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1 Introduction

As announced by Stock and Watson (2011)’s popular textbook of econometrics, it has been

widely accepted since the seminal work of White (1980) that “despite the theoretical appeal

of WLS, heteroskedasticity robust standard errors provide a better way to handle potential

heteroskedasticity in most applications”. Angrist and Pischke (2010) go as far as reporting

the “near-death of generalized least squares in cross sectional applied work”. None of this is

surprising because if the user’s parametric model for heteroskedasticity is incorrect, which is

perhaps the norm rather than the exception, then WLS can be even less precise than OLS.

In this paper we show that, irrespective of the correctness of the user’s parametric model

for heteroskedasticity, we always have a well-defined optimal weighting strategy that domi-

nates OLS, WLS and its recently proposed refinements. Up to regularity conditions, the only

constraint on the specification of the user’s parametric model for heteroskedasticity is that

it must contain conditional homoskedasticity as a particular case. Thus, while we agree with

Stock and Watson (2011) that the functional form of conditional heteroskedasticity is rarely

known, we demonstrate that it is not a sufficient reason to overlook possible improvements

in accuracy brought by target-driven reweighting of the observations. Even though we could

put forward a broader scope for validity (see Appendix B), our analysis is valid within a

general regression framework — including instrumental variables or nonlinear regressions —

as long as the regression is defined by a conditional expectation condition.

By: (i) referring to regressions defined by conditional expectations, (ii) using parametric

models that may be incorrect for conditional heteroskedasticity but nest conditional ho-

moskedasticity, and (iii) always using heteroskedasticity robust standard errors, we remain

true to the research agenda of “resurrecting WLS”put forward by Romano and Wolf (2017).

Romano and Wolf (2017) propose an adaptive least squares (ALS) estimator that is WLS

if a test of homoskedasticity based on the user’s parametric model rejects homoskedasticity,
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and is OLS otherwise. ALS can improve upon WLS in small samples under conditional

homoskedasticity. However, ALS is asymptotically equivalent to WLS, and hence ALS can

also be less precise than OLS under conditional heteroskedasticity if the user’s parametric

model for heteroskedasticity is incorrect. ALS is not designed for optimality in such cases.

DiCiccio et al. (2019) address this issue by focusing on the asymptotic variance of the es-

timator of a scalar component of the regression coefficients and choosing accordingly between

OLS and WLS or some optimal combination thereof. The estimator choosing WLS or OLS

depending on which one has MINimum standard error is their MIN estimator. The estimator

constructing an optimal Convex Combination of OLS and WLS is their CC estimator.

In a different vein, Lu and Wooldridge (2020) build on Cragg (1983) to construct an

optimal GMM estimator by combining the moment restrictions of OLS andWLS, to ensure at

least as much precision as OLS or WLS estimators for the full vector of regression coefficients.

In our paper, we wish to further advance this new research agenda of “resurrecting

WLS”. We propose a targeted estimation method that takes a direct route to optimality

and improves upon all the aforementioned methods (and others). Our key idea is twofold:

On the one hand, we follow DiCiccio et al. (2019) to acknowledge the need of targeting

a scalar function of the regression coefficients to define our optimality criterion.

On the other hand, by contrast with Romano and Wolf (2017), DiCiccio et al. (2019) or

Lu and Wooldridge (2020), we do not limit the search for optimality to only OLS and WLS.

There is generally no reason to assume that the user’s parametric model for heteroskedasticity

is correct. Fortunately, an incorrect model does not cause biased estimates of regression

coefficients. Therefore, we contend that the user’s model should be utilized in a way such that

the weights for reweighting observations are chosen to minimize the asymptotic variance of

the estimator of the target. The goal is accurate estimation of the target and not necessarily

least squares approximation of the true skedastic function, as implicitly performed by WLS.

We are not the first to follow this route. Cragg (1992) minimized the trace or determinant
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of the asymptotic variance matrix of a weighted least squares estimator of all the regression

coefficients with respect to the parameters in the user’s model for heteroskedasticity. While

Cragg (1992) does not discuss it, his minimization of trace or determinant corresponds to the

notion of A or D optimality from the design of experiments literature. This could be appeal-

ing since a minimized asymptotic variance matrix for the full vector of regression coefficients

may not even exist if the user’s parametric model for heteroskedasticity is incorrect.

Unfortunately, without that existence, Cragg (1992)’s standard errors may be larger than

that of WLS or even OLS estimators of specific regression coefficients. This is not desirable.

Therefore, while we also optimize with respect to the parameters in the user’s model for

heteroskedasticity, we argue that, unlike Cragg (1992)’s aggregate measures, the quantity to

be optimized should be the estimation accuracy of scalar targets that directly align with the

objects of empirical interest — individual coefficients, marginal effects, predictions, etc. We

will show that this subtle difference due to our proposal delivers big improvements over all

methods even when Cragg (1992)’s estimators themselves are less precise than WLS or OLS.

For our scalar target, we optimize the asymptotic variance of estimators following from

three strategies that are in increasing order of precision and computational complexity. A

common feature of these strategies is to refer to a given user-specified parametric model for

heteroskedasticity, where the skedastic function is a known function of observations and of

a finite dimensional vector γ ∈ Γ of unknown parameters. To fix ideas without introducing

many notation, for any scalar target parameter, let us generically denote by WLS(γ) the

weighted least squares estimator computed with weights defined by the value γ of the user’s

model parameters. Thus, the classical version of WLS, referred to as WLS throughout, is

asymptotically equivalent to WLS(γWLS) where γWLS is the value of γ that makes the user’s

model the closest to the true unknown skedastic function in terms of mean squared error.

Our first strategy, that we refer to as “Targeted WLS” (TWLS), is asymptotically equiv-

alent to WLS(γ∗
TWLS) where γ∗

TWLS is the asymptotic variance minimizer of WLS(γ). The

4



term “Targeted”emphasizes that the choice of γ and, hence, the weights is target-driven.

Thus, while γWLS does not change with targets, γ∗
TWLS will change with the target in gen-

eral if the user’s model for heteroskedasticity is incorrect. By construction, TWLS is at least

as precise as OLS, WLS(γWLS), Cragg (1992)’s estimators, Romano and Wolf (2017)’s ALS

estimator and DiCiccio et al. (2019)’s MIN estimator for the given scalar target.

Our second strategy improves upon the first by considering convex combinations of OLS

and WLS(γ). The variance minimizing convex combination of OLS and WLS(γWLS) was

introduced by DiCiccio et al. (2019) as their CC estimator. By contrast, we do not limit

ourselves to WLS(γWLS). We obtain our “Targeted Convex Combination” (TCC) estimator

as follows. First we obtain an optimal convex combination of OLS and WLS(γ) by finding

the λ∗(γ) ∈ [0, 1] that minimizes the asymptotic variance of (1−λ)OLS+λWLS(γ). Then,

we choose the optimal γ∗
TCC that minimizes the asymptotic variance of (1 − λ∗(γ))OLS +

λ∗(γ)WLS(γ). DiCiccio et al. (2019)’s CC estimation does not do this key step of variance

minimization with respect to γ but uses γWLS that, as we will show, can lead to substantial

suboptimality when the user’s model for heteroskedasticity is incorrect. By construction,

TCC is at least as precise as CC and also all the estimators noted under strategy one.

Our third strategy, in the spirit of Chen et al. (2016), involves matrix extensions of

convex combinations of estimators with matrix weights summing to the identity matrix.

By contrast with TCC, now the first step minimizes the asymptotic variance of the matrix

combination of the OLS and WLS(γ) estimators of the entire vector of regression coefficients,

while the second step minimizes with respect to γ the asymptotic variance of the targeted

scalar function of the optimal matrix combination estimator from step one. Since the first

step turns out to be the optimal GMM-combination of the concerned moment functions, we

call the resulting estimator the “Targeted GMM” (TGMM) estimator (and the minimizing

γ, γ∗
TGMM). TGMM is an improvement over Lu and Wooldridge (2020)’s GMM estimator

in the same way as TWLS is an improvement over WLS(γWLS), or TCC over CC.
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Our three strategies are asymptotically equivalent to WLS if the user’s model for het-

eroskedasticity is correct, in which case WLS is indeed optimal and γWLS = γ∗
TWLS = γ∗

TCC =

γ∗
TGMM for any target. On the other hand, if the user’s model is incorrect, then this equality

of the γ’s may not hold and our strategies provide (weakly) more precision than WLS, with

TGMM being the optimal one asymptotically. Our strategies, however, do not encompass

Gourieroux et al. (1996), Spady and Stouli (2019), Papadopoulos and Tsionas (2022) and

others who impose additional structure to propose estimators under heteroskedasticity.

Our takeaway message is that our proposed targeting is harmless, at least asymptotically,

and when the user’s model for heteroskedasticity is incorrect it can, in fact, increase precision.

Under each of our three strategies, targeting delivers asymptotic variance and, incidentally,

empirical (Monte Carlo) mean squared errors that are as good as and often much better

than that of the contenders. Thus, targeting is ranked the best among the estimators under

each strategy. On the other hand, there is a tension among our three strategies in the

sense that while TWLS is the easiest and TGMM is the hardest computationally, we can

formally establish that TWLS cannot be more precise than TCC which, in turn, cannot be

more precise than TGMM. Also, our simulations find TGMM may sometimes be flawed by

small-sample issues that warrants a maintained interest in TCC and TWLS.

Lastly, it is worth noting that targeting does not search for parametric models to obtain a

significant result. Rather, it takes the user’s/expert’s model as given. And, then, it searches

for the target-specific optimal γ-value (leading to optimal weights) given this model. Our

estimate of the target parameter obtained under each strategy may or may not be significant,

but is nevertheless the most precise one asymptotically that one could obtain under that

strategy and given the user’s/expert’s choice of the parametric model for heteroskedasticity.

Our paper is organized as follows.

Section 2 defines targeted estimation in regression models, makes explicit the need to

focus on scalar functions of the regression coefficients as target parameters of interest, in-
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troduces the TWLS estimator, and characterizes its properties. To emphasize the benefit of

our way of proper targeting without going into the more complicated estimation methods,

Section 2 also performs Romano and Wolf (2017)’s Monte Carlo experiment using the well-

known Boston housing data, and shows that improper targeting by Cragg (1992)’s estimators

leads them to be much less precise than not only TWLS but also even WLS and OLS.

Section 3 builds on the targeting idea and applies it to the combination of estimators

and moment restrictions proposed by DiCiccio et al. (2019) and Lu and Wooldridge (2020).

While the same idea could be applied more generally (see Appendix B that builds on Chen

et al. (2016)), here we focus on OLS and WLS following the recent literature on “resurrecting

WLS”. TCC and TGMM estimators are the products of our application of targeting to the

combination of estimators and moment restrictions respectively.

Section 4 presents the superior small-sample empirical mean squared error of our proposed

estimators over OLS, WLS, and the recently proposed ALS, MIN, CC, GMM estimators,

under the Monte Carlo designs of Romano and Wolf (2017) and Lu and Wooldridge (2020).

It also refers to favorable comparison with semiparametric WLS in Appendix C. There is not

much cost to inference in terms of over-rejection of the truth. We also see precision gains by

our proposed estimators when applied to Lu and Wooldridge (2020)’s empirical application.

Section 5 concludes. There is a Supplemental Appendix. Appendix A presents the well-

known expressions for the quantities used in Section 3, and proves the optimality result from

Section 3. Appendix B presents the theory connecting the affine combination estimators and

the GMM estimators by revisiting a main result of Chen et al. (2016). It is worth noting that

we also interpret these combinations through the lens of standard econometrics by casting

them as regression of OLS on the difference between OLS and WLS. Appendix C considers

the simulation designs in Miller and Startz (2019) and Gonzales-Coya and Perron (2024),

and provides comparisons favoring our proposed estimators over the classical semiparametric

WLS and the machine-learning-based semiparametric WLS estimators from those papers.
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2 Targeted estimation

2.1 The basic regression model

Our linear model with the unknown regression coefficients β = (β1, . . . , βp)
′ takes the form:

yi = β1 + β2xi,2 + . . .+ βpxi,p + ui(β) = x′
iβ + ui (β) (1)

where (yi, xi,2, . . . , xi,p) is independent and identically distributed (i.i.d.) for i = 1, . . . , n,

and the regressors xi = (xi,1, . . . , xi,p)
′ with xi,1 = 1 are not redundant, i.e., E [xix

′
i] is

nonsingular. The true unknown value β0 of β is well-defined by the conditional expectation

condition:

E[ui |xi] = 0 where ui := ui(β
0). (2)

Remark: Our results apply not only to the linear regression E[yi−x′
iβ

0 |xi] = 0, but also to

the nonlinear regression E[yi−m(xi, β
0) |xi] = 0 wherem (., .) is a known scalar function, and

to the IV regression E[yi−x′
iβ

0 |zi] = 0 with zi as instruments. In this last case, conditional

heteroskedasticity of the error term ui = yi − x′
iβ

0 must be understood given zi.

While setting the focus on the regression model (1), we define the unknown skedastic

function ω2
0 (xi) as the conditional heteroskedasticity, i.e., the conditional variance of the

error ui:

ω2
0 (xi) := E

[
u2
i |xi

]
> 0.

On the other hand, the user’s model for ω2
0 (xi), which is very likely incorrect, is given

by a parametric family:

ω2 (xi, γ) > 0, γ ∈ Γ ⊂ Rdγ . (3)

As is standard, we will always assume that this family nests the case of conditional

homoskedasticity, i.e., there exists γhom ∈ Γ such that ω2
(
xi, γ

hom
)
≡ ω2

hom, a constant.
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Examples: Romano and Wolf (2017) point out three commonly used parametric families

(and prefer Ex1) for the user’s model ω2 (xi, γ) in (3) for conditional heteroskedasticity:

Ex1: exp

(
γ1 +

p∑
j=2

γj log (|xi,j|)

)
, Ex2: γ1 +

p∑
j=2

γj |xi,j| , Ex3: exp

(
γ1 +

p∑
j=2

γjxi,j

)
.

γhom =
(
γhom
1 , 0, ..., 0

)′
for Ex1-Ex3. The parametric models may not contain ω2

0(xi).

2.2 Weighted Least Squares

For any γ ∈ Γ we define a weighted-by-ω2 (xi, γ) estimator of β as:

β̂ (γ) :=

(
n∑

i=1

xix
′
i

ω2 (xi, γ)

)−1 n∑
i=1

xiyi
ω2 (xi, γ)

. (4)

The mean independence condition (2) implies that under standard regularity conditions,

√
n
(
β̂ (γ)− β0

)
d−→ N(0,Σ (β0, γ)) with the asymptotic variance matrix Σ (β0, γ) given by:

Σ
(
β0, γ

)
:=

(
E

[
xix

′
i

ω2 (xi, γ)

])−1

E

[
xix

′
iω

2
0 (xi)

ω4 (xi, γ)

](
E

[
xix

′
i

ω2 (xi, γ)

])−1

. (5)

Definition: The parametric model (3) for the conditional heteroskedasticity is well-specified,

i.e., correct, if and only if for some parameter value γ0 ∈ Γ:

ω2
(
xi, γ

0
)
= ω2

0 (xi) . (6)

In this case: Σ (β0, γ0) =
(
E
[

xix
′
i

ω2(xi,γ0)

])−1

≪ Σ (β0, γ) for all γ ∈ Γ with the notationA ≪ B

meaning “B − A positive semi-definite”. It is the case in particular if ui is conditionally

homoskedastic, in which case γ0 = γhom and ω2 (xi, γ
0) = ω2

hom = ω2
0(xi).

Our focus of interest is precisely in the common scenario where there is some conditional
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heteroskedasticity and the user’s parametric model for heteroskedasticity is misspecified (in-

correct). Under this scenario, we cannot define a true unknown value γ0 as the solution of

(6). We can only define a pseudo-true value, denoted by γWLS, as the solution of:

γWLS := argmin
γ∈Γ

E
[(
ω2
0 (xi)− ω2 (xi, γ)

)2]
= argmin

γ∈Γ
E
[(
u2
i − ω2 (xi, γ)

)2]
. (7)

The notation is motivated by the fact that the infeasible WLS corresponds to β̂ (γWLS)

while a feasible version is given by β̂ (γ̂WLS) for any consistent estimator γ̂WLS of γWLS. γ̂WLS

is typically obtained by the sample analog of the minimizer of the minimization program (7)

with ui := ui (β
0) replaced by (some possibly trimmed version of) the OLS residual:

ûi,OLS := ui(β̂OLS) = yi − x′
iβ̂OLS where β̂OLS :=

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xiyi = β̂(γhom).

It is however worth keeping in mind that when the first minimization in (7) does not

provide a value function equal to zero, i.e., when the user’s model for heteroskedasticity

is misspecified, there is no strong argument in favor of the choice of the value γWLS of γ.

Ideally, one would like to define an optimal value γ∗ such that:

Σ
(
β0, γ∗)≪ Σ

(
β0, γ

)
for all γ ∈ Γ. (8)

However, except in the well-specified case (then γ∗ = γ0), such an optimal value γ∗ does

not exist in general, and there is no compelling argument to consider that γWLS is “closer

to optimality” than its contenders. The only way to escape this deadlock will be to replace

the matrix-minimization problem (8) by a program of minimization of a scalar function.

This scalar minimization is the purpose of the next subsection. An estimator β̂ (γ) for

some given user-specified γ, leading to weights ω2 (xi, γ) in (4), will be dubbed “User-specified

WLS” (UWLS). When computed with our preferred value of γ (see below), it will be dubbed

“Targeted WLS” (TWLS). We will call both β̂ (γWLS) and β̂ (γ̂WLS) WLS or classical WLS.
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2.3 Targeting in regression

As explained above, we need to set the focus on estimation of a scalar target parameter of

interest. We take this scalar target as a known and smooth function of β:

h(β) : Rp 7→ R with
∂h(β)

∂β
continuous at β = β0.

Common examples of h(β) include individual regression coefficients, prediction of conditional

mean x̃′β at some given value x = x̃, linear combinations of β such as β2 + β2, β2 − β3, etc.

We consider substitution estimators of h(β) based on UWLS estimators β̂(γ) of β:

ĥUWLS(γ) := h(β̂(γ)).

The mean independence in (2) and regularity conditions give
√
n
(
ĥUWLS(γ)− h(β0)

)
d−→

N
(
0, σ2

h,UWLS(β
0, γ)

)
with the asymptotic variance, which is a function of γ ∈ Γ, given by:

σ2
h,UWLS(β

0, γ) :=
∂h(β0)

∂β′ Σ(β0, γ)
∂h(β0)

∂β
.

As noted by Cragg (1992), the classical WLS estimator “can lead to larger diagonal

elements of Σ(β0, γ) than those of OLS” (Cragg (1992) used V (β̂(θ)) to denote Σ(β0, γ)).

Surprisingly, while Cragg (1992) was concerned by estimation of specific components of β,

he never chose to minimize the asymptotic variance of a specific component but rather

minimized aggregate measures viz. the determinant or trace of Σ(β0, γ). Consequently, as

we will see, Cragg (1992)’s estimators themselves can be less precise than WLS and OLS.

Therefore, more generally and appropriately as far as precise estimation of h(β) is con-

cerned, we define our TWLS as a feasible version of ĥUWLS(γ
∗
h,TWLS) = h(β̂(γ∗

h,TWLS)) where:

γ∗
h,TWLS := argmin

γ∈Γ
σ2
h,UWLS(β

0, γ).

11



2.4 Feasible TWLS

The first task is to estimate for any γ ∈ Γ the asymptotic variance matrix Σ(β0, γ) given in

(5). Under regularity conditions, we have a consistent estimator (uniformly in γ ∈ Γ):

Σ̂(β̂OLS, γ) :=

(
1

n

n∑
i=1

xix
′
i

ω2(xi; γ)

)−1(
1

n

n∑
i=1

û2
i,OLSxix

′
i

ω4(xi; γ)

)(
1

n

n∑
i=1

xix
′
i

ω2(xi; γ)

)−1

.

Consistency of the estimator for
(
E
[

xix
′
i

ω2(xi,γ)

])−1

is implied by the uniform law of large num-

bers and the continuous mapping theorem. Consistency of the estimator for E
[
xix

′
iω

2
0(xi)

ω4(xi,γ)

]
is a

consequence of the uniform consistency of an Eicker-Huber-White estimator when the vector

xi of explanatory variables is replaced by the pseudo-sphericized one x̃i(γ) = xi/ω
2(xi, γ).

We can now define:

σ̂2
h,UWLS(β̂OLS, γ) :=

∂h(β̂OLS)

∂β′ Σ̂(β̂OLS, γ)
∂h(β̂OLS)

∂β

and a consistent estimator of the targeted γ:

γ̂h,TWLS := argmin
γ∈Γ

σ̂2
h,UWLS(β̂OLS, γ).

Thus, we obtain our feasible TWLS estimator and its standard error, respectively, as:

ĥTWLS := ĥUWLS(γ̂h,TWLS) = h(β̂(γ̂h,TWLS)) and seh,TWLS :=

[
1

n
σ̂2
h,UWLS(β̂OLS, γ̂h,TWLS)

]1/2
.

Remark: One can plug in for β0 any consistent estimator for β0 when estimating quantities

such as Σ(β0, γ), σ2
h,UWLS(β

0, γ), γ∗
h,TWLS, etc. without altering the first-order asymptotic

properties of estimation and inference of h(β) considered in our paper. Using β̂OLS as the

plugin is neither a restriction nor our prescription. We write the plugin as β̂OLS only for the

sake of uniformity in the presentation of the estimators of h(β) and their standard errors.
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2.5 The targets

By definition, the optimal weights for TWLS depend upon the target of interest h(β).

A standard case where h(β) = β2, a single coefficient, is the target is when we consider

a regression model of yi on a binary treatment variable xi,2 and the covariates wi,k’s:

yi = β0
1 + β0

2xi,2 +
K∑
k=1

ν0
1,kwi,k +

K∑
k=1

ν0
2,kxi,2(wi,k − E[wi,k]) + ui.

(The ν’s represent the β3, . . . , βp in regression model (1).) β2 is meant to capture the average

effect of xi,2. Interest can also be on other h(β)’s, e.g., h(β) = (w̃2 − E[wi,2])ν2,2, i.e., the

extra effect of xi,2 over the average effect when the covariate wi,2 is fixed at w̃2.

A more restrictive case with h(β) = β2 meant to capture the homogeneous effect of xi,2

being the target would be the non-interactive (xi,2 additively separable from wi,k’s) model:

yi = β0
1 + β0

2xi,2 +
K∑
k=1

ν0
1,kwi,k + ui.

Since the ν1,k’s are not of interest, one can work under the assumption E[ui|xi,2, wi,1, . . . , wi,K ] =

E[ui|wi,1, . . . , wi,K ] (not necessarily 0) that is weaker than our assumption (2). This paper

continues with (2) following the literature on “resurrecting WLS”. Use of WLS under various

weaker assumptions is pursued in a followup focusing on violations of assumptions like (2).1

Another case of standard regression follows if interest lies on a linear combination of

1WLS-type methods work under E[ui|xi,2,Wi] = E[ui|Wi] that is a weaker condition than (2). Let
xi = (1, xi,2, wi,1, . . . , wi,K)′ and Wi = (1, wi,1, . . . , wi,K)′. To fix ideas, impose linearity, i.e., E[ui|xi,2,Wi] =
E[ui|Wi] = W ′

i δ following Appendix 6.5 of Stock and Watson (2011). Using the Frisch-Waugh-Lovell Theo-
rem, note that this linearity implies the effective WLS-type moment restriction for estimation of β2 as:

E

[{
xi,2√

ω2(xi; γ)
− E

[
xi,2Wi

ω2(xi; γ)

](
E

[
WiW

′
i

ω2(xi; γ)

])−1
Wi√

ω2(xi; γ)

}
ui√

ω2(xi; γ)

]
= 0 for all γ.

This robustness of the moment restriction to perturbations in γ implies that estimation of γ for feasible
WLS, TWLS, etc. does not affect the first-order asymptotic variance of the estimators of β2. Hence the
standard theory still works when the only purpose of Wi is to make the causal variable xi,2 “as if random”.
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β1, . . . , βp’s, i.e., h(β) = c1β1+c2β2+c3β3+. . .+cpβp for known scalar constants c1, c2, c3, . . . , cp.

Taking c2 ̸= 0 without loss of generality, one can then rewrite the original regression model

in (1) such that the target h(β) is now the coefficient of one transformed regressor xi,2/c2,

and revert to focusing on a single scalar regression coefficient:

yi = β0
1

(
1− c1

c2
xi,2

)
+ h(β0)

xi,2

c2
+ β0

3

(
xi,3 −

c3
c2
xi,2

)
+ . . .+ β0

p

(
xi,p −

cp
c2
xi,2

)
+ ui.

One might also be interested in prediction, i.e., E[y|x = x̃], at a given x̃ = (1, x̃2, . . . , x̃p)
′

with x̃2 ̸= 0 without loss of generality. Then the target is h(β) = β1 + β2x̃2 + . . . + βpx̃p,

which is a special case of the last example with c1 = 1 and cj = x̃j for j = 2, . . . , p.

On the other hand, if one is interested in the complete set of regression coefficients

β1, . . . , βp, then one must indeed estimate each of them with different optimal weights. The

result of the regression would then come as follows:

ŷi = β̂1
(seβ1,TWLS)

+ β̂2
(seβ2,TWLS)

xi,2 + . . .+ β̂p
(seβp,TWLS)

xi,p.

This way of presenting regression results overlooks the cross-correlation between estimators

of different components of β. But there is nothing restrictive in this respect by comparison

with the standard practice of separately checking the Student t-values for each coefficient.

2.6 The importance of targeting

We present a numerical example based on well-known real-life data to display the quantitative

benefit of “proper” targeting by TWLS in comparison with Cragg (1992)’s proposal.

We conduct Romano and Wolf (2017)’s simulation experiment based on the extremely

well-known data from 1970 for n = 506 communities in the Boston area; also see DiCiccio

et al. (2019) and Miller and Startz (2019). Consider the linear regression function E[yi|xi] =

β1 + β2xi,2 + β3xi,3 + β4xi,4 + β5xi,5 for community i = 1, . . . , n, where yi is the log of the
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median housing price, xi,2 is the log of nitrogen oxide in the air, xi,3 is the log of weighted

distance from five employment centers, xi,4 is the average number of rooms per house, and

xi,5 is the average student–teacher ratio in the community’s schools; see Wooldridge (2012).

To resemble the true conditional heteroskedasticity in this data: (i) obtain êi = (yi −

x′
iβ̃)/

√
1− x′

i(
∑

j xjx′
j)

−1xi for i = 1, . . . , n where β̃ is the OLS estimator based on (yi, xi)

for i = 1, . . . , n; (ii) generate 10000 times artificial data sets (y∗i , x
∗
i ) for i = 1, . . . , n where

x∗
i = xi and y∗i = x′

iβ̃ + êivi where vi ∼ N(0, 1) i.i.d. i = 1, . . . , n independently of the

system. Thus, the true β in each of this 10000 artificial data sets is β0 = β̃.

For each h(β) = β1, . . . , β5, we report in Table 1 the ratio of the average standard error

(ASE) for each of (i) WLS, (ii) Cragg’s LTV (trace minimizing) estimator, (iii) Cragg’s LGV

(determinant minimizing) estimator, and (iv) our TWLS estimator, with respect to that for

OLS. By construction, the standard errors of TWLS cannot exceed that of OLS, WLS or

Cragg (1992)’s estimators for any target h(β) = β1, . . . , β5. Hence, we also report the ratio

of the empirical mean squared error (EMSE) of the estimators (i)-(iv) with respect to that

of OLS. The ASEs and EMSEs are obtained as averages based on 10000 Monte Carlo trials.

Three observations are in order. First, WLS is more precise than OLS in this example.

Second, while Cragg (1992)’s LTV and LGV estimators are more precise than OLS and WLS

estimators for β1, . . . , β4, LTV and LGV are in fact both less precise than OLS and WLS

for β5. This is a bad problem that makes Cragg (1992)’s LTV and LGV “inadmissible”

in the sense they can perform worse than the estimators that they are meant to improve.

This “inadmissibility” is not surprising theoretically but is worth documenting numerically.

Third, and most importantly, we see that proper targeting of the object of interest by our

TWLS estimator makes it by far the preferred estimator in this experiment.

While some other simulation designs of Romano and Wolf (2017) or Lu and Wooldridge

(2020) lead to bigger benefits of proper targeting by TWLS, we presented this example since

this simulation experiment is based on a widely familiar real-life data; see Wooldridge (2012).
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ASE(Estimator)/ASE(OLS) EMSE(Estimator)/EMSE(OLS)
h(β) WLS Cragg-LTV Cragg-LGV TWLS WLS Cragg-LTV Cragg-LGV TWLS
β1 .779 .672 .704 .671 .613 .494 .513 .501
β2 .812 .768 .789 .736 .676 .607 .637 .562
β3 .713 .612 .650 .577 .506 .381 .427 .337
β4 .710 .613 .591 .555 .500 .389 .340 .348
β5 .953 1.154 1.037 .941 .927 1.427 1.139 .883

Table 1: The left and right panels report the ratio of the average standard error (ASE) and
empirical MSE (EMSE) respectively of each estimator with respect to that of OLS. ASE amd
EMSE are both obtained based on 10000 Monte Carlo trials. Romano and Wolf (2017)’s Model 1

ω2(xi; γ) = exp
(
γ1 +

∑p
j=2 γj log (|xi,j |)

)
is used as the user’s model for heteroskedasticity.

Perhaps because of their “inadmissibility”, Cragg (1992)’s estimators have been over-

looked in the empirical literature and, surprisingly, even in the new literature on “resurrect-

ing WLS” (except for a citation as earlier work in a sentence in footnote 2 of Romano and

Wolf (2017)). We will also not consider estimators that can be less precise than both OLS

and WLS. However, we must note that our TWLS estimator builds upon Cragg (1992) by

modifying it with proper targeting to not only overcome “inadmissibility” but also improve

over all the estimators like OLS, WLS, ALS, MIN that are encompassed by our first strategy.

3 Combine Estimators, Combine Moment Restrictions

We build on DiCiccio et al. (2019) and Lu and Wooldridge (2020) that combine OLS and the

classical WLS (i.e., WLS(γWLS)). We improve over them by the application of targeting.

The targeted combination of the OLS and UWLS(γ) estimators for h(β) will lead to

our TCC estimator for h(β) in Section 3.1. The targeted matricial combination of the OLS

and UWLS(γ) estimators/moment conditions for the entire vector β will lead to our TGMM

estimator for h(β) in Section 3.2. The motivation behind targeting is the same as before, i.e.,

we wish to fully exploit the user’s model for heteroskedasticity and obtain the most precise

estimator of the target not only when the user’s model is correct but also when it is not.
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3.1 Targeted Convex Combination (TCC) estimator

For any γ ∈ Γ, define the optimal convex combination of the two estimators h(β̂OLS) and

h(β̂(γ)), i.e., the OLS and UWLS(γ) estimators of h(β), as:

ĥUCC(γ) := (1− λ̂h(γ))h(β̂OLS) + λ̂h(γ)h(β̂(γ))

where, using Avar to denote the variance of the asymptotic distribution and Âvar its esti-

mator,

λ̂h(γ) := arg min
λ∈[0,1]

Âvar
(
(1− λ)h(β̂OLS) + λh(β̂(γ))

)
. (9)

We will call ĥUCC(γ) the “User-specified CC” (UCC(γ)) and our proposed estimator

“Targeted CC” (TCC). DiCiccio et al. (2019)’s CC estimator is ĥCC := ĥUCC(γ̂WLS), which

is one choice of UCC(γ). However, this choice involving γ = γ̂WLS does not exploit the source

of optimality with respect to γ ∈ Γ when the user’s model ω2(xi; γ) is misspecified/incorrect

for the true skedastic function ω2
0(xi). Thus, the need for our TCC estimator.

Following the same logic as in Section 2, we define our TCC estimator by means of a

further minimization as:

ĥTCC := ĥUCC(γ̂h,TCC)

where

γ̂h,TCC := argmin
γ∈Γ

Âvar
(
ĥUCC(γ)

)
. (10)

It is well known that thanks to the conditional mean independence condition E[yi −

x′
iβ

0|xi] = 0 in (2), estimation of γ does not affect the first-order asymptotic properties of

WLS under regularity conditions; see, e.g., Romano and Wolf (2017) for a recent reference.

The same applied for our TWLS estimator. In this section, we additionally observe that:

E
[
(1− λ)β̂OLS + λβ̂(γ)

]
= β0 for any γ ∈ Γ and any λ.
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Therefore, as shown in DiCiccio et al. (2019), estimation of γ and λ does not affect the

first-order asymptotic properties of their CC estimator under very weak conditions; also see,

e.g., Section 6 of Newey and McFadden (1994). The same applies for our TCC estimator.

Consequently, our TCC estimator ĥTCC will be asymptotically equivalent to an infeasible

estimator ĥinf
TCC that is optimal in the class of convex combination estimators, i.e.,

√
n(ĥTCC − h(β0)) =

√
n(ĥinf

TCC − h(β0)) + op(1)
d−→ N(0, σ2

h,UCC(β
0, γ∗

h,TCC , λ
∗
h(γ

∗
h,TCC)))

where the key quantity, i.e., the asymptotic variance, is the minimum with respect to γ, λ

of:

σ2
h,UCC(β

0, γ, λ) := AV ar
(
(1− λ)h(β̂OLS) + λh(β̂(γ))

)
,

which gives the said optimality in the class. And, resembling the optimizations in (9) and

(10) but now in the population (hence the infeasibility of the estimator ĥinf
TCC),

λ∗
h(γ) := arg min

λ∈[0,1]
σ2
h,UCC(β

0, γ, λ),

γ∗
h,TCC :=


argmin

γ∈Γ
σ2
h,UCC(β

0, γ, λ∗
h(γ)) if λ∗

h(γ) ̸= 0,

γhom if λ∗
h(γ) = 0,

ĥinf
TCC := (1− λ∗

h(γ
∗
h,TCC))h(β̂OLS) + λ∗

h(γ
∗
h,TCC)h(β̂(γ

∗
h,TCC)).

Thus, using (9) and (10), we obtain the standard error of our TCC estimator ĥTCC as:

seh,TCC :=

[
1

n
σ̂2
h,UCC(β̂OLS, γ̂h,TCC , λ̂(γ̂h,TCC))

]1/2

where σ̂2
h,UCC(.) is the sample analog of σ2

h,UCC(.) with each argument replaced by its consis-

tent estimator. While the expressions for the quantities used here are well known (see, e.g.,

DiCiccio et al. (2019)), we collect them in Appendix A.1 for ready reference.
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3.2 Targeted GMM (TGMM) estimator

TCC was concerned with combining scalar estimators h(β̂OLS) and h(β̂(γ)). Now we focus on

constructing a targeted matrix combination, with matrix weights adding up to identity, of the

vector estimators β̂OLS and β̂(γ) and then consider the h(.) function of that estimator. One

could call this a matricial convex combination (MCC) estimator and its targeted version

the Targeted MCC (TMCC) estimator. However, since such matrix combinations can be

efficiently obtained by GMM using the stacked OLS and UWLS(γ) moment vectors for β,

and Lu and Wooldridge (2020) already consider the un-targeted GMM version combining

OLS and UWLS(γWLS) and call it GMM, we will call TMCC the Targeted GMM (TGMM)

estimator. We will follow their GMM representation. In Appendix B we discuss general

combinations of exactly identifying moment restrictions revisiting Chen et al. (2016).

The OLS and UWLS(γ) moment vectors, and the stacked moment vector are:

g1(yi, xi, β) := xi(yi−x′
iβ), g2(yi, xi, β, γ) :=

xi(yi − x′
iβ)

ω2(xi; γ)
and g(yi, xi, β, γ) :=

 g1(yi, xi, β)

g2(yi, xi, β, γ)

 .

As before, we will ignore in the sequel matters related to the estimation of γ since such

estimation does not affect the first-order asymptotic variance of any estimators of β based on

these moment vectors; see, e.g., Section 6 of Newey and McFadden (1994). This is because

the conditional mean independence condition in (2) implies that the stacked moment vector

satisfies:

E[g(yi, xi, β
0, γ)] = 0 any γ ∈ Γ.

Standard regularity conditions give the asymptotic distribution of this moment vector as:

1√
n

n∑
i=1

g(yi, xi, β
0, γ)

d−→ N

0, V
(
β0, γ

)
:=

 V11 (β
0) := E [xix

′
iω

2
0 (xi)] V12 (β

0, γ) := E
[
xix

′
iω

2
0(xi)

ω2(xi,γ)

]
V21 (β

0, γ) := V12 (β
0, γ) V22 (β

0, γ) := E
[
xix

′
iω

2
0(xi)

ω4(xi,γ)

]

 .
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An example of a natural estimator of V (β0, γ) is:

V̂
(
β̂OLS, γ

)
:=

 V̂11

(
β̂OLS

)
:= 1

n

∑n
i=1 xix

′
iû

2
i,OLS V̂12

(
β̂OLS, γ

)
:= 1

n

∑n
i=1

xix
′
iû

2
i,OLS

ω2(xi;γ)

V̂21

(
β̂OLS, γ

)
:= V̂12

(
β̂OLS, γ

)
V̂22

(
β̂OLS, γ

)
:= 1

n

∑n
i=1

xix
′
iû

2
i,OLS

ω4(xi;γ)

 .

Since V (β0, γ) is singular under conditional homoskedasticity, we will use the Moore-

Penrose (MP) inverse of V̂
(
β̂OLS, γ

)
, denoted by

[
V̂
(
β̂OLS, γ

)]+
, as the weighting matrix

in our targeted GMM strategy and appeal to Xiao (2020) for convergence of this MP inverse.2

Accordingly, we define the “User-specified GMM” (UGMM(γ)) estimator of h(β) as:

ĥUGMM(γ) := h(β̂UGMM(γ))

that is based on plugging in the efficient GMM estimator of β (for given γ):

β̂UGMM(γ) := argmin
β

(
1

n

n∑
i=1

g(yi, xi, β, γ)

)′ [
V̂
(
β̂OLS, γ

)]+( 1

n

n∑
i=1

g(yi, xi, β, γ)

)
.

2Lu and Wooldridge (2020) propose to conduct efficient GMM estimation using
[
V̂
(
β̂OLS , γ

)]−1

as

the weighting matrix, and plugging in for γ the WLS or a quasi-maximum likelihood estimator of γ.
However, then the weighting matrix will not exist in the limit under the very important case of condi-
tional homoskedasticity because V

(
β0, γWLS

)
becomes singular as, now, γWLS = γhom and that implies

ω2(xi; γWLS) = ω2
0(xi) = ω2

hom (a constant), and hence:

V
(
β0, γWLS

)
= V

(
β0, γhom

)
=

[
ω2
hom 1
1 1/ω2

hom

]
⊗ E[xix

′
i].

The possibility that V
(
β0, γ

)
may become (near) singular may lead, following White (1986), to use a MP

inverse of V
(
β0, γ

)
. However, it has been known since Stewart (1969) that the generalized inverse is not

always continuous, and that a sequence of pseudo-inverses A+
n converges toward the pseudo-inverse A+ of the

limit if and only if rank(An) = rank(A) for n large enough. Andrews (1987) points out the restrictiveness
of this condition for the practice of Wald testing. Fortunately, Xiao (2020) has shown that using generalized
inverses in the context of GMM optimal weighting matrix is sound because Stewart’s continuity condition
is fulfilled in this case. A caveat noted by Xiao (2020) is that using generalized inverse for efficient GMM,
although theoretically sound, may be unstable since a “small perturbation of a singular matrix may result in
large deviations for its generalized inverses”. The bottom line is that it is theoretically justified to solve the

problem with Lu and Wooldridge (2020)’s weighting matrix by using
[
V̂
(
β̂OLS , γ̂WLS

)]+
as the weighting

matrix. Using
[
V̂
(
β̂OLS , γ

)]+
as the weighting matrix in our targeted GMM strategy also works well in

our simulations. In the sequel we will use the superscript “+” to denote the MP inverse of matrices.
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Thanks to Theorem 3.1 and the discussion below Theorem 4.1 in Xiao (2020), we have:

√
n(ĥUGMM(γ)− h(β0))

d−→ N
(
0, σ2

h,UGMM

(
β0, γ,

[
V (β0, γ)

]+))
under GMM-regularity conditions and mean independence (2). The asymptotic variance is:

σ2
h,UGMM

(
β0, γ,

[
V (β0, γ)

]+)
:=

∂h(β0)

∂β′

(
E

[
∂g′(yi, xi; β

0, γ)

∂β

] [
V (β0, γ)

]+
E

[
∂g(yi, xi; β

0, γ)

∂β′

])−1
∂h(β0)

∂β

with E
[
∂g′(yi,xi;β

0,γ)
∂β

]
=
[
E [xix

′
i] , E

[
xix

′
i

ω2(xi,γ)

]]
. Let σ̂2

h,UGMM

(
β̂OLS, γ,

[
V̂ (β̂OLS, γ)

]+)
be

its estimator with the population quantities replaced by sample analogs and β0 by β̂OLS.

We can now define our TGMM estimator as:

ĥTGMM := ĥUGMM(γ̂h,TGMM)

where:

γ̂h,TGMM := argmin
γ∈Γ

σ̂2
h,UGMM

(
β̂OLS, γ,

[
V̂ (β̂OLS, γ)

]+)
.

Like the other feasible targeted estimators, TGMM is also asymptotically equivalent to its

infeasible version, in this case the estimator ĥinf
TGMM , that is optimal in its class. That is:

√
n
(
ĥTGMM − h(β0)

)
=

√
n
(
ĥinf
TGMM − h(β0)

)
+op(1)

d−→ N
(
0, σ2

h,UGMM

(
β0, γ∗

h,TGMM ,
[
V (β0, γ∗

h,TGMM)
]+))

where:

ĥinf
TGMM := ĥUGMM(γ∗

h,TGMM)

with:

γ∗
h,TGMM := argmin

γ∈Γ
σ2
h,UGMM

(
β0, γ,

[
V (β0, γ)

]+)
.

The standard error of our TGMM estimator ĥTGMM is:

seh,TGMM :=

[
1

n
σ̂2
h,UGMM

(
β̂OLS, γ̂h,TGMM ,

[
V̂ (β̂OLS, γ̂h,TGMM)

]+)]1/2
.
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3.3 Optimality among the three strategies for targeting

Optimality of asymptotic variance with respect to γ is the main message of our paper. TWLS,

TCC and TGMM are respectively optimal in this sense in the three classes of estimators

ĥUWLS(γ), ĥUCC(γ) and ĥUGMM(γ). But which estimator among TWLS, TCC and TGMM is

preferred? Proposition 1 answers this question as far as the asymptotic variance is concerned.

Proposition 1 Under standard conditions maintained throughout our paper:

AV ar
(
ĥTGMM

)
≤ AV ar

(
ĥTCC

)
≤ AV ar

(
ĥTWLS

)
.

Appendix A.2 proves this result. An extensive discussion on related matters can be found in

Appendix B.3. Despite the clean result in Proposition 1, two reasons — (i) computational

convenience and (ii) the fact that our simulation results find TGMM may be flawed by some

small-sample issues — warrant a maintained interest in TCC and TWLS.

4 Numerical evidence of small-sample properties

We explore numerically the small-sample performance of our proposed targeted estimators

TWLS, TCC and TGMM, and compare them with that of their main competitors — OLS,

WLS, ALS, MIN, CC and GMM — under various designs recently used in this literature.

The message of our numerical results is that if the user’s model ω2(xi; γ) for ω
2
0(xi) allows

for improvement in precision over others then our proposed targeting estimators achieve it.

Improvements in empirical mean squared error (EMSE) by our proposed estimators can be

huge. There does not seem to be any major cost in terms of empirical bias (unreported),

empirical size (reported), etc. to using our proposed estimators. Comparison among our

proposed estimators TWLS, TCC and TGMM does not however give a clear winner, although

simplicity of computation might lead some user to prefer TCC or TWLS in practice.
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4.1 Under the design in Romano and Wolf (2017)

Let yi = β0
1 + β0

2xi,2 + ui with xi,2 ∼ U(1, 4) and ui|xi ∼ N(0, ω2
0(xi)) i.i.d. for i = 1, . . . , n.

Let β0 = (0, 0)′. Romano and Wolf (2017) consider 10 cases for ω2
0(xi):

Case 1: (a) ω2
0(xi) = 1; (b) ω2

0(xi) = xi,2; (c) ω2
0(xi) = x2

i,2; (d) ω2
0(xi) = x4

i,2.

Case 2: (a) ω2
0(xi) = (log(xi,2))

2; (b) ω2
0(xi) = (log(xi,2))

4.

Case 3: (a) ω2
0(xi) = exp

(
.1(xi,2 + x2

i,2)
)
; (b) ω2

0(xi) = exp
(
.15(xi,2 + x2

i,2)
)
.

Case 4: (a) ω2
0(xi) =


1 if xi,2 < 2

2 if 2 ≤ xi,2 < 3

3 if xi,2 ≥ 3

; (b) ω2
0(xi) =


1 if xi,2 < 2

22 if 2 ≤ xi,2 < 3

32 if xi,2 ≥ 3

.

Romano andWolf (2017) consider two parametric models ω2(xi; γ) —Model 1: ω2(xi; γ) =

exp(γ1 + γ2 log(xi,2)) and Model 2: ω2(xi; γ) = exp(γ1 + γ2xi,2) — for ω2
0(xi). Like theirs,

our results here are also very similar for both models. For brevity we will report any results

related to Romano and Wolf (2017) based on Model 1 only since it is their preferred model.

Taking sample size n = 50, 100, 200, 400, we will, like Romano and Wolf (2017), report

results on the target h(β) = β2, i.e., the slope. The results are similar for h(β) = β1.

As a measure of precision, Table 2 presents the ratio of the EMSE of each estimator

with respect to that of OLS. All estimators behave similar to OLS in Case 1(a) (conditional

homoskedasticity, i.e., when OLS is efficient), especially for n ≥ 100. In other cases the other

estimators lead to smaller, sometimes much smaller, EMSE than OLS. Model 1 is correct

for ω2
0(xi) under Cases 1(a)-1(d) with γ0

2 = 0, 1, 2, 4 respectively, and hence WLS is efficient

in these cases (jointly with OLS in Case 1(a)). All recently proposed estimators perform

similar to WLS in these cases, especially if n is not too small. We observe that our proposed

estimators either perform very similar to the other estimators that they are supposed to

improve upon, or lead to really big gains in precision as in Cases 2 (a) and (b). These gains
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in precision can be more dramatic if heteroskedasticity is more severe, and to demonstrate

that we added a case, Case 2(c): ω0(xi) = [log(xi)]
6, in this tabular display in Table 2.

It is interesting that simply by targeting, TWLS can have smaller EMSE in some cases

than the un-targeted CC and GMM estimators of DiCiccio et al. (2019) and Lu andWooldridge

(2020) respectively; e.g., Cases 2 (a)-(c). To put it in context, recall that TWLS utilizes

the WLS framework only whereas CC and GMM combine WLS with OLS. The impressive

improvement due to TWLS over CC or GMM, and similarly due to TCC over GMM is case-

specific and not part of our general theory. Hence, it is noteworthy that we observe such

improvements in the simulations due to targeted management of the nuisance parameters γ.

Table 3 presents the empirical size (empirical rejection probability of the truth) of the

5% Wald tests based on each estimator. Any size distortions vanish as sample size increases.

4.2 Under the design in Lu and Wooldridge (2020)

Let yi = β0
1 + β0

2xi,2 + β0
3xi,3 + β0

4xi,4 + ui with xi,2 ∼ N(1, 1), xi,3 = .8 + .2xi,2 + ei,1,

xi,4 = 1(xi,5 > xi,3), ui = s(xi)ei,3 where ei,1, ei,2, ei,3 are independent N(0, 1), and xi,5 =

.3 + .1xi,2 + .1xi,3 + ei,2. All the variables are i.i.d. for i = 1, . . . , n. Let β0 = (.5, 1, 1, 1)′,

xi = (1, xi,2, xi,3, xi,4)
′ and ei,3 as independent of xi. Thus, E[ui|xi] = 0 and V (ui|xi) ≡

ω2
0(xi) = s2(xi). Lu and Wooldridge (2020) consider 4 cases for ω2

0(xi):

Case 1: ω2
0(xi) = (β0

1 +β0
2xi,2+β0

3xi,3−3β0
4xi,4+ .1xi,2(xi,3+xi,4)− .1xi,3xi,4− .05x2

i,2+

.05x2
i,3))

2.

Case 2: ω2
0(xi) = (β0

1 + β0
2 |xi,2|+ β0

3x
2
i,3 + β0

4xi,4)
2.

Case 3: ω2
0(xi) = exp(β0

1 + β0
2 |xi,2|+ β0

4xi,4).

Case 4: ω2
0(xi) = exp(β0

1 + β0
2xi,2 + β0

3xi,3 + β0
4xi,4).

Lu and Wooldridge (2020) use ω2(xi; γ) = exp(x′
iγ) = exp(γ1 + γ2xi,2 + γ3xi,3 + γ4xi,4) as

the user’s parametric model. This model is correct for ω2
0(xi) with γ0 = β0 in Case 4 and
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no refinement can improve upon WLS in Case 4 since WLS is optimal. We omit Case 4 for

brevity (less congested tables) since the observations on the finite-sample properties of the

refinements are similar to what we already saw under correct specification in the four cases

1(a)-1(d) in Tables 2 and 3 for Section 4.1: extra noise in the refinements of WLS, especially

ours, affect both EMSE and empirical size but they recover as sample size increases.

We consider four different targets h(β) = β1, β2, β3, β4. We take the sample size n =

1000, 2000 (Lu and Wooldridge (2020) take n = 1000, 10000). Our results for WLS and

GMM differ from Lu and Wooldridge (2020); they use Gamma quasi-maximum likelihood

estimator for γ whereas we use γ̂WLS to maintain uniformity with the rest of the simulations.

Table 4 presents the ratio of the EMSE of each estimator with respect to that of OLS. We

see that WLS based on an incorrect model ω2(xi; γ) in Cases 1 and 2 can be much less precise

than OLS. This is a possibility that DiCiccio et al. (2019) noted to motivate their MIN and

CC estimators but conjectured as “rare”. ALS is also much less precise than OLS in this

case since ALS and WLS are almost identical here because of the high level of conditional

heteroskedasticity of ui. On the other hand, the MIN, CC and GMM estimators deliver

big gains in precision over OLS (and WLS and ALS). Additionally, when the parametric

model ω2(xi; γ) is far from correct for ω2
0(xi), i.e., in Cases 1 and 2, we see that our proposed

estimators TWLS, TCC and TGMM deliver even further substantial gains in precision.

Under Cases 1 and 2, i.e., when the user’s model ω2(xi; γ) is “more” incorrect for ω2
0(xi),

we again find here that simply by targeting, TWLS can be more precise than CC and GMM,

and TCC than GMM — a pattern of improvement that was not predicted by general theory.

Table 5 presents the empirical size of the 5% Wald tests based on each estimator. The

results look reasonable except that in some cases with the smaller sample, TCC and TGMM

have empirical size that is noticeably larger than their nominal level of 5% — as high as 9.3%

and 9.6% for TCC and TGMM respectively. However, it is also evident that this problem

disappears with the increase in the sample size.
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V (u|x) n WLS ALS MIN TWLS CC TCC GMM TGMM

50 1.044 1.044 1.029 1.089 1.024 1.060 1.090 1.099
Case 100 1.033 1.033 1.020 1.045 1.015 1.048 1.057 1.068
(1a) 200 1.011 1.011 1.007 1.019 1.005 1.021 1.030 1.037

400 1.005 1.005 1.003 1.006 1.002 1.009 1.014 1.016

50 .935 .955 .941 .974 .936 .987 .980 .990
Case 100 .918 .929 .927 .933 .920 .961 .943 .954
(1b) 200 .900 .901 .907 .902 .903 .916 .909 .915

400 .905 .905 .906 .907 .907 .914 .911 .913

50 .756 .762 .766 .765 .760 .784 .795 .809
Case 100 .698 .698 .702 .707 .701 .722 .720 .736
(1c) 200 .687 .687 .686 .684 .688 .689 .692 .700

400 .679 .679 .679 .678 .681 .679 .682 .686

50 .437 .437 .438 .407 .441 .414 .447 .455
Case 100 .330 .330 .330 .311 .331 .315 .334 .341
(1d) 200 .334 .334 .334 .324 .334 .327 .336 .343

400 .304 .304 .304 .301 .304 .302 .304 .308

50 .579 .579 .579 .547 .583 .517 .572 .568
Case 100 .555 .555 .555 .512 .556 .452 .520 .481
(2a) 200 .499 .499 .499 .453 .500 .408 .451 .412

400 .482 .482 .482 .472 .483 .431 .459 .412

50 .396 .396 .397 .332 .400 .282 .381 .367
Case 100 .301 .301 .301 .205 .302 .163 .283 .261
(2b) 200 .280 .280 .280 .205 .280 .173 .243 .213

400 .270 .270 .270 .204 .270 .162 .233 .182

50 .289 .289 .289 .062 .290 .059 .235 .224
Case 100 .159 .159 .159 .028 .159 .027 .143 .131
(2c) 200 .152 .152 .152 .031 .152 .030 .110 .098

400 .142 .142 .142 .028 .142 .027 .090 .067

50 .868 .903 .882 .891 .874 .929 .896 .907
Case 100 .854 .862 .860 .858 .858 .884 .863 .873
(3a) 200 .818 .819 .821 .823 .819 .836 .813 .823

400 .828 .828 .828 .831 .830 .833 .826 .830

50 .701 .713 .713 .716 .711 .738 .711 .725
Case 100 .678 .681 .680 .677 .682 .689 .668 .683
(3b) 200 .634 .634 .634 .633 .636 .637 .610 .619

400 .651 .651 .651 .652 .652 .653 .630 .633

50 .965 .973 .972 .991 .959 1.014 1.003 1.011
Case 100 .948 .949 .959 .952 .945 .978 .969 .976
(4a) 200 .927 .927 .934 .928 .923 .953 .935 .942

400 .929 .929 .937 .927 .927 .932 .934 .936

50 .795 .809 .815 .825 .803 .844 .837 .838
Case 100 .752 .753 .762 .757 .755 .776 .775 .783
(4b) 200 .735 .735 .738 .730 .732 .739 .736 .736

400 .744 .744 .745 .732 .736 .735 .735 .730

Table 2: Ratio of empirical MSEs with respect to that of OLS estimator of h(β) = β2 based on
10000 Monte Carlo trials under the design of Romano and Wolf (2017) and using their Model 1.26



V (u|x) n OLS WLS ALS MIN TWLS CC TCC GMM TGMM

50 5.1 5.7 5.7 5.9 5.8 5.8 6.9 7.4 8.0
Case 100 4.8 5.1 5.1 5.1 5.1 5.1 5.9 6.0 6.5
(1a) 200 4.8 4.8 4.8 4.9 4.8 4.9 5.3 5.4 5.6

400 4.8 5.0 5.0 5.0 4.9 5.0 5.1 5.2 5.2

50 4.5 4.9 5.1 5.2 5.2 5.2 6.3 6.6 7.3
Case 100 5.4 5.7 5.9 5.9 5.6 5.8 6.8 6.8 7.2
(1b) 200 4.6 4.9 4.9 5.0 4.8 5.0 5.2 5.2 5.5

400 5.3 5.3 5.3 5.3 5.2 5.3 5.4 5.5 5.6

50 4.8 5.3 5.4 5.5 5.5 5.6 6.3 6.7 7.5
Case 100 4.8 5.3 5.3 5.3 5.3 5.4 6.0 5.9 6.7
(1c) 200 4.9 4.9 4.9 4.9 5.0 5.0 5.4 5.5 5.8

400 4.8 5.2 5.2 5.2 5.1 5.2 5.2 5.4 5.5

50 5.4 5.7 5.7 5.7 5.1 5.9 5.7 6.2 7.0
Case 100 5.5 5.1 5.1 5.1 4.8 5.2 5.2 4.7 5.3
(1d) 200 5.4 5.8 5.8 5.8 5.6 5.9 5.8 5.5 6.0

400 5.2 5.0 5.0 5.0 4.9 5.0 5.0 4.9 5.2

50 5.0 5.0 5.0 5.0 4.7 5.2 5.4 5.9 6.1
Case 100 5.2 5.1 5.1 5.2 5.0 5.2 5.2 5.4 5.3
(2a) 200 5.2 5.5 5.5 5.5 5.1 5.5 5.4 5.1 4.9

400 5.3 5.0 5.0 5.0 5.0 5.0 5.1 5.2 4.9

50 5.4 5.5 5.5 5.5 6.8 5.6 6.6 5.2 5.4
Case 100 5.7 5.5 5.5 5.5 6.0 5.5 5.3 4.8 4.7
(2b) 200 5.1 5.3 5.3 5.3 5.7 5.3 5.7 4.4 3.8

400 5.0 5.0 5.0 5.0 5.4 5.0 4.9 4.5 3.9

50 5.3 5.7 5.7 5.7 4.6 5.7 4.4 4.1 4.2
Case 100 5.2 5.2 5.2 5.2 4.3 5.2 4.3 2.9 2.9
(2c) 200 4.8 5.5 5.5 5.5 4.8 5.5 5.0 2.9 2.3

400 5.0 5.2 5.2 5.2 4.8 5.2 4.7 3.3 2.1

50 4.8 5.2 5.5 5.5 5.4 5.5 6.7 7.0 7.5
Case 100 5.1 5.6 5.7 5.7 5.4 5.8 6.2 6.3 6.7
(3a) 200 5.0 5.1 5.1 5.1 5.0 5.1 5.4 5.7 6.0

400 4.7 5.1 5.1 5.1 5.0 5.1 5.0 5.4 5.5

50 4.9 5.1 5.2 5.4 5.2 5.4 5.8 6.2 7.0
Case 100 5.2 5.5 5.5 5.5 5.2 5.7 5.6 6.2 6.8
(3b) 200 5.3 5.2 5.2 5.2 5.1 5.2 5.2 5.5 5.8

400 4.6 4.9 4.9 4.9 4.9 4.9 4.9 5.2 5.2

50 4.8 5.4 5.4 5.7 5.3 5.6 6.8 7.0 7.3
Case 100 5.0 5.6 5.6 5.7 5.3 5.7 6.2 6.4 6.7
(4a) 200 4.9 5.0 5.0 5.1 5.0 5.1 5.4 5.6 5.8

400 4.7 5.2 5.2 5.2 5.1 5.2 5.2 5.4 5.5

50 4.7 4.8 4.9 5.3 4.9 5.3 6.0 6.3 6.8
Case 100 5.2 5.1 5.1 5.3 5.1 5.5 5.8 6.3 7.0
(4b) 200 5.3 5.0 5.0 5.0 5.0 5.3 5.5 5.6 5.9

400 4.6 4.8 4.8 4.8 4.9 5.0 5.0 5.2 5.3

Table 3: Empirical size (in %) of 5% Wald test for h(β) = β2 based on 10000 Monte Carlo
trials under the simulation design of Romano and Wolf (2017) and using their Model 1.27
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4.3 Based on the real-life example in Romano and Wolf (2017)

We already discussed the setup of this simulation experiment based on the Boston housing

data with n = 506 in Section 2.5; also see DiCiccio et al. (2019) and Miller and Startz (2019).

So, we do not repeat that here. The target h(β)’s are the regression coefficients β1, . . . , β5.

Model 1: ω2(xi; γ) = exp(γ1 +
∑5

k=2 log(|xi,k|)) is Romano and Wolf (2017)’s preferred

model. Model 1 led to better relative performance of their proposed estimator with respect

to OLS in their simulations. We report the further improvement provided by our proposed

estimators based on Romano and Wolf (2017)’s Model 1. These are reported in Table 6 for

the ratio of the EMSE’s with respect to OLS, and in Table 7 for the ratio of the average

length of the 95% Wald confidence intervals based on other estimators to that based on OLS

(and empirical size of the 5% Wald test within parentheses). It is evident that our proposed

estimators deliver big gains over their respective competitors, especially for β1, . . . , β4.

h(β) WLS ALS MIN TWLS CC TCC GMM TGMM

β1 .613 .613 .501 .613 .500 .492 .469
β2 .676 same .675 .562 .675 .559 .558 .486
β3 .506 as .506 .337 .506 .337 .372 .332
β4 .500 WLS .500 .348 .501 .350 .341 .317
β5 .927 .917 .883 .904 .896 .814 .774

Table 6: Ratio of EMSE with respect to OLS based on 10000 Monte Carlo trials under
Romano and Wolf (2017)’s design with real-life data [c.f. their Table C7] and using their
Model 1.

h(β) OLS WLS ALS MIN TWLS CC TCC GMM TGMM

β1 1 (4.5) .779 (5.0) .779 (5.0) .671 (6.2) .779 (5.0) .670 (6.3) .691 (5.2) .643 (6.4)
β2 1 (4.6) .812 (5.2) same .812 (5.2) .736 (5.1) .812 (5.2) .734 (5.1) .735 (5.4) .670 (5.6)
β3 1 (4.5) .713 (4.6) as .713 (4.6) .577 (5.1) .713 (4.6) .576 (5.2) .609 (4.8) .558 (5.6)
β4 1 (4.4) .710 (5.1) WLS .710 (5.1) .555 (7.4) .710 (5.1) .551 (7.8) .590 (5.2) .531 (7.4)
β5 1 (4.7) .953 (4.9) .944 (5.0) .941 (4.6) .939 (4.9) .943 (4.7) .883 (5.2) .839 (5.7)

Table 7: Ratio of the average length of 95% Wald confidence interval with respect to that
of OLS. Within parenthesis is the empirical size of 5% Wald tests. Based on 10000 Monte
Carlo trials under Romano and Wolf (2017)’s design with real-life data [c.f. their Table C8],
using their Model 1.
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4.4 Empirical illustration in Lu and Wooldridge (2020)

Lu and Wooldridge (2020) use the well-known data set ‘401ksubs’ (see Wooldridge (2012)) to

estimate a regression with: E[yi|xi] = x′
iβ

0 = β0
1 + β0

2xi,2 + . . .+ β0
10xi,10 where yi is net total

financial assets (in $1000); xi,2 is annual income (in $1000) in excess of population average and

is denoted by “inc0”; xi,3 = x2
i,2 and is denoted by “inc20”; xi,4 is age in excess of population

average and is denoted by “age0”; xi,5 = x2
i,4 and is denoted by “age20”; xi,6 = xi,2 × xi,4 and

is denoted by “inc0.age0”; xi,7 is a dummy for eligibility for a 401k plan and is denoted by

“e401k”; xi,8 is a dummy for male and is denoted by “male”; xi,9 = xi,7×xi,2 and is denoted

by “e401k.inc0”; and xi,10 = xi,7 × xi,4 and is denoted by “e401k.age0”.

h(β) OLS WLS ALS MIN TWLS CC TCC GMM TGMM

intercept 5.905 6.393 6.176 6.350 6.074 6.615 6.205
(2.115) (.978) (.917) (.961) (.915) (.922) (.889)

inc0 .633 .463 .472 .482 .474 .502 .458
(.152) (.063) (.056) (.061) (.056) (.056) (.050)

inc20 .000 .003 .002 .003 .002 .002 .002
(.005) (.002) (.002) (.002) (.002) (.002) (.002)

age0 .704 .605 .581 .608 .581 .676 .629
(.141) (.087) (.076) (.087) (.076) (.075) (.073)

age20 .031 .011 .005 .011 .006 .013 .009
(.014) (.005) same (.004) (.005) (.004) (.004) (.004)

inc0.age0 .044 .026 as .027 .027 .028 .031 .029
(.013) (.006) WLS (.005) (.006) (.005) (.005) (.005)

e401k 6.346 6.770 6.921 6.647 6.868 7.400 5.244
(2.022) (1.844) (1.454) (1.807) (1.447) (1.540) (1.177)

male 1.799 1.505 1.558 1.517 1.580 1.656 1.063
(1.959) (.756) (.534) (.752) (.526) (.740) (.601)

e401k.inc0 .307 .258 .216 .265 .226 .309 .263
(.216) (.128) (.092) (.125) (.089) (.112) (.104)

e401k.age0 .154 .160 .228 .160 .228 .161 .182
(.262) (.120) (.104) (.118) (.103) (.116) (.103)

Table 8: Estimates and standard errors (in parentheses) of regression coefficients in the fi-
nancial wealth equation in Lu and Wooldridge (2020)’s empirical application [c.f. their Table
3]. While not done here to adhere to standard empirical practice, use of the same regression
residuals would enforce that the standard errors of TGMM estimates for coefficients of male
and e401k.inc0 do not exceed that of TCC and TWLS.
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We use the same data set, matching the descriptive statistics and OLS coefficients in Lu

and Wooldridge (2020)’s Table 2 and 3 respectively (the OLS standard errors don’t match

because we report the HC3 version). We report in Table 8 the various estimates and standard

errors (in parentheses) for all the regression coefficients. We use Lu and Wooldridge (2020)’s

parametric model ω2(xi; γ) = exp(x′
iγ) for heteroskedasticity. Lu and Wooldridge (2020)

showed big gains in precision over OLS by WLS, and then further improvement over WLS by

their GMM estimator. Our results confirm their findings. Moreover, our results demonstrate

that even further gains in precision, and often substantial ones, over all estimators including

Lu and Wooldridge (2020)’s can be obtained by our proposed targeted estimators.

4.5 Classical and machine learning semiparametric WLS

Semiparametric WLS has a long history; see Carroll (1982), Robinson (1987), Rilstone

(1991), Newey (1994), Fan and Yao (1998), etc. Recently Miller and Startz (2019) and

Gonzales-Coya and Perron (2024) use machine learning to fit heteroskedasticity and demon-

strate improvement over classical semiparametric WLS. The classical and the new (machine

learning) semiparametric WLS are asymptotically efficient, and hence cannot be asymptoti-

cally less precise than TWLS, TCC or TGMM. Nevertheless, we find that our TWLS, TCC or

TGMM can still give finite-sample precision gains over the classical and new semiparametric

WLS estimators under the simulation designs used in Miller and Startz (2019) and Gonzales-

Coya and Perron (2024). Since this precision gain is only a finite-sample phenomenon and

will not hold under first-order asymptotics, we collect its description in Appendix C.

5 Conclusion

The standard empirical practice of regression is to run OLS with its robust standard errors

instead of WLS with its robust standard errors even when the user cares about regression

31



E[yi|xi]. This practice makes sense because even when the regression assumption E[ui|xi] = 0

is true, WLS based on the user’s “hard work of modelling the heteroskedasticity” (Leamer

(2010)) can be less precise than OLS if this user’s model for heteroskedasticity V (yi|xi) is

incorrect. This is a serious drawback of (parametric) WLS since, in economics, heteroskedas-

ticity and the incorrectness of the user’s model for it are the norm rather than the exception.

Semiparametric WLS byapsses incorrect modeling for V (yi|xi) asymptotically and is ef-

ficient. But it is also not much used in practice, although potential applications abound.

A recent literature aims to change the empirical practice of always using OLS, by provid-

ing better estimation methods when the user cares about regression E[yi|xi] and is willing

to commit to a linear or nonlinear parametric model for E[yi|xi]. Romano and Wolf (2017),

DiCiccio et al. (2019), Lu and Wooldridge (2020), etc. seek to improve WLS where the user

posits, but not necessarily believes in, a parametric model for heteroskedasticity V (yi|xi),

the nuisance parameters. Miller and Startz (2019), Gonzales-Coya and Perron (2024), etc.

seek to improve semiparametric WLS by using machine learning to model V (yi|xi).

Our paper belongs to this literature. Where we differ from these other papers is the

following. Others are true to the classical WLS algorithm in obtaining the WLS weights

by least squares or maximum likelihood fitting of the squared OLS residuals to some user-

specified parametric or nonparametric function, possibly subject to penalization. On the

other hand, we modify WLS by computing the WLS weights in a target-driven way that we

have shown can lead to big gains in precision over the other methods when the user’s model

for heteroskedasticity is incorrect. It can also give finite-sample precision gains over the

classical and new semiparametric WLS that, in theory, are indeed asymptotically efficient.

We have argued that OLS and WLS along with estimators that aim at “resurrecting

WLS”, can suffer significant and, importantly, avoidable loss in precision because they resort

to suboptimal criterion functions of fitting heteroskedasticity. OLS does not attempt to fit,

while the others use criterion functions that may have little to do with the relevant criterion
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of minimizing the variance of estimators for the regression coefficients of interest.

By contrast, when focusing our optimality criterion on the asymptotic variance of es-

timators of scalar targets based on the regression coefficients, we realized that there could

be precision gains with respect to OLS, WLS and their refinements, to be drawn from the

proper target-driven choice of weights given the user’s parametric model ω2(xi; γ) for het-

eroskedasticity. We illustrated this through our three estimators: TWLS, TCC and TGMM.

TWLS, TCC and TGMM do not search for parametric models to obtain a significant

result. Rather, they take the user’s/expert’s model ω2(xi; γ) as given and then search for the

target-specific optimal γ for this given model. The TWLS, TCC or TGMM estimates may

or may not be significant, but are nevertheless the most precise ones that could be obtained

under their respective strategy/class, given the user’s/expert’s model for heteroskedasticity.
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A Appendix A: Auxiliary material for Section 3

A.1 Useful expressions for Section 3

We will focus on the expressions for the asymptotic variances and their estimators. We have

maintained the assumption in Section 3 that:

1√
n

n∑
i=1

g(yi, xi, β
0, γ)

d−→ N
(
0, V

(
β0, γ

))
where:

V
(
β0, γ

)
:=

 V11 (β
0) := E [xix

′
iω

2
0 (xi)] V12 (β

0, γ) := E
[
xix

′
iω

2
0(xi)

ω2(xi,γ)

]
V21 (β

0, γ) := V12 (β
0, γ) V22 (β

0, γ) := E
[
xix

′
iω

2
0(xi)

ω4(xi,γ)

]
 .

Hence, the joint asymptotic distribution of OLS and UWLS(γ) is:

√
n

 β̂OLS − β0

β̂ (γ)− β0

 =

 B−1
1,n 0

0 B−1
2,n (γ)

 1√
n


n∑

i=1

xiui

n∑
i=1

xiui

ω2 (xi, γ)


d−→ N

0,

 Σ
(
β0, γhom

)
C12 (β

0, γ)

C21 (β
0, γ) Σ (β0, γ)




with:

B1,n :=
1

n

n∑
i=1

xix
′
i and B2,n (γ) :=

1

n

n∑
i=1

xix
′
i

ω2 (xi, γ)
.

The joint asymptotic variance is:

 Σ
(
β0, γhom

)
C12 (β

0, γ)

C21 (β
0, γ) Σ (β0, γ)

 :=

 B−1
1 0

0 B−1
2 (γ)

V
(
β0, γ

) B−1
1 0

0 B−1
2 (γ)


′
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with:

B1 := E [xix
′
i] and B2 (γ) := E

[
xix

′
i

ω2 (xi, γ)

]
.

An example of a natural estimator of this joint asymptotic variance matrix is:

 B−1
1,n 0

0 B−1
2,n (γ)

 V̂
(
β̂OLS, γ

) B−1
1,n 0

0 B−1
2,n (γ)


where:

V̂
(
β̂OLS, γ

)
:=

 V̂11

(
β̂OLS

)
:= 1

n

∑n
i=1 xix

′
iû

2
i,OLS V̂12

(
β̂OLS, γ

)
:= 1

n

∑n
i=1

xix
′
iû

2
i,OLS

ω2(xi;γ)

V̂21

(
β̂OLS, γ

)
:= V̂12

(
β̂OLS, γ

)
V̂22

(
β̂OLS, γ

)
:= 1

n

∑n
i=1

xix
′
iû

2
i,OLS

ω4(xi;γ)

 .

This gives the expressions for the estimators of the three key quantities for Section 3.1 as:

ÂV ar(h(β̂OLS)) :=
∂h(β̂OLS)

∂β′ B−1
1,nV̂11

(
β̂OLS

)
B−1

1,n

∂h(β̂OLS)

∂β
,

ÂV ar(h(β̂(γ))) :=
∂h(β̂OLS)

∂β′ B−1
2,n(γ)V̂22

(
β̂OLS, γ

)
B−1

2,n(γ)
∂h(β̂OLS)

∂β
,

ÂCov(h(β̂OLS), h(β̂(γ))) :=
∂h(β̂OLS)

∂β′ B−1
1,nV̂12

(
β̂OLS, γ

)
B−1

2,n(γ)
∂h(β̂OLS)

∂β

where AV ar and ACov denote the variance and covariance of the joint asymptotic distribu-

tion. As noted in the remark at the end of Section 2.4, we are writing β̂OLS as plugin for β0

in all the expressions only for the sake uniformity of presentation. Any consistent estimator

of β0 can be used without altering the first-order asymptotic properties of any estimator of

h(β0) considered in our paper. Also, while all the variance estimators are written in the HC0

form for simplicity, it is well-understood that other HC forms can deliver better performance

in small samples. In fact, use of other HC forms is strongly suggested in this “resurrecting

WLS” literature; see, e.g., Romano and Wolf (2017), Miller and Startz (2019), etc.
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A.2 Proof of Proposition 1

The result will follow if we can show that for the given target h(β):

AV ar
(
ĥUGMM(γ)

)
≤ AV ar

(
ĥUTCC(γ)

)
≤ AV ar

(
ĥUWLS(γ)

)
(11)

for any γ ∈ Γ. This is because then using the definitions of γ∗
h,TGMM and γ∗

h,TCC , and γ∗
h,TCC

and γ∗
h,TWLS respectively, we will get:

AV ar
(
ĥTGMM

)
= AV ar

(
ĥUGMM(γ∗

h,TGMM)
)

≤ AV ar
(
ĥUGMM(γ∗

h,TCC)
)

≤
[by (11)]

AV ar
(
ĥUCC(γ

∗
h,TCC)

)
= AV ar

(
ĥTCC

)
;

AV ar
(
ĥTCC

)
= AV ar

(
ĥUCC(γ

∗
h,TCC)

)
≤ AV ar

(
ĥUCC(γ

∗
h,TWLS)

)
≤

[by (11)]
AV ar

(
ĥUWLS(γ

∗
h,TWLS)

)
= AV ar

(
ĥTWLS

)
.

The second inequality in (11) follows by construction. So we focus on the first equality in

(11). Also, since all estimators are asymptotically equivalent under conditional homoskedas-

ticity, we ignore that case. Ignoring that case means that the MP inverse in the GMM

weighting matrix is now the standard inverse. For simplicity of notation, we will work with

the orthogonalized moment vectors g̃(yi, xi, β, γ) := [g̃1(yi, xi, β)
′, g̃2(yi, xi, β, γ)

′]′ where:

g̃1(yi, xi, β) := g1(yi, xi, β) and g̃2(yi, xi, β, γ) := g2(yi, xi, β, γ)− V21(β
0, γ)V −1

11 (β0)g1(yi, xi, β)

since the efficient GMM estimator of β based on either g(yi, xi, β, γ) or g̃(yi, xi, β, γ) has the

same asymptotic variance because the pre-multiplication matrix

 Ip 0

−V21(β
0, γ)V −1

11 (β0) Ip


is nonsingular. The estimator of β based on the moment vector g̃2(yi, xi, β, γ) can be shown

to be asymptotically equivalent to β̃(γ) :=
[
B2 − V21V

−1
11 B1

]−1
[
B2β̂(γ)− V21V

−1
11 B1β̂OLS

]
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where we have (unless confusing) henceforth suppressed dependence on β0 and γ for brevity.

Recalling the λ∗
h(γ) from Section 3.1, the estimator ĥUCC(γ) can be shown to satisfy:

ĥUCC(γ)− h(β0) = ρ′1β̂OLS + ρ′2β̃(γ)−
∂h(β0)

∂β′ β0 + op(n
−1/2)

where ρ′1 :=
∂h(β0)
∂β′ −ρ′2 and ρ′2 := λ∗

h
∂h(β0)
∂β′

[
Ip −B−1

2 V21V
−1
11

]
. Writing B2.1 := B2−V21V

−1
11 B1

and V22.1 := V22 − V21V
−1
11 V12 for further brevity, it can be similarly shown that ĥUGMM(γ)

satisfies:

ĥUGMM(γ)− h(β0) = Λ′
1β̂OLS + Λ′

2β̃(γ)−
∂h(β0)

∂β′ β0 + op(n
−1/2)

where Λ′
1 :=

∂h(β0)
∂β′ − Λ′

2 and Λ′
2 :=

∂h(β0)
∂β′

[
Ip +

(
B−1

2.1V22.1B
−1
2.1

) (
B−1

1 V11B
−1
1

)−1
]−1

.

Define a generic estimator h̃(γ|µ1, µ2) where µ1, µ2 ∈ Rp such that µ′
1 + µ′

2 =
∂h(β0)
∂β′ and:

h̃(γ|µ1, µ2)− h(β0) = µ′
1β̂OLS + µ′

2β̃(γ)−
∂h(β0)

∂β′ β0 + op(n
−1/2).

This asymptotically unbiased generic estimator nests the cases of both ĥUCC(γ) and ĥUGMM(γ)

(and ĥUWLS(γ)). Consider optimality of this generic estimator by choosing:

µ∗
1, µ

∗
2 := arg min

µ1,µ2∈Rp
AV ar

(
µ′
1β̂OLS + µ′

2β̃(γ)
)

such that µ′
1 + µ′

2 =
∂h(β0)

∂β′ .

Since ACov
(
β̃(γ), β̂OLS

)
= 0 and AV ar

(
β̃(γ)

)
= B−1

2.1V22.1B
−1
2.1 , the proof of the first

equality of (11) (and hence the proof of Proposition 1) follows since this optimal generic

estimator turns out to be ĥUGMM(γ) because:

µ∗
2 =

[
B−1V11B

−1 +B−1
2.1V2.1B

−1
2.1

]−1
B−1

1 V11B
−1
1

∂h(β0)

∂β

=
[
Ip +

(
B−1

1 V11B
−1
1

)−1
B−1

2.1V2.1B
−1
2.1

]−1 ∂h(β0)

∂β

= Λ2.
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B Appendix B: Combining Estimators

For simplicity, we will abstract from estimation of γ in this appendix since it does not affect

the asymptotic distribution of the estimators of β under the condition E[yi − x′
iβ

0|xi] = 0

that will be maintained throughout. As discussed in Section 2, for any user-specified value

γ of heteroskedasticity parameters, we can define a UWLS estimator β̂ (γ). This estimator

can be interpreted as a GMM estimator provided by the following exactly identified set of

moment conditions:

E

[
xi

ω2 (xi, γ)
(yi − x′

iβ)

]
= 0.

β̂ (γ) is a consistent estimator of β0 with asymptotic variance Σ (β0, γ). Beyond the TWLS

estimator h
(
β̂
(
γ∗
h,TWLS

))
defined in Section 2, it may make sense, for the sake of asymptotic

variance minimization, to build new estimators by convex combinations (CC) of plug-in

UWLS estimators h
(
β̂ (γ)

)
for different values of γ ∈ Γ. We will consider CC of only two

such estimators. We first discuss such CC of estimators in the general setting of exactly

identified sets of moment conditions.

B.1 A general framework

We consider two sets of exactly identified moment conditions that both identify the true

unknown value β0 of a p dimensional parameter vector β.

� A first set of p moments conditions identifies β0:

E[g1(yi, xi; β)] = 0 ⇐⇒ β = β0.

This first set of moments may for instance be orthogonality conditions for OLS, UWLS,

two stage least squares (2SLS) or nonlinear least squares (NLLS). In the UWLS case,
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for some given value γ1 of the heteroskedasticity parameters:

g1(yi, xi; β) =
xi

ω2 (xi, γ1)
(yi − x′

iβ) . (12)

� A second set of p moments conditions also identifies β0:

E[g2(yi, xi; β)] = 0 ⇐⇒ β = β0.

This second set may for instance re-weight differently orthogonality conditions through

another value γ2 of the heteroskedasticity parameters:

g2(yi, xi; β) =
xi

ω2 (xi, γ2)
(yi − x′

iβ) . (13)

Since the two sets of moment conditions are exactly identified, each of them defines without

ambiguity a GMM estimator of β as follows:

β̂(j) = argmin
β

∥ḡj,n(β)∥, j = 1, 2

where:

ḡj,n(β) =
1

n

n∑
i=1

gj(yi, xi; β).

We maintain throughout the standard assumptions for the asymptotic theory of GMM.

In particular, since the two sets of moment conditions are exactly identified, we are led to

assume that the two Jacobian matrices:

Gj = Gj(β
0) where Gj(β) = E

[
∂

∂β′ gj(β)

]
, j = 1, 2

are non-singular matrices. As a consequence, we have asymptotically a one-to-one mapping
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between the GMM estimators and the corresponding sample moments:

√
n(β̂(j) − β0) = − [Gj]

−1√nḡj,n(β
0) + op(1). (14)

In all this section, we will run affine regressions based on the joint asymptotic normal

distribution of
[√

n(β̂(j) − β0)
]
1≤j≤2

implied by the central-limit theorem:

 √
nḡ1,n(β

0)

√
nḡ2,n(β

0)

 d−→ N
(
0,Υ = Υ(β0)

)
where Υ (β) =

 Υ11 (β) Υ12 (β)

Υ21 (β) Υ22 (β)

 .

B.2 Convex combinations of estimators

We dub CC estimators all estimators which, extending an initial proposal of DiCiccio et al.

(2019), are based on a convex combination (CC) of the two GMM estimators and thus can

be written as:

ĥλ = (1− λ)h(β̂(1)) + λh(β̂(2))

for some λ ∈ R. Note that we do not introduce any sign constraint on the scalar weight λ,

so that the terminology “convex combination” is an abuse of language and we should rather

say “affine combination”. Asymptotically:

√
n
(
ĥλ − h(β0)

)
=

√
n
(
h(β̂(1))− h(β0)

)
− λ

√
n
(
h(β̂(1))− h(β̂(2))

)
(15)

=
√
nδ′(β̂(1) − β0)− λ

√
nδ′(β̂(1) − β̂(2)) + op(1)

where:

δ = δ
(
β0
)

and δ(β) =
∂

∂β
h (β) .
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Hence, we minimize the asymptotic variance of ĥλ by choosing λ = λ∗(h) that is the asymp-

totic regression coefficient in the regression of
√
nδ′(β̂(1) − β0) on

√
nδ′(β̂

(1)
n − β̂

(2)
n ):

λ∗(h) = lim
n→∞

δ′Cov
(
β̂(1), β̂(1) − β̂(2)

)
δ

δ′V ar
(
β̂(1) − β̂(2)

)
δ

.

The optimal CC estimator of the target h(β) is thus:

ĥλ∗(δ) = [1− λ∗(h)]h(β̂(1)) + λ∗(h))h(β̂(2)).

It leads us to our first result.

Proposition 2 The optimal TCC (targeted CC) estimator of h(β) based on the couple of

estimators
(
β̂(1), β̂(2)

)
is given by:

ĥλ∗(h) = [1− λ∗(h)]h(β̂(1)) + λ∗(h)h(β̂(2))

with:

λ∗(h) = lim
n→∞

δ′Cov
(
β̂(1), β̂(1) − β̂(2)

)
δ

δ′V ar
(
β̂(1) − β̂(2)

)
δ

.

Remark 1: The asymptotic expansion in (15) shows that we can also interpret our CC

estimators as follows:

√
n
(
ĥλ − h(β0)

)
=

√
nδ′
[
(1− λ)β̂(1) + λβ̂(2) − β0

]
+ op(1)

=
√
n
{
h
(
(1− λ)β̂(1) + λβ̂(2)

)
− h

(
β0
)}

+ op(1).

In other words, the CC estimator can also be interpreted as a plug-in estimator where it is

a convex combination
[
(1− λ)β̂(1) + λβ̂(2)

]
of the two estimators of β that is plugged in.

44



Remark 2: The proof of Proposition 2 (see Appendix B.4) shows that the optimal TCC

estimator based on
(
β̂(1), β̂(2)

)
is h

(
β̂(1)
)
, for all possible target h (β), if and only if:

Cov
(
β̂(1), β̂(1) − β̂(2)

)
= 0

that is, by virtue of (14) and with obvious simplified notations:

Cov
(
g1, G

−1
1 g1 −G−1

2 g2
)
= 0.

Elementary calculation (see proof of Proposition 2 in Appendix B.4) shows that this property

is tantamount to the identity:

G2 = Υ21Υ
−1
11 G1. (16)

Breusch et al. (1999) have shown that the condition (16) characterizes the fact that the

set of moment conditions g2 is “redundant” with respect to g1, meaning that the complete

set (g1, g2) of moment conditions does not deliver a GMM estimator (asymptotically) more

accurate than β̂(1). It is not surprising to find that this condition characterizes the case

where CC based on the couple of estimators
(
β̂(1), β̂(2)

)
does not deliver better estimators

(of any target) than estimators based on β̂(1) only.

Example: In the UWLS (12)/(13) example:

Υ11 = E

[
xix

′
iω

2
0 (xi)

ω4 (xi, γ1)

]
, Υ21 = E

[
xix

′
iω

2
0 (xi)

ω2 (xi, γ1)ω2 (xi, γ2)

]
.

Let us consider the particular case where the user-specified heteroskedasticity model matches

perfectly the true skedastic function for the value γ1 of the heteroskedasticity parameter:

ω2
0 (xi) ≡ ω2

(
xi, γ

1
)
.
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In this case:

Υ11 = E

[
xix

′
i

ω2 (xi, γ1)

]
= −G1 and Υ21 = E

[
xix

′
i

ω2 (xi, γ2)

]
= −G2

so that the condition (16) is automatically fulfilled. This is relevant for our study in two

cases:

1st case: The user-specified heteroskedasticity model is well–specified so that γWLS =

γ1 and β̂(1) = β̂ (γWLS) is the optimal WLS estimator. In this case, there is no relevant

additional information for estimation of β brought by any other UWLS estimator β̂ (γUWLS).

2nd case: β̂(1) = β̂OLS is the OLS estimator and this estimator is optimal because the

DGP is homoskedastic: ω2
0 (xi) ≡ ω2

hom. In this case, irrespective of the heteroskedasticity

model, there is no relevant additional information for estimation of β brought by any other

UWLS estimator β̂ (γUWLS). Because of a subtle technicality, the case of homoskedasticity

needs to be handled a little differently following the main text when a (optimal) choice of γ

is involved. The message of this second case however remains the same.

Remark 3: The concept of CC is more obvious when the two estimators β̂(1)and β̂(2) are

asymptotically independent. Then:

λ∗(h) = lim
n→∞

V ar
(
δ′β̂(1)

)
V ar

(
δ′β̂(1)

)
+ V ar

(
δ′β̂(2)

) .
In this case, λ∗(h) is a weight in [0, 1] that gives more weight to β̂(1) (resp. to β̂(2)) if and

only if the plug-in variance V ar
(
δ′β̂(1)

)
is smaller (resp. larger) than V ar

(
δ′β̂(2)

)
.

Note that, by virtue of (14), the asymptotic independence of β̂(1) and β̂(2) is tantamount

to the asymptotic independence of the moment functions
√
nḡ1,n(β

0) and
√
nḡ2,n(β

0). One

may even consider that this condition can be maintained without loss of generality, since

one can replace the second set
√
nḡ2,n(β

0) of moment conditions by a set
√
nḡ2/1,n(β

0) that
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has been previously orthogonalized with respect to
√
nḡ1,n(β

0) :

√
nḡ2/1,n(β) =

√
nḡ2,n(β)−Υ21Υ

−1
11

√
nḡ1,n(β).

However, for these moment conditions, the Jacobian matrix is:

G2/1 = G2 −Υ21Υ
−1
11 G1.

Of course, this Jacobian matrix is nil in the case (16) of redundant moment conditions.

By contrast, in many circumstances (see, e.g., the example below), we can assume that

the matrix G2/1 is non-singular, such that our general theory of CC applies to orthogonal

moment functions
√
nḡ1,n(β

0) and
√
nḡ2/1,n(β

0).

Example: Let us consider the UWLS (12)/(13) example in the case of a well-specified

heteroskedasticity model, with γ1 = γhom and γ2 = γWLS. Then:

G2 = −E

[
xix

′
i

ω2 (xi, γWLS)

]
= −E

[
xix

′
i

ω2
0 (xi)

]
.

[−G2]
−1 is the variance matrix of the WLS estimator. On the other hand:

Υ21Υ
−1
11 G1 = −E

[
xix

′
iω

2
0 (xi)

ω2 (xi, γWLS)ω2
hom

]{
E

[
xix

′
iω

2
0 (xi)

ω4
hom

]}−1

E

[
xix

′
iω

2
0 (xi)

ω2
hom

]
= −E [xix

′
i]
{
E
[
xix

′
iω

2
0 (xi)

]}−1
E [xix

′
i] .

[
−Υ21Υ

−1
11 G1

]−1
is the variance matrix of the OLS estimator. Therefore, the WLS estimator

a′β̂ (γWLS) is strictly more accurate than the OLS estimator a′β̂
(
γhom

)
for any linear com-

bination a′β if and only if the matrix G2/1 =
[
G2 −Υ21Υ

−1
11 G1

]
is negative definite. Hence,

it is reasonable to maintain the assumption that the matrix G2/1 is nonsingular.

Remark 4: As exemplified in Appendix B.1, we may be led to consider moment conditions
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that are indexed by some nuisance parameters γ ∈ Γ. While the notations did not make

explicit the dependence on γ, we can for instance revisit the second set of moment functions

as:

g2 (yi, xi, β) = g2 (yi, xi, β, γ) .

In particular, for our regression application:

g2 (yi, xi, β, γ) =
xi

ω2 (xi, γ)
(yi − x′

iβ) . (17)

We then want to resort to a condition of local robustness: replacing in g2 () a specific

value γ̄ of nuisance parameters by a
√
n-consistent estimator γ̂ (

√
n (γ̂ − γ̄) = OP (1)) has

no impact on the asymptotic distribution of any GMM estimator of β based on moment

conditions including:

E [g2 (yi, xi, β)] = 0 ⇐⇒ β = β0.

This robustness property will be necessary for defining feasible versions of optimal CC

estimators by using a first step consistent estimator of γ that will have no effect.

The standard assumption to ensure this robustness is:

E

[
∂

∂γ′ g2
(
yi, xi, β

0, γ
)]

= 0, for all γ ∈ Γ. (18)

It is the simplest case of Chernozhukov et al. (2022). It is obvious that the robustness

condition (18) is valid for our regression example (17), insofar as we maintain the assumption

of zero conditional expectation:

E[yi − x′
iβ

0 |xi] = 0.

It is also the case if one wants to extend our study to 2SLS or NLLS.
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B.3 Matricial combinations of estimators

Following Chen et al. (2016), we introduce MCC (Matricial CC) estimators. While Remark

1 above has shown that our CC estimators can be interpreted as plugging in the target

h(β) an estimator of β that is a convex combination of β̂(1) and β̂(2), we now consider the

possibility to plug in a matrix combination of estimators by considering:

β̂A = (Ip − A)β̂(1) + Aβ̂(2)

for any square matrix A of size p.

Hence, we minimize the asymptotic variance matrix of β̂A by choosing A = A∗ that

is the matrix of regression coefficients in the asymptotic regression of
√
n(β̂(1) − β0) on

√
n(β̂

(1)
n − β̂

(2)
n ):

A∗ = lim
n→∞

Cov
(
β̂(1), β̂(1) − β̂(2)

) [
V ar

(
β̂(1) − β̂(2)

)]−1

.

It leads us to our second result.

Proposition 3 The optimal TMCC (targeted matricial CC) estimator of h(β) based on the

couple of estimators
(
β̂(1), β̂(2)

)
is given by:

ĥA∗ = h
(
(Ip − A∗)β̂(1) + A∗β̂(2)

)
.

Remark 5: An asymptotic expansion shows that we can also interpret our TMCC estimator

as follows:

√
n
[
ĥA∗ − h

(
β0
)]

=
√
nδ′
(
β0
){

(Ip − A∗)β̂(1) + A∗β̂(2) − β0
}
+ oP (1)

=
√
nδ′
(
β0
)
(Ip − A∗)

(
β̂(1) − β0

)
+
√
nδ′
(
β0
)
A∗
(
β̂(2) − β0

)
+ oP (1) .
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This expansion does not allow to interpret the TMCC estimator ĥA∗ as a CC estimator. It

is only if the vector δ (β0) is an eigenvector of the matrix A∗′ with an eigenvalue λ∗, that we

can write:

√
n
[
ĥA∗ − h

(
β0
)]

=
√
nδ′
(
β0
) [

(1− λ∗)β̂(1) + λ∗β̂(2) − β0
]
+ oP (1)

=
√
n
[
h
(
(1− λ∗)β̂(1) + λ∗β̂(2)

)
− h

(
β0
)]

+ op(1).

This result suggests that the set of CC estimators is a strict subset of the set of MCC

estimators. Therefore, we expect in general that no CC estimator of the target h (β) can be

asymptotically as accurate as the TMCC estimator, except when the target is such that its

gradient vector (computed at the true value β0 of β) is an eigenvector of the matrix A∗′ .

Remark 6: The case (in some sense without loss of generality as explained in Remark 3)

of asymptotically independent estimators β̂(1) and β̂(2) is helpful to figure out the efficiency

gain obtained by moving from TCC to TMCC. In this case:

A∗ = lim
n→∞

V ar
(
β̂(1)
) [

V ar
(
β̂(1)
)
+ V ar

(
β̂(2)
)]−1

.

For the sake of notational simplicity, we will write hereafter in this remark asymptotic

(co)variances without the “lim” symbol. The asymptotic expansion in Remark 5 shows that

asymptotically the TMCC estimator ĥA∗ depends on the matrix A∗ only through:

A∗′δ =
[
V ar

(
β̂(1)
)
+ V ar

(
β̂(2)
)]−1

V ar
(
β̂(1)
)
δ. (19)

Therefore, the eigenvector condition discussed in Remark 5 to make TCC and TMCC es-

timators asymptotically equivalent is tantamount to imposing that (19) can be rewritten

as: [
V ar

(
β̂(1)
)
+ V ar

(
β̂(2)
)]

λ∗δ = V ar
(
β̂(1)
)
δ. (20)
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When left-multiplying this condition by δ′, we see that λ∗ must be the weight elicited by

TCC. However, this necessary condition is obviously not sufficient in general to ensure the

eigenvalue conditions (20). This simply confirms that, in general, no CC estimator can be

asymptotically as accurate as the TMCC.

Remark 7: An alternative estimation strategy would be to estimate β by over-identified

GMM based on the two sets of moment conditions ḡn(β) = [ḡ′1,n(β), ḡ
′
2,n(β)]

′ stacked together.

For any given weighting matrix, we would define a GMM estimator:

β̂ (W ) = argmin
β

ḡn(β)
′Wḡn(β).

By standard asymptotic GMM theory:

√
n
[
β̂ (W )− β0

]
= − [G′WG]

−1
G′W

√
nḡn(β

0) + oP (1) (21)

with:

G = G
(
β0
)

and G(β0) =

 G1 (β)

G2 (β)

 .

Then, with obvious notations:

G′W
√
nḡn(β

0) = [G′
1W11 +G′

2W21]
√
nḡ1,n(β

0) + [G′
1W12 +G′

2W22]
√
nḡ2,n(β

0)

= [G′
1W11 +G′

2W21]G1

√
n(β̂(1) − β0) + [G′

1W12 +G′
2W22]G2

√
n(β̂(2) − β0) + op(1).

We define a square matrix A(W ) of dimension p by:

Ip − A(W ) = [G′WG]
−1

[G′
1W11 +G′

2W21]G1.

With easy calculations, we can check that:
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A(W ) = [G′WG]
−1

[G′
1W12 +G′

2W22]G2

so that the asymptotic expansion (21) of the GMM estimator can be rewritten:

√
n
[
β̂ (W )− β0

]
= [Ip − A(W )]

√
n(β̂(1) − β0) + A(W )

√
n(β̂(2) − β0) + op(1).

Therefore, for any weighting matrix W , the GMM estimator β̂ (W ) associated to this

matrix is an MCC estimator with a matricial weight A defined by A(W ) given above. Hence,

the class of MCC estimators asymptotically encompasses not only the CC estimators but

also all GMM estimators based on the complete set of moment conditions. Not surprisingly

though, MCC does not allow us to beat efficient GMM since we can prove the following

result.

Proposition 4 The optimal TMCC estimator ĥA∗ is asymptotically equivalent to the opti-

mal plug in GMM estimator h
(
β̂ (W ∗)

)
, that is computed with the optimal weighting matrix

W ∗ = [Υ (β0)]
−1
.

Proofs of all the results are presented in Appendix B.4 for the sake of self-containedness.

While Chen et al. (2016) seem to suggest the contrary, our proof shows that the validity of

these results heavily rests upon the fact that we are combining only just identified sets of

moment conditions.

B.4 Proofs

B.4.1 Proof of Propositions 2, 3, and Remarks 1 to 5 in Appendix B.2-B.3

For the sake of notational simplicity, all computations are made in the joint asymptotic

Gaussian distribution of estimators of β, without making explicit any notation of limit in

distribution. We are interested in CC and MCC estimators that are asymptotically equivalent
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to (i.e., with difference of the order op(1/
√
n)):

ĥλ = h
(
(1− λ) β̂1 + λβ̂2

)
,

ĥA = h
(
(Ip − A) β̂1 + Aβ̂2

)
.

After asymptotic expansion:

ĥλ = δ′U (λ) , U (λ) = β̂1 − λ
(
β̂1 − β̂2

)
ĥA = δ′U (A) , U (A) = β̂1 − A

(
β̂1 − β̂2

)
.

If we find A∗ such that:

V ar (U (A∗)) ≪ V ar (U (A)) for all A

with inequalities in the sense of positive semi-definite matrices, we can be sure to have defined

a minimum for:

V ar
(
ĥA

)
= δ′V ar (U (A)) δ.

Hence, we have an optimal MCC estimator from multivariate regression coefficients:

A∗ = Cov
(
β̂1, β̂1 − β̂2

) [
V ar

(
β̂1 − β̂2

)]−1

, ĥA∗ = δ′
[
β̂1 − A∗

(
β̂1 − β̂2

)]
.

By contrast, there does not exist in general a real number λ∗ such that:

V ar [U (λ∗)] ≪ V ar [U (λ)] for all λ. (22)

The optimal CC is defined from an optimal number λ∗ that depends on the target δ:

λ∗ = argmin
λ∈R

δ′V ar [U (λ)] δ = argmin
λ∈R

[
δ′β̂1 − λδ′

(
β̂1 − β̂2

)]
.
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Hence, we have an optimal CC estimator from univariate regression coefficient of δ′β̂1 on[
δ′β̂1 − δ′β̂2

]
:

λ∗ = Cov
(
δ′β̂1, δ

′β̂1 − δ′β̂2

) [
V ar

(
δ′β̂1 − δ′β̂2

)]−1

,

ĥλ∗ = δ′β̂1 − λ∗δ′
(
β̂1 − β̂2

)
.

While λ∗ does not solve (22) in general, it does solve if:

δ′A∗ = λ∗δ′

meaning that δ is an eigenvector of A∗′ with eigenvalue λ∗. Otherwise, we have in general:

V ar
(
ĥA∗

)
< V ar

(
ĥλ∗

)
.

Therefore, the optimal TMCC estimator is strictly more accurate than the optimal TCC

estimator.

However, if for all δ ∈ Rp, no TCC estimator based on CC of the two estimators
(
β̂1, β̂2

)
can improve upon h

(
β̂1

)
, it is also the case for TMCC estimators. To see that, note that

if ĥA∗ stands for our optimal TMCC and for all eigenvectors δ of A∗′ if λ∗ (δ) stands for the

corresponding eigenvalue, then:

V ar
(
ĥλ∗(δ)

)
= δ′V ar (U (A∗)) δ = δ′

{
V ar

(
β̂1

)
− V ar

(
A∗
(
β̂1 − β̂2

))}
δ

= δ′V ar
(
β̂1

)
δ − δ′A∗V ar

(
β̂1 − β̂2

)
A∗′δ

= δ′V ar
(
β̂1

)
δ − λ∗δ′V ar

(
β̂1 − β̂2

)
λ∗δ.

The fact that no TCC estimator based on CC of the two estimators
(
β̂1, β̂2

)
can improve
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upon h
(
β̂1

)
means that:

V ar
(
ĥλ∗(δ)

)
= δ′V ar

(
β̂1

)
δ =⇒ λ∗δ′V ar

(
β̂1 − β̂2

)
λ∗δ = 0 =⇒ λ∗δ = 0 =⇒ A∗′δ = 0.

Since this must be true for all eigenvectors δ of A∗′, we conclude:

A∗ = 0.

No TMCC can improve upon h
(
β̂1

)
. In other words, the optimal TCC is h

(
β̂1

)
for all

possible target h (β) if and only if:

Cov
(
β̂1, β̂1 − β̂2

)
= 0.

Since (see Appendix B.1) estimators are one-to-one linear functions of moment conditions,

this can be rewritten with obvious simplified notations:

Cov
(
g1, G

−1
1 g1 −G−1

2 g2
)
= 0.

This can be rewritten:

Υ11G
−1′
1 = Υ12G

−1′
2 ⇐⇒ G−1

2 Υ21 = G−1
1 Υ11 ⇐⇒ Υ21 = G2G

−1
1 Υ11 ⇐⇒ G2 = Υ21Υ

−1
11 G1.

B.4.2 Proof of Proposition 4

We first compute the matrix of multivariate regression coefficients:

A∗ = Cov
(
β̂1, β̂1 − β̂2

) [
V ar

(
β̂1 − β̂2

)]−1

= [Σ11 − Σ12] [Σ11 + Σ22 − Σ12 − Σ21]
−1

where Σ stands for the joint asymptotic variance matrix of the couple
(
β̂′
1, β̂

′
2

)′
of estimators:
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Σ =

 Σ11 Σ12

Σ21 Σ22

 .

For efficient GMM, with weighting matrix W = [Υ (β0)]
−1
, we have shown that it is an MCC

of the two estimators with a matrix of weights:

∆ = [G′WG]
−1

[G′
1W12G2 +G′

2W22G2] =
[
Σ−1

]−1 [
Σ12 + Σ22

]
=
[
Σ11 + Σ21 + Σ12 + Σ22

]−1 [
Σ12 + Σ22

]
with the notations:

Σ−1 =

 Σ11 Σ12

Σ21 Σ22

 = G′WG = G′
1W11G1 +G′

1W12G2 +G′
2W21G1 +G′

2W22G2.

Hence, to prove Proposition 4, we need to check that, when W = [Υ (β0)]
−1
:

[Σ11 − Σ12] [Σ11 + Σ22 − Σ12 − Σ21]
−1 =

[
Σ11 + Σ21 + Σ12 + Σ22

]−1 [
Σ12 + Σ22

]
.

We know (see discussion in Appendix B.2) that we can assume without loss of generality

that
√
nḡ1,n and

√
nḡ2,n are asymptotically independent, or equivalently the estimators β̂1

and β̂2 are asymptotically independent. In this case, matrices Σ and Σ−1 are block diagonal

and, to prove Proposition 4, we only need to check that:

Σ11 [Σ11 + Σ22]
−1 =

[
Σ11 + Σ22

]−1
Σ22

that is: [
Σ11 + Σ22

]
Σ11 = Σ22 [Σ11 + Σ22]

which is obvious, since in case of block-diagonality:

Σ11 = (Σ11)
−1 , Σ22 = (Σ22)

−1 .
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C Appendix C: Machine learning semiparametric WLS

While not much used in current empirical practice, nonparametric estimation of the true

skedastic function ω2
0(xi) has a long and rich history; see, e.g., Carroll (1982), Robinson

(1987), Newey (1994), Fan and Yao (1998), etc. This leads to the semiparametric WLS.

Miller and Startz (2019) and Gonzales-Coya and Perron (2024) demonstrate that machine

learning strategies generally outperform classical nonparametric methods applied in this

context by Carroll (1982) (with kernels), Robinson (1987) (with Nearest Neighbor) or Fan

and Yao (1998) (with Local Linear smoothing). These classical methods led to the classical

semiparametric WLS estimators, whereas the machine learning methods lead to the new

generation of semiparametric WLS estimators. Miller and Startz (2019) and Gonzales-Coya

and Perron (2024) argue that the advantage of machine learning is that it does not require

a tight pre-specification of the nature and number of covariates.

Miller and Startz (2019) recommend using Support Vector Regression (SVR) to model

heteroskedasticity, while Gonzales-Coya and Perron (2024) recommend using Lasso. Gonzales-

Coya and Perron (2024) additionally compare their Lasso method with application of SVR,

random forest and other methods, and conclude that the use of Lasso delivers best perfor-

mance in their simulations.

How do our targeted methods TWLS, TCC and TGMM perform in terms of precision

compared to the classical and new generation of semiparametric WLS estimators?

All the semiparametric WLS estimators (the classical and the new ones) are semipara-

metrically efficient. Therefore, asymptotically, our targeted methods cannot be more precise

than any of them, and in general will be less precise if the user’s parametric model for

heteroskedasticity is incorrect.3 However, the reason the classical semiparametric WLS es-

3If there is a promise in the sense of Ackerberg et al. (2012) to make the user’s parametric model for
heteroskedasticity richer with the increase in sample size (i.e., as more observations become available), then
our targeted methods can also be “interpreted” as semiparametrically efficient; but that is not what we do
in our paper. The precision gains that we wish to highlight in our paper are due to targeting based on a
possibly incorrect model and not because of semiparametric efficiency.
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timators are not much used in practice is because such asymptotic results are generally not

materialized in small samples. Therefore, to answer the question about precision, it makes

sense to compare the finite-sample precision of the classical and new semiparametric WLS

estimators with our TWLS, TCC and TGMM estimators based on Monte Carlo experiments.

For a quick comparison to answer this question, we look at the Monte Carlo experiments

in Miller and Startz (2019) and Gonzales-Coya and Perron (2024) — the ones that directly

come from Romano and Wolf (2017), since we already performed and discussed those experi-

ments in the main text of our paper — and then compare the performance of their estimators

with ours. This comparison, while not perfect, is perhaps not too off because the results for

the WLS estimators, i.e., the common estimator computed by them and us, are similar.

Comparison with Miller and Startz (2019):

The common experiment in this case is the one with the Boston housing data. Table

9 collects the ratio of EMSEs with respect to OLS as the metric for comparing precision,

from Miller and Startz (2019)’s Table 2 and our Table 6 in the main text, for the respective

estimators with WLS being the common estimator.4

from Table 2 of Miller and Startz (2019) from our Table 6 (in main text)
h(β) WLS KNN Kernel SVR SVR-CV WLS TWLS TCC TGMM

β1 .615 .456 .432 .515 .460 .613 .501 .500 .469
β2 .674 .524 .471 .562 .510 .676 .562 .559 .486
β3 .510 .420 .372 .446 .402 .506 .337 .337 .332
β4 .504 .363 .358 .388 .374 .500 .348 .350 .317
β5 .932 .866 .716 .804 .717 .927 .883 .896 .774

Table 9: Ratio of EMSE of estimators with respect to that of OLS under Romano and Wolf
(2017)’s design with real-life data. WLS uses Romano and Wolf (2017)’s Model 1. Other es-
timators from Miller and Startz (2019) are k-nearest neighbors (KNN), local constant kernel
regression (Kernel), and SVR with fixed and cross validated tuning parameters respectively
(SVR and SVR-CV). Miller and Startz (2019) use 50000 Monte Carlo trials, we use 10000.

We wish to emphasize on two observations from Table 9. First, the relatively poor

4Although Miller and Startz (2019) refer to these numbers as the ratio of the empirical root mean squared
errors, we believe that these are ratios without taking the square root, i.e., these are ratios of (E)MSEs.
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precision of WLS compared to the other reported estimators makes it very likely that the

user’s parametric model for heteroskedasticity, i.e., Romano and Wolf (2017)’s Model 1, is

incorrect. Consequently, the classical semiparametric estimators and the machine learning

estimators that are all semiparametrically efficient are performing much better than WLS.

The most precise semiparametric WLS estimator from Table 9, i.e., kernel, however has

poor empirical size even after using Miller and Startz (2019)’s correction to the usual HC3

standard errors in the spirit of Rothenberg (1988); see Table 2 of Miller and Startz (2019).

The second observation is that, in spite of using this possibly incorrect model for het-

eroskedasticity, the targeted methods seem to be roughly as precise as the semiparametric

estimators. This remarkable gain in precision while using the same incorrect model for het-

eroskedasticity happens because of targeting in the case of TWLS and because of targeting

and the combination of OLS and WLS in the case of TCC and TGMM.

Comparison with Gonzales-Coya and Perron (2024):

The common experiment in this case is another experiment from Romano and Wolf

(2017). Section 4.1 of our paper considers the entire experiment, but now we will consider

the subset that overlaps with Gonzales-Coya and Perron (2024). Since Table 1 of Gonzales-

Coya and Perron (2024) shows that precision gain due to their proposal happens primarily

under Romano and Wolf (2017)’s Case 2(a), we will for brevity only focus on that case.

from Tables 1 and S.1 of Gonzales-Coya and Perron (2024) from our Table 2 (in main text)
n WLS Lasso SVR LL KNN RF WLS TWLS TCC TGMM

100 .54 .54 .56 .55 .71 .68 .56 .51 .45 .48
200 .47 .46 .48 .49 .60 .64 .50 .45 .41 .41
400 .48 .46 .46 .48 .50 .56 .48 .47 .43 .41

Table 10: Ratio of EMSE of estimators with respect to that of OLS under Case 2(a) of
Romano and Wolf (2017). WLS uses Romano and Wolf (2017)’s Model 1. Other estimators
from Gonzales-Coya and Perron (2024) are their implementation of SVR, local linear regres-
sion (LL), k-nearest neighbor (KNN) and random forest (RF) to model heteroskedasticity.
All results are based on 10000 Monte Carlo trials. The formatting of numbers with two
places after decimal is maintained following Gonzales-Coya and Perron (2024)’s display.
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Table 10 collects the ratio of EMSEs with respect to OLS, as the metric for comparing

precision, from Tables 1 and S.1 in Gonzales-Coya and Perron (2024) and our Table 2 (main

text) for the respective estimators. WLS based on Romano and Wolf (2017)’s Model 1 is

the common estimator. We make the following observations based on Table 10.

First, as Gonzales-Coya and Perron (2024) note, semiparametric WLS based on Lasso and

SVR are preferable to the other semiparametric WLS estimators. While LL also seems almost

comparably good in this case, Gonzales-Coya and Perron (2024) note other problems with

LL. On the other hand, KNN and RF seem to be much less precise than even classical WLS

although Model 1 of Romano and Wolf (2017) used as the user’s model for heteroskedasticity

is clearly incorrect in this case.

Second, we again find that simply by virtue of targeting, TWLS performs favorably when

compared to all the semiparametric methods. TCC and TGMM perform even better.

Third, this good performance of targeting compared to Gonzales-Coya and Perron (2024)

is arguably compelling since the latter’s results are somewhat biased in favor of machine

learning techniques as the true skedastic function ω2
0(xi) = [log(xi,2)]

2 belongs to the space

of functions zi = (1, xi,2, [log(xi,2)]
2, x2

i,2, cos(xi,2), cos(2xi,2))
′ that they considered for learn-

ing. On the other hand, Romano andWolf (2017)’s Model 1 ω2(xi; γ) = exp(γ1+γ2 log(|xi,2|))

used by our targeting estimators certainly does not contain the true skedastic function

ω2
0(xi) = [log(xi,2)]

d for d = 2, 4, etc. We also note that ω2
0(xi) = [log(xi,2)]

4 is Romano

and Wolf (2017)’s Case 2(b) for which our targeting methods provided even more improve-

ment (see our Table 2 in the main text), but could not be used for comparison here since it

is not considered in Gonzales-Coya and Perron (2024).

Finally, we note that Gonzales-Coya and Perron (2024) also consider a modified setup of

the experiment in their robustness check by including in the user’s model for heteroskedastic-

ity a large number of variables that are irrelevant (at various degree) for heteroskedasticity.

Predictably, Lasso leads to better precision than classical WLS in those cases. We also share
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this view that when there are many possible covariates that could be included in the user’s

model, Lasso or some other variable selection method could be used to shrink the covariate

set as a suggestive reference for the user. (We should note that it may not be clear what

Lasso will do under violations of sparsity; see, e.g., Kolesar et al. (2025).)

Where we differ, and that has been the central message of our paper, is what to do

with this shrunk set of covariates. Gonzales-Coya and Perron (2024) recommend doing WLS

based on this shrunk set of covariates noting that they are agnostic about the correctness

of the model that they thereby use. On the other hand, while we would also be similarly

agnostic about the correctness of the model, we would instead recommend doing TWLS,

TCC or TGMM based on this shrunk set of covariates. While such exploration of machine

learning methods is beyond the scope of our current paper (we consider similar proposals in

related work in other contexts), based on the extensive simulation evidence in our current

paper it seems that such targeting strategies could very likely lead to much better precision.
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