (ET) estimator (�(v) =

� exp (v) ;O = R) to 
 ! 0, etc. all of which satisfy Assumption � below.

Assumption �: (GEL function)

� : O 7! R is a continuous function such that

(i) � is concave on its domain O which is an open interval containing 0.

(ii) � is twice continuously di¤erentiable on its domain. De�ning �r(v) := @r�(v)=@vr for

r = 1; 2 and �r := �r(0), let �1 = �2 = �1 (standardization for convenience).

(iii) There exists a positive constant b such that for each v 2 O, j�2(v)� �2(0)j � b� jvj hold.

The desirable higher-order properties of the GEL estimators are due to the GEL �rst order

condition which, assuming di¤erentiability of the moment vector g(w; �) with respect to �, is

given by

"
nX
i=1

��;i;n(b��;n)Gi(b��;n)#0 " nX
i=1

��;i;n(b��;n)g(Wi;b��;n)g0(Wi;b��;n)#�1 �gn(b��;n) = oP � 1p
n

�

where for given � and �(:); �gn(�) := 1
n

Pn
i=1 g(Wi; �); Gi(�) :=

@
@�0 g(Wi; �);

��;n(�) : = arg sup
�2�n(�)

Q̂�;n(�; �); (5)

��;i;n(�) : =
�1(�

0
�;n(�)g(Wi; �))Pn

j=1 �1(�
0
�;n(�)g(Wj ; �))

: implied probabilities from GEL; (6)

��;i;n(�) : =
��(�

0
�;n(�)g(Wi; �))Pn

j=1 ��(�
0
�;n(�)g(Wj ; �))

; ��(v) :=
�1(v) + 1

v
if v 6= 0; ��(0) = �1

Interestingly, the form of �(:) for EL leads to ��;i;n(�) = ��;i;n(�) for i = 1; : : : ; n. It is

because of this along with the orthogonalization property of the implied probabilities ��;i;n(�)

(shown in Proposition 2 below) that the EL estimator has superior higher-order properties

among the GEL class (see Newey and Smith (2004)).

Note that Assumption �(iii) is a technical assumption needed only for the proofs. Now, we

are able to establish some important results relative to the GEL implied probabilities.

Proposition 1 Let Assumptions 1, 2, and � hold. Then for � 2 �n:

(A) ��;n(�) de�ned in (5) is such that ��;n(�) = �
̂�1n (�)�gn(�) + oP
�
n�1=2

�
,
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(B) ��;i;n(�) de�ned in (6) is such that for a given i = 1; : : : ; n,

��;i;n(�) = �EEL;i;n(�) + oP

�
n�3=2

�

where �EEL;i;n(�)�s are the implied probabilities from EEL with the closed-form expression

�EEL;i;n(�) =
1

n

h
1� (g(Wi; �)� �gn(�))0
̂�1n (�)�gn(�)

i
=
1

n
+OP

�
n�3=2

�
:

Remark: It follows from (B) that the di¤erence between the EEL and GEL implied probabilities

is of a smaller order than that between the EEL implied probabilities and the naive empirical

probabilities f1=ng. It may be tempting to argue that the use of the GEL implied probabilities

to reweight observations results in an equivalence up to one higher order. However, this result,

in itself, is not su¢ cient for such a claim because (B) is not uniform in i = 1; : : : ; n. We provide

a formal proof of this claim in Proposition 2.

Proposition 2 Let Assumptions 1, 2, and � hold and let � be an arbitrary element of �n.

Consider n i.i.d. realizations fY1;n; : : : ; Yn;ng of a d � 1 random vector Yn. Denote �Yn =Pn
i=1 Yi;n=n. Assume that: �Yn � E[ �Yn]

P�! 0, 1
n

Pn
i=1(Yi;n � �Yn)

�
(g(Wi; �)� �gn(�))0 ; Y 0i;n

� P�!

[
Y g;
Y Y ] (�nite) and that

0@ p
n( �Yn � E[ �Yn])

p
n(�gn(�)� E[�gn(�)])

1A d�! N

0@0;
24 
Y Y 
Y g


0Y g V

351A :
Then, as n!1, we have

(A)

0@ p
n
Pn

i=1 �EEL;i;n(�)
�
Yi � E[ �Yn]

�
p
n(�gn(�)� E[�gn(�)])

1A d�! N

0@0;
24 
Y Y � 
Y gV �1
0Y g 0

0 V

351A,
(B)

p
n
Pn

i=1 ��;i;n(�)
�
Yi � E[ �Yn]

�
�
p
n
Pn

i=1 �EEL;i;n(�)
�
Yi � E[ �Yn]

� P�! 0.

Remarks: The proofs of Propositions 1 and 2 are given in Appendix. Some of these results

were already established in Chaudhuri and Renault (2020). However, the result for the ET

estimator is not covered in Chaudhuri and Renault (2020). This is important because ET is the

only GEL estimator fully consistent with Shannon�s entropy.

Proposition 2 shows that the weighted average involving implied probabilities is asymptot-

ically independent of the average gn (�). Replacing Yi by the �rst derivative of g(Wi; �) or by

g(Wi; �)g(Wi; �)
T ; one can deduce that the implied probability estimates of the Jacobian and
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variance are asymptotically independent of gn (�). In the case of weak identi�cation, this as-

ymptotic independence of the estimated Jacobian (and estimated variance) with the moment

vector leads to better �nite-sample properties.

It follows from Proposition 2 that the use of the implied probabilities provides a more precise

estimator of E[Y ] since the asymptotic variance is smaller than V ar(Y ): The score test for

subsets of parameters that we will discuss now allows for weak identi�cation that makes the use

of implied probabilities necessary. Chaudhuri and Zivot (2011) followed Kleibergen (2005) and

therefore implicitly used the EEL (Euclidean Empirical Likelihood) implied probabilities. Our

paper opens up the possibility of using other implied probabilities for the same test for subsets of

parameters, and demonstrates using simulations that other implied probabilities, such as those

from EL, can provide signi�cant improvement in its �nite-sample performance.

3 Score test for subsets of parameters using the implied

probabilities

3.1 Score vector and score statistic using the implied probabilities

Following Chaudhuri and Renault (2020), we de�ne the general score vector:

ln
�
�; �G(�); �V (�)

�
=

(
nX
i=1

�Gi;n(�)G
0
i(�)

)"
nX
i=1

�Vi;n(�)Vi;n(�)

#�1
p
n�gn(�) (7)

where

Gi(�) =
@g(Wi; �)

@�0
; Vi;n(�) = g(Wi; �) (g(Wi; �)� �gn(�))0 ;

and �Gi;n(�) and �
V
i;n(�) may be di¤erent, but such that:

�Gi;n(�); �
V
i;n(�) 2

n
�̂
(
)
i;n (�); 
 2 R

o
[
�
1

n

�
: (8)

The choice of �Gi;n(�) = �Vi;n(�) = 1=n leads to the standard GMM score statistic (3) as

de�ned in Newey and West (1987). The choice of �Gi;n(�) = �̂
(1)
i;n(�) (EEL) and �

V
i;n(�) = 1=n

leads to Kleibergen (2005)�s K-statistic. The other choices in (8) cover the various score statistics

of Guggenberger and Smith (2005). Importantly, note that �Gi;n(�) and �
V
i;n(�) can be based on

di¤erent 
s, accommodating for hybrid GEL score statistics in the spirit of Schennach (2007).

We refer the interested reader to Chaudhuri and Renault (2020) for further discussion on the

score vector.
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Pretending that the parameters are all strongly identi�ed, the natural estimator of the

asymptotic variance of ln
�
�; �G(�); �V (�)

�
would be

In
�
�; �G(�); �V (�)

�
=

(
nX
i=1

�Gi;n(�)G
0
i(�)

)"
nX
i=1

�Vi;n(�)Vi;n(�)

#�1( nX
i=1

�Gi;n(�)Gi(�)

)
: (9)

Using (9), the general score statistic based on the general score vector in (7) is given by

LMn

�
�; �G(�); �V (�)

�
= l0n

�
�; �G(�); �V (�)

�
I�1n

�
�; �G(�); �V (�)

�
ln
�
�; �G(�); �V (�)

�
: (10)

It is now well-known that if �2 is weakly identi�ed then plugging in a GMM estimator of �2,

that is restricted by H0 in (2), generally results in badly over-sized test; see Andrews (2017) for a

comprehensive discussion. An alternative to such plug-in tests is the projection tests as in, e.g.,

Dufour and Taamouti (2005, 2007). However, projection tests can be needlessly conservative.

Therefore, we will adopt here the idea of the re�ned projection score test as in Chaudhuri

(2008), Zivot and Chaudhuri (2009), Chaudhuri et al. (2010), Chaudhuri and Zivot (2011). Our

presentation can be adapted to the more sophisticated version of the aforementioned tests that

were introduced in Andrews (2017), but that is not done here for simplicity and brevity.

To present the re�ned projection score test for the null hypothesis (2) on �1, treating �2 as the

nuisance parameters, it will be useful to introduce the natural partition of ln
�
�; �G(�); �V (�)

�
and In

�
�; �G(�); �V (�)

�
conformable to the partition of � = (�01; �

0
2)
0 as

ln
�
�; �G(�); �V (�)

�
=

24 l1;n
�
�; �G(�); �V (�)

�
l2;n

�
�; �G(�); �V (�)

�
35 ;

In
�
�; �G(�); �V (�)

�
=

24 I11;n
�
�; �G(�); �V (�)

�
I12;n

�
�; �G(�); �V (�)

�
I21;n

�
�; �G(�); �V (�)

�
I22;n

�
�; �G(�); �V (�)

�
35 ;

l1:2;n
�
�; �G(�); �V (�)

�
= l1;n (:; :; :)� I12;n (:; :; :) I�122;n (:; :; :) l2;n (:; :; :) ;

I11:2;n
�
�; �G(�); �V (�)

�
= I11;n (:; :; :)� I12;n (:; :; :) I�122;n (:; :; :) I21;n (:; :; :)

(11)

where the right hand side of the last two lines above use (:; :; :) to denote
�
�; �G(�); �V (�)

�
to

avoid notational clutter. Using the notation in (11), it is straightforward to decompose the score

statistic in (10) as follows:

LMn

�
�; �G(�); �V (�)

�
= LM2;n

�
�; �G(�); �V (�)

�
+ LM11:2

�
�; �G(�); �V (�)

�
(12)

11



where, borrowing the maximum-likelihood-terminology from Cox and Hinkley (1974),

LM2;n

�
�; �G(�); �V (�)

�
= l02;n

�
�; �G(�); �V (�)

�
I�122;n

�
�; �G(�); �V (�)

�
l2;n

�
�; �G(�); �V (�)

�
;

LM1:2;n

�
�; �G(�); �V (�)

�
= l01:2;n

�
�; �G(�); �V (�)

�
I�111:2;n

�
�; �G(�); �V (�)

�
l1:2;n

�
�; �G(�); �V (�)

�
are respectively the score statistic for �2 and the e¢ cient score statistic for �1. The e¢ cient score

statistic LM1:2;n

�
�; �G(�); �V (�)

�
expressed at � =

�
�10; �

0
2

�
can be seen as Neyman (1959)�s

C(�) statistic for testing H0 : �1 = �10: Interestingly, this test has under standard regularity

conditions an asymptotic distribution that is invariant to
p
n-local perturbation of �2 from the

truth �02; see, e.g., Bera and Bilias (2001). So the unknown nuisance parameter �
0
2 can be

replaced by a
p
n-consistent estimator without altering the asymptotic distribution of the C(�)

statistic.

Another important fact is that LM1:2;n

�
�; �G(�); �V (�)

�
can be constructed using any choice

of implied probabilities (including 1=n) for the Jacobian or the variance matrix, which will now

allow us to explore the improved performance of the re�ned projection score test idea for the

null hypothesis H0 : �1 = �10 in (2) with the use of these implied probabilities.

3.2 Re�ned projection score test using the implied probabilities

To test the null hypothesis H0 : �1 = �10; we propose to use the re�ned projection score test,

as in Chaudhuri (2008), Zivot and Chaudhuri (2009), Chaudhuri et al. (2010), Chaudhuri and

Zivot (2011), but with the accommodation for the various choice of implied probabilities. The

test is conducted in two steps:

� Step 1: Construct a 100(1 � �)% con�dence interval CH0
(�2; 1 � �) for �2 under the

restriction of the null hypothesis H0 : �1 = �10. CH0(�2; 1 � �) is a random subset of the

parameter space �2 of �2 and is de�ned as follows:

CH0
(�2; 1� �) =

�
�2 2 �2 j n�gTn (�10; �2)

h

̂n(�10; �2)

i�1
�gn(�10; �2) � �2dg (1� �)

�

where �2a(b) denotes the b-th quantile of a chi-square distribution with a degrees of freedom.

� Step 2: Reject the null hypothesis H0 : �1 = �10 if either CH0
(�2; 1� �) is empty or

inf
�22CH0 (�2;1��)

LM1:2;n

�
�10; �2; �

G(�10; �2); �
V (�10; �2)

�
� �2d�1 (1� �)

where d�1 is the dimension of �1. When deemed necessary, one should impose �
G
i;n(�10; �2) 6=
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1=n following Kleibergen (2002, 2005) to be robust to weak identi�cation of �.

Step 1 corresponds to inverting the S-test of Stock and Wright (2000). In special cases,

such as the linear instrumental variables regression with conditionally homoskedastic error,

CH0
(�2; 1� �) can be obtained analytically using closed-form formula presented in Dufour and

Taamouti (2005). Moreover, Sun (2018) provides a STATA command �twostepweakiv" with

the �project" option to obtain con�dence intervals for �1 based on the version of this re�ned

projection test from Chaudhuri and Zivot (2011).

The di¤erence between the re�ned projection test and the Newey and West (1987), Kleiber-

gen (2002, 2005) or Guggenberger and Smith (2005) score test is that the former does a projec-

tion of LM1:2;n(:) from CH0(�2; 1 � �) while the latter plugs in an estimator of �2 in LMn(:)

that makes LM2;n(:) in (12) zero. This di¤erence enables the re�ned projection test to guard

against uncontrolled over-rejection of a true H0 under weak identi�cation. All these tests are

asymptotically equivalent under strong identi�cation thanks to the C(�) form of LM1:2;n(:).

On the other hand, the re�nement provided by the re�ned projection test over the standard

projection test principle is two-fold. First, the projection is done from CH0(�2; 1� �) instead of

from�2, as is done by the latter. Second, the test statistic and critical values used are LM1:2;n(:)

and �2d�1 (�) instead of LMn(:) and �2d� (�), as is done by the standard projection score test.

The restricted projection from CH0
(�2; 1 � �) instead of from �2 and the use of the smaller

critical values based on the degrees of freedom d�1 instead of d� of the chi-squared distribution

is what makes the re�ned projection test more powerful than the standard projections tests, see

also Zivot and Chaudhuri (2009), Chaudhuri et al. (2010), and Chaudhuri and Zivot (2011).

Without the weak identi�cation problem, the re�ned projection test is the e¢ cient test in the

sense of Newey and West (1987). The standard projection score test is less powerful. In presence

of weak identi�cation, both the standard projection score test and the re�ned projection score

test guard against uncontrolled over-rejection of the truth, while the Newey and West (1987),

Kleibergen (2002, 2005) or Guggenberger and Smith (2005) score tests do not do so.

The following proposition makes precise the statement about �uncontrolled over-rejection"

and �e¢ cient test" made above. For brevity we list the technical assumptions �, SW and D

in the Appendix. These additional assumptions are essential for establishing the asymptotic

properties of the re�ned projection test in Chaudhuri and Zivot (2011) to which we refer the

readers for the proof. Then, by appealing to the results in Propositions 1 and 2 that were

obtained under Assumptions 1, 2, and �, the results stated in Proposition 3 follow directly.

Proposition 3 Let Assumptions 1, 2, �; and the three assumptions �, SW and D, stated in
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the Appendix, hold. Then we obtain the following results for the re�ned projection score test

using the implied probabilities in (8):

(i) The asymptotic size of the test cannot exceed �+ � for any choice of � > 0 and � > 0 with

�+ � < 1 under a restriction in (8) that �Gi;n(�) 2
n
�̂
(
)
i;n (�); 
 2 R

o
.

(ii) If all elements of � are strongly identi�ed as in Newey and West (1987), and �10 = �
0
1 +

b=
p
n, then the test with any given � > 0; such that CH0

(�2; 1 � �) is non empty, is

asymptotically equivalent to the infeasible e¢ cient score test that rejects H0 : �1 = �10 if

LM1:2;n

�
�10; �

0
2; 1=n; 1=n

�
� �2d�1 (�).

Remark: The tests discussed here involving various implied probabilities have the same �rst

order asymptotic properties as the test in Chaudhuri and Zivot (2011). Indeed, their asymptotic

size cannot exceed � + � , and if there is no problem of weak identi�cation then for any choice

of � (howsoever small or large) these tests are asymptotically equivalent to the asymptotically

e¢ cient infeasible score test with asymptotic size �. So, with strong identi�cation, the asymp-

totic size of this test is � provided the �rst-step con�dence interval is non-empty. The results

in Chaudhuri and Renault (2020) suggest that the use of the implied probabilities could lead to

better properties in �nite samples. This is precisely what we �nd in the Monte Carlo experiment

described below.

4 Monte Carlo experiment

The improvement in the �nite-sample size properties of tests by the use of implied probabilities

is well known. The characterization of the asymptotic size described in Proposition 3(i) of the

re�ned projection test appeals to the Bonferroni inequality applied to the size properties of

two full vector score tests. Guggenberger and Smith (2005) and Chaudhuri and Renault (2020)

document evidence that the �nite-sample size of full vector score tests with various implied

probabilities is similar to their nominal level under various scenarios involving di¤erent strength

of identi�cation. This will be con�rmed here in our simulations.

On the other hand, less attention has been paid to the matter of improvement in power;

Chaudhuri and Renault (2020) is an exception but only when testing a full vector (�, and not

�1). However, there is a big di¤erence between the power of a test for the full vector � versus

a test for subset of � and the main advantage of the re�ned projection test concerns its power.

Therefore, we will primarily focus on the power properties of the re�ned projection score test

for �1, compared to that of the plug-in tests. Since the power properties of the plug-in tests

14



are better understood when parameters � are strongly identi�ed (see Andrews (2017)), we will

maintain strong identi�cation of � in this section.

4.1 Design

In this section, we examine a model that is not subject to weak identi�cation but is instead

a¤ected by large higher-order moments leading to di¢ cult estimation of the variance matrix.

We generate

Wi � i.i.d Gamma(exp(�01) = 1; exp(�02) = 2) for i = 1; : : : ; n

where �01 = ln(1) = 0 and �02 = ln(2). We exploit the �rst two moments of the Gamma

distribution, i.e., E[Wi] = exp(�
0
1+ �

0
2) and E[W

2
i ] = exp(�

0
1+2�

0
2)+ exp(2�

0
1+2�

0
2) to conduct

the score tests. Consequently, the moment vector is de�ned as

g(Wi; (�1; �2)) =

24 Wi � exp[�1 + �2]

W 2
i � exp[�1 + 2�2]� exp[2�1 + 2�2]

35
and it satis�es the moment restrictions in (1) for � = �0 = (�001 ; �

00
2 )

0. The Jacobian does not

depend on Wi, so implied probabilities are not involved in its estimation. The elements of the

moment vector g(Wi; �
0) are skewed. Indeed the skewness of the �rst element is 2, while that of

the second element is approximately 6.6. Moreover, the two elements of the moment vector are

strongly leptokurtic with fourth moments equal to 144 (kurtosis = 36) and 8687616 (kurtosis =

84.84) respectively. Hence, the estimation of the variance might be problematic and, therefore,

appropriate weighting for the estimator of the variance matrix might be crucial.

4.2 Results

There is no weak identi�cation issue in this design. Hence, without the fear of over-rejection

of the truth, according to the �rst-order asymptotics, one could plug in the restricted GMM

estimator of �2 in the second-step test statistic LM1:2;n(:) instead of minimizing the test statistic

LM1:2;n(:) over values of �2 in the �rst-step con�dence interval. This is similar in spirit to Newey

and West (1987)�s score test. Taking advantage of the C(�) form of LM1:2;n(:)�s asymptotic

invariance to
p
n-local deviation of �2 from �02, we will plug in the computationally convenient

restricted GMM estimator of �2 in LM1:2;n(:). We will consider this plug-in version of the score

test for three popular choices: (i) �G(:) = �V (:) = 1=n; (ii) �G(:) = �V (:) = �̂(1)(:), i.e., the

EEL implied probabilities; and (iii) �G(:) = �V (:) = �̂(�1)(:), i.e., the EL implied probabilities.
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We will similarly consider each of these choices for the re�ned projection score test with two

choices � = 1% and � = 5% for the �rst-step con�dence interval. Asymptotic theory says that

all tests considered here are asymptotically equivalent and e¢ cient in this case.

To explore the �nite-sample properties of the tests, we run 5000 Monte-Carlo trials for the

sample sizes n = 100 and 1000: The theoretical size is � = 5% for all tests. Table 1 contains

the rejection rate of the null H0 : � = �10 of all these tests for a grid of deviations from the null,

i.e., �10 � �01. The columns contain rejection rates for the plug-in score test and our re�ned test

with two values of � , � = 1%; 5%. The row with �10 � �01 = 0 corresponds to the empirical size

of the tests.

nominal level Plug-in and re�ned projection score tests with � = 5% and � = 1%
� = 5% �G(:) = �V (:) = 1=n �G(:) = �V (:) = �̂(1)(:): EEL �G(:) = �V (:) = �̂(�1)(:): EL

n �10 � �01 plug-in � = 5% � = 1% plug-in � = 5% � = 1% plug-in � = 5% � = 1%

100 -1 99.7 99.3 98.4 97.5 96.3 95.2 99.5 99.4 98.9
100 -0.8 98.6 96.9 93.7 92.5 89.5 87.0 97.6 96.7 95.2
100 -0.6 93.4 87.7 79.2 78.4 72.3 67.3 91.2 88.7 83.5
100 -0.4 76.2 64.0 50.4 50.9 42.9 37.6 72.6 64.9 55.4
100 -0.2 42.1 28.6 18.1 20.3 15.2 12.2 39.1 29.3 21.3
100 0 10.6 6.1 2.9 7.8 5.6 4.6 13.0 7.7 5.4
100 0.2 6.6 6.1 6.0 21.8 18.6 17.9 26.1 20.5 20.1
100 0.4 34.4 34.4 34.4 57.4 50.8 48.5 68.4 63.8 63.6
100 0.6 74.4 74.4 74.4 76.4 66.5 61.6 94.7 93.4 93.4
100 0.8 92.3 92.3 92.3 62.5 49.0 43.1 99.8 99.8 99.8
100 1 96.2 96.2 96.2 37.8 23.2 18.5 100.0 100.0 100.0
1000 -0.3162 99.3 99.3 99.1 99.3 97.6 92.9 97.1 96.1 94.9
1000 -0.253 96.9 96.3 95.7 97.6 93.4 84.7 91.6 88.1 86.1
1000 -0.1897 86.9 84.9 83.1 91.2 81.5 68.4 76.4 71.1 67.1
1000 -0.1265 60.5 57.3 53.8 73.1 56.9 41.4 48.1 42.3 37.5
1000 -0.0632 25.6 23.2 20.6 39.5 24.7 14.8 18.9 14.9 12.4
1000 0 6.2 5.6 4.8 11.9 6.1 3.1 6.8 4.8 4.0
1000 0.0632 11.4 11.4 11.3 15.8 7.4 5.8 21.3 18.8 18.8
1000 0.1265 45.1 45.1 45.1 33.2 16.0 13.0 61.1 58.2 58.2
1000 0.1897 85.6 85.6 85.6 24.8 13.3 11.1 92.0 90.8 90.8
1000 0.253 98.5 98.5 98.5 8.9 5.1 4.3 99.5 99.4 99.4
1000 0.3162 100.0 100.0 100.0 1.5 1.0 0.8 100.0 100.0 100.0

Table 1: Experiment I: Finite-sample rejection rate (in %) of score tests for H10 : �1 = �10 with
nominal level � = 5%. Asymptotic size of re�ned projection test cannot exceed �+ � .

First, we analyze the size. We see that the plug-in version of the score test for all three

choices of �G(:); �V (:) over-rejects the true null. Over rejection goes down for the choices

�G(:) = �V (:) = 1=n and �G(:) = �V (:) = �̂(�1)(:) when sample size increases to n = 1000.

However, the re�ned projection version of the score test for all three choices largely solves this
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problem of over-rejection of the truth even when n = 100. Importantly, we see that the choice of

� = 1% versus � = 5% for the re�ned projection does not much a¤ect the �nite-sample rejection

rate of the truth under this strong identi�cation setup.

Moving to the discussion of power, we see that the re�ned projection test has a good power

in small samples. Now, comparing the choices �G(:) = �V (:) = 1=n, �G(:) = �V (:) = �̂(1)(:),

�G(:) = �V (:) = �̂(�1)(:), we see that the �nite sample-power of the third choice, i.e., EL, is

much better than of the other two. The lower power in small samples for the choice �G(:) =

�V (:) = 1=n supports that orthogonalization by the implied probabilities in the variance matrix

estimator is important for power. However, do note that the �G(:) = �V (:) = �̂(1)(:) (EEL)

delivers the worst power in spite of the orthogonalization by the implied probabilities in the

variance matrix estimator. This happens because the EEL implied probabilities can be negative,

which rules out the positive (semi-)de�niteness of the variance estimator and, in turn, leads to

an unduly small LM1:2;n(:) under false null hypotheses. The shrinkage of the EEL implied

probabilities to make them positive, as suggested in Antoine et al. (2007) and extensively used

in Chaudhuri and Renault (2020), can alleviate this problem of poor power to some extent but

is not investigated here.

The re�ned projection test with the EL implied probabilities is the clear winner in terms of

size and power. Its superiority is more prominent in the smaller sample where it matters more.

Another Monte Carlo experiment using a linear instrumental variables regression con�rms

the good size and power of our test1 .

5 Application to the impact of veteran status on earnings

Following Chaudhuri and Rose (2009), we propose to estimate the e¤ect of veteran status on

future earnings for the Vietnam war veterans in the United States by running an instrumental

variables regression of log annual earnings on the dummy variable veteran status and a variety

of control variables related to both earnings and veteran status. One important variable which

in�uences earnings is the years of schooling. However, since schooling is related to some unob-

servable variable (�ability") that is related to both earnings and veteran status, it is obviously

endogenous. So, we wish to estimate a regression of the log earnings on both veteran status and

schooling2 . Given both regressors are endogenous, we need to use instrumental variables.

1The results are available from the authors upon request.
2The causal question in this empirical illustration is a di¢ cult one due to the nature of the relationship between

veteran status and schooling. First, veteran status can help increase the years of schooling because of the subsidy
provided by the GI Bill. Hence, schooling can be a mediator through which veteran status a¤ects wages. Second,
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Angrist (1990, 1991) used the Vietnam Era draft lottery that determined the draft eligibility

of individuals, to instrument for an individual�s veteran status in the Vietnam war. A popular

choice of instrument for schooling since Card (1995, 1999, 2001) has been the presence of colleges

in the neighborhood of where the individual grew up. Following these seminal references, we

use four instrumental variables: (i) the lottery number assigned to the individual based on his

date of birth, (ii) the lottery ceiling for the year when this individual attained draft age, (iii) a

dummy variable indicating the presence of a 4 year accredited public college, and (iv) a dummy

variable indicating the presence of a 4 year accredited private college in the neighborhood of the

individual�s residence in 1966.

Partialling out the control variables from the system by taking the residuals from a regression

of the concerned variables on those controls and the intercept, we will focus on instrumental

variables regression model

yi = X1i� +X2i�2 + ui

with moment vector

g(Wi; �) = Zi(yi �X1i�1 �X2i�2)

where yi; X1i; X2i denote the residuals from the regression on the controls and the intercept of

the variables log earnings, veteran status, years of schooling respectively, and Z is the 4 � 1

vector of instruments.

We use the same data3 as in Chaudhuri and Rose (2009), which was obtained from the

National Longitudinal Survey of Young Men. The sample includes 1080 (i.e. 39%) veterans

and 1674 non-veterans. In this data set, the instruments are weak for both veteran status and

schooling with the �rst stage F statistic equal to 8.46 and 2.53 respectively.

Using this data, Chaudhuri and Rose (2009) implemented a variety of plug-in methods,

namely the subset-K, subset-KJ and subset-CLR tests, and obtained a signi�cant (at the 5%

level) negative e¤ect of veteran status. However, these tests are not reliable in the presence of

weak identi�cation as shown by Guggenberger et al. (2012) and Andrews (2017).

The only genuinely weak-identi�cation robust method used in Chaudhuri and Rose (2009)

was the so-called subset-Anderson Rubin test proposed by Guggenberger et al. (2012). The

subset-AR test led to a 90% con�dence interval for the coe¢ cient of the veteran status whose

upper bound was approximately .095, signifying that rather large positive e¤ects of veteran

the draft avoidance behavior of individuals was often enacted by enrolling in college and thereby increasing years of
schooling. That is, the decision to join the military or continuation of schooling were often made simultaneously. A
more complete analysis is beyond the scope of this paper.

3The dataset is available on https://saraswata.research.mcgill.ca/MC_SC_Data.xlsx
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status � 100(exp(:095) � 1) = 9:97% increase in wage � could not be ruled out. The lower

bound of the subset-AR con�dence interval asymptoted to �1, which was a consequence of weak

identi�cation. The inclusion of positive values in the con�dence rendered this test inconclusive.

The subset-AR test can be conservative when the e¤ective number of over-identifying re-

strictions (the number of instruments minus the dimension of �2, in this case 4�1 = 3) is larger

than the number of restrictions in the null (in this case, 1) being tested. Therefore, a priori

there is reason to believe that the re�ned projection test, that is the e¢ cient test under strong

identi�cation but also robust to weak identi�cation, might alter the conclusion of the subset-AR

test.

Indeed this is what we �nd with the re�ned projection test using EL implied probabilities

�G(:) = �V (:) = �̂(�1)(:). This con�dence interval also includes implausibly large negative values

(consequence of weak identi�cation), however its upper bound is less than zero supporting the

hypothesis that the veteran e¤ect is negative.

For a visual illustration, Figure 1 presents two plots against various values of �10 of H0 : �1 =

�10 � (i) the subset-AR statistic minus the �23(1� :1), i.e., the tests statistic minus the 10% crit-

ical value for the subset-AR test, and (ii) the second step test statistic for the re�ned projection

test minus the second step critical value, i.e., inf�22CH0 (�2;1��) LM1:2;n

�
�10; �2; �

G(�10; �2); �
V (�10; �2)

�
�

�21(1� �) for the choice: � = � = :05. We take the function plotted for (ii) as +1 if the �rst-

step con�dence interval is empty (that automatically rejects H0 : �1 = �10 without requiring

the second step). The values �10 for which these two plots are below the horizontal red dotted

line at zero are those that are included in the con�dence interval for the respective tests. The

vertical black dotted line is the zero e¤ect line. Inclusion of the blue or the green line in the

south-east quadrant of the graph means positive e¤ect is not ruled out by the concerned test.

We see that while the CI of the subset-AR test includes positive values, that of our re�ned test

includes only negative values which permits to conclude that the veteran e¤ect is negative.
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Figure 1: The values of �10 below the horizontal line are included in the con�dence interval obtained
by inverting the re�ned projection test (blue line) and the subset-AR test (green line).

6 Conclusion

In this paper, we propose a two-step approach for testing subvectors of parameters in models

characterized by a vector of moment restrictions. The �rst step is based on an identi�cation

robust con�dence interval of the parameter while the second relies on a score test. We show the

advantages of using implied probabilities obtained from Information Theory criteria to estimate

the Jacobian and variance matrix present in our score tests. These tests exploit e¢ ciently the

information content of the moment conditions. As a result, these tests have an empirical size

close to the theoretical size and their power is good. The resulting con�dence intervals are more

reliable than those from alternative tests in the presence of skewness and/or weak identi�cation.

The theoretical properties of our tests are derived for all the elements of the Cressie-Read family

including the Kullback Leibler Information Criterion. Finally, the empirical application brings

evidence that veterans have lower earnings than comparable nonveterans.
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7 Appendix

7.1 Assumptions involving weak identi�cation

All the following assumptions are discussed in detail in Chaudhuri and Zivot (2011). Without

loss of generality, we group the parameters into weakly and strongly identi�ed parameters. For

j = w; s, let �j = �1j+�2j , �j = (�
0
1j ; �

0
2j)

0 and�j = �1j��2j . This notation denotes the weakly

identi�ed parameters as �w and the strongly identi�ed parameters as �s. The true values are,

when convenient, regrouped as �0w = (�001w; �
0
02w)

0 and �0s = (�001s; �
0
02s)

0 respectively. When

necessary, N � � andNr � �r are generically used to denote non-shrinking open neighborhoods

of �0 and �0r for r = 1w; 1s; 2w; 2s; w; s; 1; 2 respectively. De�ne eN := Nw �N1s ��2s.

Assumption �: [partition of parameter space]

For l = 1; 2, let �l = �lw � �ls and for j = w; s, let �0lj 2 interior(�lj) where �lj � R�lj is

compact.

Assumption SW: [characterization of strong/weak identi�cation]

E[�gn(�)] = emn(�)=
p
n+m(�s) where

(a) emn(�) : � 7! Rdg is such that emn(�)! em(�) uniformly for � 2 eN where em(�) is bounded
and continuous and em(�0) = 0. For � 2 eN , fMn(�) := @ emn(�)=@�

0, fMn(�) ! fM(�)
uniformly. fM(�) = [fM1w(�);fM1s(�);fM2w(�);fM2s(�)] where, for l = 1; 2 and j = w; s, the

k � �lj matrix fMlj(�) is bounded and continuous.

(b) m(�s) : �s 7! Rdg is a continuous function and m(�s) = 0 if and only if �s = �0s. For

�s 2 N1s��2s,M(�s) := @m(�s)=@�0s is bounded and continuous. M(�0s) has full column

rank. Here, M(�s) = [M1(�s);M2(�s)] where Ml(�s) := @m(�s)=@�
0
ls for l = 1; 2.

Assumption D: [assumptions on the moment vector and its derivative]

D1. �Gn(�) := @�gn(�)=@�
0 = [G1wn(�); G1sn(�); G2wn(�); G2sn(�)] = E[ �Gn(�)]+op(1) uniformly

for � 2 eN where E[ �Gn(�)] = @E[�gn(�)]=@�
0 = fMn(�)=

p
n+[0;M1(�s); 0;M2(�s)] by impos-

ing interchangeability of the order of di¤erentiation and integration (and from Assumption

SW ).
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D2.
p
n
�
�g0n(�0); vec

0( �Gwn(�0)� E[ �Gwn(�0)])
� d�! [	Tg ;	

T
w] where

4

24 	g

	w

35 � N
0BB@0;�(�0) =

2664 �gg(�
0)

k�k
� V (�0) �gw(�

0)
k�k�w

�wg(�
0)

k�w�k
�ww(�

0)
k�w�k�w

3775
1CCA :

�gg(�) is bounded, continuous and positive de�nite. Re�ning Assumption 2 and with the

obvious correspondence of notation between the V �s and the ��s that make precise what the

estimators are, we also make the following assumptions. b�gg(�) p�! �gg(�) uniformly for � 2eN . �wg(�) is bounded and continuous. b�wg(�) := [b�01g(�); : : : ; b�0�1w;g(�); b�0�1+1;g(�); : : : ; b�0�1+�2w;g(�)]0
p�! �wg(�) uniformly for � 2 N .5 For l = �1w + 1; : : : ; �1; �1 + �2w + 1; : : : ; � the dg � dg

matrices b�lg(�) are such that b�lg(�)b��1gg (�) = Op(1) uniformly for � 2 N .
7.2 Proofs

In the proofs, we use the notation gi (�) = g(Wi; �):

Proof of Proposition 1:

(A) A mean-value expansion of the RHS of the (approximate) �rst-order condition of the

maximization problem in (5) gives,

oP

�
1p
n

�
=

1

n

nX
i=1

�1
�
�0�;n(�)gi(�)

�
gi(�)

=
1

n

nX
i=1

�1(0)gi(�) +
1

n

nX
i=1

�2(0)gi(�)g
0
i(�)��;n(�) +R�;n(�)

= ��gn(�)� 
̂n(�)��;n(�) +R�;n(�); (13)

where �vi are the mean-values satisfying j�vij � j�0�;n(�)gi(�)j for all i = 1; : : : ; n, and the re-

mainder term R�;n(�) =
1
n

Pn
i=1 [�2(�vi)� �2(0)] gi(�)g0(Wi; �)��;n(�). If we could ignore the

contribution of R�;n(�) in (13), we would get

��;n(�) = �
̂�1n (�)�gn(�) + 
̂
�1
n (�)� oP

�
1p
n

�
= OP

�
1p
n

�
:

since 
̂n(�) and 
̂�1n (�) are assumed to be OP (1) by assumption A2 and �gn(�) = OP (n�1=2) by

assumption A1 (i) and (iv). For this reason, if we can show that kR�;n(�)k = oP (n�1=2); then
4The partition of 	w(�) = [	01w(�);	

0
2w(�)]

0, �gw(�) = [�g1(�);�g2(�)] = �0wg(�) and �ww(�) = (�ll0(�))l;l0=1;2 is
conformable to the partition of �w = (�01w; �

0
2w)

0, the partition of the weakly identi�ed elements of � into those from
�1 and �2 respectively.

5 It is worth noting that the dg�dg matrix b�lg(�0) p�! �lg(�
0) = Asym.Cov(n�1=2@�gn(�0)=@�l; n�1=2�gn(�0)) where

�l is the l-th element (l = 1; : : : ; �1w; �1 + 1; : : : ; �1 + �2w) of �.
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it will be su¢ cient to establish result (A). This is what we prove next.

kR�;n(�)k =







 
1

n

nX
i=1

[�2(�vi)� �2(0)] gi(�)g0i(�)
!
��;n(�)







�






 1n
nX
i=1

[�2(�vi)� �2(0)] gi(�)g0i(�)





� k��;n(�)k

� max
1�i�n

j�2(�vi)� �2(0)j �





 1n

nX
i=1

gi(�)g
0
i(�)






� k��;n(�)k
� b� max

1�i�n
j�vij � (kV (�)k+ op(1))� k��;n(�)k

� b� max
1�i�n

jg0i(�)��;n(�)j � bmax(�)� k��;n(�)k

� b� max
1�i�n

kgi(�)k � bmax(�)� k��;n(�)k2

� b� bmax(�)� op(
p
n)� k��;n(�)k2 = oP

�
n�1=2

�
; (14)

by repeated use of Cauchy-Schwartz and triangle inequalities and because max1�i�n kgi(�)k =

oP (
p
n) and k��;n(�)k = OP (n�1=2). Therefore, result (A) follows.

(B) Expanding the numerator and denominator of the RHS of (6) around 0, and using the

result obtained in (A), we obtain for any given i = 1; : : : ; n

��;i;n(�) =
1
n

�
�1(0) + �2(0)�

0
�;n(�)gi(�) + f�2(�vi)� �2(0)g�0�;ngi(�)

�
1
n

Pn
j=1

�
�1(0) + �2(0)�

0
�;ngi(�) + f�2(�vj)� �2(0)g�0�;ng(Wj ; �)

�
=

1
n

h
�1(0)� �2(0)g0i(�)

n

̂�1n (�)�gn(�) + oP (n

�1=2)
o
+ f�2(�vi)� �2(0)g�0�;n(�)gi(�)

i
1
n

Pn
j=1

h
�1(0)� �2(0)g0i(�)

n

̂�1n (�)�gn(�) + oP (n�1=2)

o
+ f�2(�vj)� �2(0)g�0�;n(�)g(Wj ; �)

i
=

1
n

h
1� (gi(�)� �gn(�))0
̂�1n (�)�gn(�)

i
+RNUM;i;n

1� �g0n(�)
̂�1n (�)�gn(�) +RDEN;n
(15)

where the remainder terms in the numerator and the denominator are given by

RNUM;i;n :=
1

n
f�2(�vi)� �2(0)g�0�;n(�)gi(�)�

1

n
�2(0)g

0(Wi; �)� oP (n�1=2) +
1

n
�g0n(�)
̂

�1
n (�)�gn(�);

RDEN;n :=
1

n

nX
j=1

h
f�2(�vj)� �2(0)g�0�;n(�)g(Wj ; �)� �2(0)g0(Wi; �)� oP (n�1=2)

i
:

It is important to note that i is given (�xed) in the remainder term RNUM;i;n. Now following
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the same steps as in (A) to deal with the remainder term, we get for a given i = 1; : : : ; n

jRNUM;i;nj � 1

n
j�2(�vi)� �2(0)j � k��;n(�)k � kgi(�)k+

1

n
kgi(�)k � oP

�
1p
n

�
+
1

n
�g0n(�)
̂

�1
n (�)�gn(�)

� 1

n
b� j�0�;n(�)gi(�)j � k��;n(�)k � kgi(�)k+ kgi(�)k � oP

�
1

n3=2

�
+
1

n
k�gn(�)k2 � b�1min(�)

� 1

n
b� k��;n(�)k2 � kgi(�)k2 + kgi(�)k � oP

�
1

n3=2

�
+
1

n
k�gn(�)k2 � b�1min(�);

= OP

�
1

n1+1

�
�OP (1) +OP (1)� oP

�
1

n3=2

�
+OP

�
1

n1+1

�
= oP

�
1

n3=2

�
(16)

because kgi(�)k = OP (1) by A1(iii), k�gn(�)k = OP (n
�1=2) by A1 (i) and (iv), and ��;n(�) =

OP (n
�1=2) by (A). Finally, we want to derive the order of magnitude of jRDEN;nj. Using a

similar technique as before, we obtain that

jRDEN;nj � 1

n

������
nX
j=1

f�2(�vj)� �2(0)g�0�;n(�)g(Wj ; �)

������+ k�gn(�)k � oP (n�1=2)
� max

1�j�n
j�2(�vj)� �2(0)j � k�gn(�)k � k��;n(�)k+ k�gn(�)k � oP (n�1=2)

� b� max
1�j�n

j�0�;n(�)gj(�)j � k�gn(�)k � k��;n(�)k+ k�gn(�)k � oP (n�1=2)

� b� max
1�j�n

kgj(�)k � k�gn(�)k � k��;n(�)k2 + k�gn(�)k � oP (n�1=2)

= oP

�
n1=2�3=2

�
+ oP (n

�1) = oP (n
�1)

because max1�j�n kgj(�)k = oP (
p
n) by Assumption 1(ii) while by (A) we have ��;n(�) =

OP (n
�1=2). Moreover, �g0n(�)
̂

�1
n (�)�gn(�) in the denominator of (15) isOP (n�1) because k�gn(�)k =

OP (n
�1=2) as before. Therefore, the whole denominator of (15) is 1 +OP (n�1). Consequently,

result (B) follows from (15) and (16).

Proof of Proposition 2:

(A) This result follows directly from the de�nition of the �EEL;i;n(�) and (vi).

(B) Since our result in Proposition 1(B) is not uniform in i; we cannot appeal tomax1�i�n j��;i;n(�)�

�EEL;i;n(�)j after applying Cauchy-Schwartz inequality. Alternatively, we directly work with

the expression of the di¤erence f��;i;n(�)� �EEL;i;n(�)g = RNUM;i=(1+oP (1) obtained in (15).

To simplify notations, we denote eYi;n := Yi;n�E[ �Yn], gi := gi(�), �gn := �gn(�), 
̂n := 
̂n(�) and
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� := ��;n(�). Accordingly, using Proposition 1(A), and assumptions A1 and A2, we obtain




pn
nX
i=1

eYi;n f��;i;n(�)� �EEL;i;n(�)g







�





 1n

nX
i=1

f�2(�vi)� �2(0)g eYi;ng0ipn�





+ oP (1)�






 1n
nX
i=1

eYi;ng0i





+ �g0n
̂�1n �gn �






 1p
n

nX
i=1

eYi;n







�

vuut 1

n

nX
i=1

f�2(�vi)� �2(0)g
2 �






 1n
nX
i=1

eYi;ng0i





� 

pn�

+ oP (1)�






 1n
nX
i=1

eYi;ng0i





+ �g0n
̂�1n �gn �






 1p
n

nX
i=1

eYi;n







� b�

vuut 1

n

nX
i=1

j�0gij2 �





 1n

nX
i=1

eYi;ng0i





� 

pn�

+ oP (1)�






 1n
nX
i=1

eYi;ng0i





+ �g0n
̂�1n �gn �






 1p
n

nX
i=1

eYi;n







� b�

vuut 1

n

nX
i=1

kgik2 �





 1n

nX
i=1

eYi;ng0i





�pn k�k2 + oP (1)�






 1n
nX
i=1

eYi;ng0i





+ �g0n
̂�1n �gn �






 1p
n

nX
i=1

eYi;n







= OP (1)�OP (1)�OP (n�1=2) + oP (1)�OP (1) +OP (n�1)�OP (1) = oP (1);

from the standard arguments, for example, kn�1
Pn

i=1
eYi;ng0ik � kn�1

Pn
i=1

eYi;n(gi � �gn)0k +
k( �Yn � E[ �Yn])�gnk � kVY gk+ oP (1) +OP (n�1=2kVY Y k)�OP (k�gnk) = OP (1).
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