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Abstract

The parametric weighted least squares (WLS) estimator and Romano and Wolf (2017)’s adaptive LS

(ALS) estimator are not optimal if the parametric model for heteroskedasticity of the regression error is

misspecified. We propose a modified WLS (MWLS) estimator that is designed to be optimal. This modi-

fication involves obtaining the weights in WLS by directly minimizing the asymptotic variance of interest.

By construction, the asymptotic variance of the MWLS estimator cannot exceed that of the WLS, ALS,

and ordinary LS estimators. Simulations under Romano and Wolf (2017)’s design demonstrate the superior

performance of the MWLS estimator even in relatively small samples.
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1 Introduction

It has been widely accepted since the seminal work of White (1980) that using the ordinary least

squares (OLS) estimator with robust standard errors in a regression model is preferable to using

the classical parametric weighted LS (henceforth, simply “WLS” for brevity) estimator. This is

because a parametric misspecification of the unknown conditional variance of the regression error

no longer guarantees that the WLS standard errors are smaller than that of the OLS. Consequently,

the use of WLS is rare in modern economics and econometrics.1

In a recent paper, “Resurrecting weighted least squares”, Romano and Wolf (2017) challenge

this view (also see Leamer (2010)). Romano and Wolf (2017) propose an adaptive LS (ALS)

estimator that is the OLS estimator if a pre-test cannot reject the conditional homoskedasticity of

the regression error, but is the WLS estimator otherwise. They demonstrate that the ALS estimator

can provide improvements over the OLS and WLS estimators. However, the asymptotic variance

of the ALS estimator can exceed that of the OLS estimator when the regression error is actually

conditionally heteroskedastic and this conditional variance is parametrically misspecified. This is

because the ALS estimator is not designed for any kind of asymptotic optimality in such cases.

We wish to further advance this dissenting view on the neglect of WLS by proposing a modified

parametric WLS (henceforth, “MWLS”) estimator that directly addresses the above mentioned

issue of non-optimality. Given the correct or incorrect parametric model for the conditional variance

of the regression error, this MWLS estimator is designed such that its asymptotic variance is the

smallest among a class of estimators that includes the OLS and WLS estimators as special cases.

The parameter of interest in our paper is h(β) that is taken as a smooth function of the regression

coefficients β. h(β) includes β, elements of β, their sums, differences, products, etc. as special cases.

The idea behind MWLS: Let ω2(X; γ) be the user-specified correct/incorrect parametric model

for the variance of the regression error conditional on the regressors X. In a sample of size n,

let β̂n(γ) be the weighted by ω−1(X; γ) least squares estimator of β for each γ. Let Σ(γ) be the

asymptotic variance of h(β̂n(γ)) for each γ. Let γ∗ be an optimal γ in the sense that Σ(γ)−Σ(γ∗)

is positive semi-definite for all γ ̸= γ∗. We define the MWLS estimator as h(β̂n(γ̂n)) where γ̂n is

an estimator of an unknown optimal γ∗. If γ̂n is better than n1/4-consistent for γ∗ then, under

standard conditions, the asymptotic variance of the MWLS estimator is Σ(γ∗), which is optimal.

Comparison with WLS: If the parametric model ω2(X; γ) is correctly specified then it is well

known that WLS is the efficient estimator, and we show under standard conditions that Σ(γ∗),

1To quote Angrist and Pischke (2010): “A legacy of White’s (1980) paper on robust standard errors, one of the
most highly cited from the period, is the near-death of generalized least squares in cross-sectional applied work.”
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which is the asymptotic variance of the MWLS estimator, is also the asymptotic variance of WLS.

On the other hand, if ω2(X; γ) is misspecified then WLS is no longer efficient, and now there is

room for possible improvement given the user-specified parametric model ω2(X; γ). The MWLS

estimator captures this room for improvement completely since our proposal, by construction, leads

to the smallest asymptotic variance Σ(γ∗) given the user-specified parametric model ω2(X; γ).

Comparison with OLS: In practice, parametric models ω2(X; γ) allow for conditional homoskedas-

ticity as a special case, i.e., a constant ω2(X; γ̄) for some value γ̄ of γ; see Wooldridge (2012), Ro-

mano and Wolf (2017), etc. Then, the asymptotic variance of the OLS estimator of h(β) is Σ(γ̄).

By construction, Σ(γ̄)−Σ(γ∗) is positive semi-definite, i.e., the asymptotic variance of the MWLS

estimator cannot exceed that of the OLS estimator. If the regression error actually happens to be

conditionally homoskedastic, then OLS is efficient and hence, by construction, Σ(γ̄) = Σ(γ∗).

The fundamental difference between the idea behind the MWLS estimator and that for the

other/existing parametric WLS estimators is as follows. The early papers like Carroll and Ruppert

(1982) or the recent papers like Romano and Wolf (2017) and Spady and Stouli (2019), all seek a

“best fit” of the parametric model ω2(X; γ) to the true conditional variance. By contrast, as we will

discuss in detail, we do not actively seek such a “best fit” to the true conditional variance because

if ω2(X; γ) is misspecified then this does not necessarily lead to the smallest asymptotic variance

for the estimator of the parameters of interest h(β). This is precisely why the asymptotic variance

of estimators like WLS and ALS can be larger than that of OLS when ω2(X; γ) is misspecified.

Instead, we first note that under standard conditions: (i) h(β̂n(γ)) is consistent for h(β) even

if ω2(X; γ) is misspecified, and (ii) plugging in an estimated γ in h(β̂n(γ)) does not affect its

asymptotic variance. This allows us to fit the model ω2(X; γ) to directly minimize the asymptotic

variance of h(β̂n(γ)), and define the MWLS estimator based on this fit. Consequently, if the user

happens to specify the model ω2(X; γ) correctly, then we obtain the same asymptotic variance as

the other methods. On the other hand, if the user misspecifies the model ω2(X; γ), then we are

still guaranteed the smallest asymptotic variance that is possible given this misspecified model.

We wish to emphasize regarding this idea behind the MWLS estimator that the general idea

of targeting nuisance parameters to achieve some form of optimality of the estimator for the pa-

rameter of interest is very old.2 This idea should apply to any estimation framework where a

2This idea has been practiced at least since the early days of the optimal design of experiments and sample surveys
where the nuisance parameters are, respectively, the experiment-design and the sampling-design. Some of the directly
relevant early works are cited in our paper (see, e.g., Elfving (1952) and Chernoff (1953) cited above). Numerous
interesting papers in economics, statistics and biostatistics have recently studied similar optimality problems in
contexts such as optimal design of experiments using large dimensional data, robust estimation using coarsened data,
etc. The general idea is also related to that of finding the optimal estimating equations as described in Heyde (1997).
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possible parametric misspecification of the nuisance parameters does not affect the consistency of

the estimator for the parameters of interest; conditions for this property can be found in Theorem

6.2 of Newey and McFadden (1994). We introduce our proposed estimator in the specific context

of weighted least squares because it is the leading example of such estimation frameworks and,

thanks to Romano and Wolf (2017), there is a renewed interest in this universally familiar example.

Extension of this idea to various other estimation frameworks is the topic of our ongoing research.

Finally, we note that three issues arise when implementing our idea for the MWLS estimator.

First, computation of an optimal γ∗ can be difficult. We bypass this issue by instead minimizing

the trace of Σ(γ). This minimizer indeed leads to Σ(γ∗) if an optimal γ∗ exists. Otherwise, it gives

a compromised notion of optimality: the A-optimality of Elfving (1952) and Chernoff (1953).

Second, while an optimal γ∗ exists under standard conditions if the parametric model ω2(X; γ)

is correctly specified, the existence of γ∗ is generally not guaranteed under misspecification unless

h(β) is a scalar. However, h(β) is a scalar in most empirical studies since interest generally lies on

the regression coefficients, their sums, differences, etc. individually. Empirical research generally

reports estimators, standard errors, t-ratios, etc., i.e., quantities that correspond to distinct but

inherently scalar h(β)’s (e.g., each coefficient is a distinct h(β) in a regression output table). In

light of this observation, one can always report distinct but scalar h(β)-specific MWLS estimators,

standard errors, t-ratios, etc. since the optimal γ∗’s in these distinct scalar cases necessarily exist.

Third, the optimal γ∗ may not be unique. However, this case of set-identified nuisance param-

eters (γ) is not a problem since we show that, by the definition of the set, Σ(γ∗) is the same for all

such optimal γ∗. Indeed, we do not even require the estimated γ to converge in probability to any

of these optimal γ∗’s. Our results hold if, simply, the distance between a sequence of estimated γ

and the possibly non-singleton set of optimal γ∗’s converges in probability to zero at the n1/4 rate.

Our presentation of the MWLS estimator takes in to account all these issues carefully. We also

provide a consistent estimator for the asymptotic variance of the MWLS estimator, using which

one can directly obtain asymptotically normal t-ratios for the purpose of inference.

Our proposed MWLS estimator should be especially useful in applications where the OLS

standard errors are large, the residual-plots indicate conditional heteroskedasticity, but, due to

the usual limitations related to nonparametric estimation, the semiparametric WLS as in Carroll

(1982), Robinson (1987) and Newey (1994) that involves estimating the conditional variance of the

regression errors using kernel, nearest neighbor and series estimators respectively, is not practical.

Our paper proceeds as follows. Section 2 discusses the framework, introduces our proposed

MWLS estimator, and establishes its first-order asymptotic properties. Section 3 provides further
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discussion of the MWLS estimator drawing a sharp contrast with other estimators such as OLS,

WLS, and the recently proposed estimators in Romano and Wolf (2017) and Spady and Stouli

(2019). Section 4 is a Monte Carlo experiment that finds that our asymptotic propositions from

Sections 2 and 3 generally hold up well in small samples. Under the design of Romano and Wolf

(2017), the simulation results demonstrate the superior performance of our proposed MWLS esti-

mator. Section 5 concludes. Appendix A contains the proofs of the results presented in Section 2.

Appendix B collects supplementary materials related to Sections 2, 3 and 4.

We use the notation := for defined as, ≡ for numerical equivalence, ∝ for proportional to, ∥.∥

for the Euclidean norm,
d−→ and

p−→ for convergence in distribution and probability, and Op(an) and

op(an) for quantities that are, respectively, bounded in probability and
p−→ 0 when divided by an.

2 The modified weighted least squares (MWLS) estimator

2.1 Framework and preliminaries

Consider a linear regression model with a dependent variable y and p regressors X:

y = X ′β + u (1)

where E[u|X] = 0, (2)

E[u2|X] = ω2
0(X) (3)

almost surely in X. ω2
0(X) is an unknown positive function of X. The parameter of interest is h(β)

that is a dh × 1 (dh ≤ p) function of β. The sample of observations is (yi, X
′
i)
n
i=1.

Let ω2(X; γ) be a positive function of X and γ where γ ∈ Γ ⊂ Rk. ω2(X; γ) is the user’s

attempt to parametrically model the unknown ω2
0(X). This model may or may not be correct.

We define the weighted by ω−1(X; γ) least squares estimator of β as:

β̂n(γ) :=

(
1

n

n∑
i=1

1

ω2(Xi; γ)
XiX

′
i

)−1(
1

n

n∑
i=1

1

ω2(Xi; γ)
Xiyi

)
, (4)

and index it by γ ∈ Γ. Accordingly, we define the estimator of h(β), also indexed by γ ∈ Γ, as:

ĥn(γ) := h(β̂n(γ)). (5)

We use the following notation throughout. The eigen values of an a× a matrix A are denoted

by λ1(A) ≤ λ2(A) ≤ . . . ≤ λa(A). For each γ ∈ Γ, we define:

B(γ) := E

[
1

ω2(X; γ)
XX ′

]
, B̂n(γ) :=

1

n

n∑
i=1

1

ω2(Xi; γ)
XiX

′
i and C(γ) := E

[
ω2
0(X)

(ω2(X; γ))2
XX ′

]
.
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Assumption (A1)-(A7):

(A1) β0 is the true value of β. Hence, h(β0) is the true value of h(β).

(A2) (yi, X
′
i)
n
i=1 are i.i.d. copies of the random variables (y,X ′).

(A3) (a) ω2
0(X) > 0 with probability one, and (b) ω2(X; γ) > 0 with probability one for all γ ∈ Γ

where Γ is a compact subset of Rk.

(A4) supγ∈Γ

∥∥∥B̂n(γ)−B(γ)
∥∥∥ = op(1).

(A5) 1√
n

∑n
i=1

1
ω2(Xi;γ)

Xiui
d−→ N (0, C(γ)) for each γ ∈ Γ.

(A6) infγ∈Γ λ1 (B(γ)) > 0, infγ∈Γ λ1 (C(γ)) > 0, supγ∈Γ λp (B(γ)) < ∞ and supγ∈Γ λp (C(γ)) < ∞.

(A7) h(β) is continuously differentiable in β in an open neighborhood of β0, and H := H(β0) is a

finite, full row-rank dh × p matrix where H(β) := ∂h(β)/∂β′.

Remarks: (A1)-(A7) are standard assumptions. (A1) states that the distribution of (y,X ′)′ is any

member of the family of distributions for which (1) holds with β = β0, and that satisfies (2), (3),

conditions (A3)-(A6), and other standard conditions (stated later). (A2) simplifies the exposition

of our key idea, but can be readily modified to accommodate for a non-stochastic design matrix

(X ′
1, . . . , X

′
n)

′ or other types of commonly encountered samples (yi, X
′
i)
n
i=1. Primitive conditions for

the high-level assumptions (A4) and (A5) are well known. The implication on (A6) of the positivity

instead of a bounded away from zero assumption in (A3b) is discussed later. (A7) allows for the

use of the delta method. Some of (A2)-(A7) can be weakened for the individual results below.

Lemma 1

(i) β̂(γ1) ≡ β̂n(γ2) for any γ1 ∈ Γ and γ2 ∈ Γ such that ω2(X; γ1) ∝ ω2(X; γ2).

(ii) If assumptions (A1)-(A6) hold then, for each γ ∈ Γ,

√
n
(
β̂n(γ)− β0

)
d−→ N

(
0,Ξ(γ) := B(γ)−1C(γ)B(γ)−1

)
. (6)

(iii) If assumptions (A1)-(A7) hold then, for each γ ∈ Γ,

√
n
(
ĥn(γ)− h(β0)

)
≡

√
n
(
h
(
β̂n(γ)

)
− h(β0)

)
d−→ N

(
0,Σ(γ) := HΞ(γ)H ′) . (7)

There are two components in the design of our proposed MWLS estimator. First, the benchmark

needs to be set by defining an “optimal” value of γ that minimizes the asymptotic variance Σ(γ).

Second, the “optimal” feasible estimator of h(β), i.e., the MWLS estimator, needs to be obtained

by plugging in an estimate (in a sense made precise later) of the unknown optimal value of γ in

ĥn(γ). Now, we go over these two components systematically describing the underlying non-trivial

issues such as existence and non-uniqueness, and our proposed solutions that address these issues.
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2.2 Optimal but possibly non-unique γ

We define an optimal γ as any γ∗ ∈ Γ that satisfies the condition that:

Σ(γ)− Σ(γ∗) is positive semi-definite for all γ ∈ Γ where γ ̸= γ∗. (8)

If h(β) is a scalar then γ∗ exists by the extreme value theorem provided that Σ(γ) is continuous

in γ (as is typically the case) and Γ is compact in Rk (assumed in (A3b)). However, two problems

arise when h(β) is not a scalar, i.e., dh > 1, specifically in the case where ω2(X; γ) is misspecified.

First, it is difficult to directly work with the general definition of optimality in (8). Second, γ∗ may

not exist. To avoid this second problem we assume the existence of γ∗. This assumption is not

needed if ω2(X; γ) is correctly specified or if, as in almost all cases of empirical interest, dh = 1.

Assumption (A8):

(A8) There exists a γ∗ satisfying (8).

Now, the first problem, i.e., computational difficulty, can be addressed by instead defining γ∗

as a minimizer of Trace(Σ(γ)) with respect to γ ∈ Γ, a criterion function that is easier to minimize.

However, before formally introducing this convenient criterion, we note that there is another

important issue with γ∗: it is generally non-unique.3 The criterion in (8) accounts for this non-

uniqueness by only requiring positive semi-definiteness instead of positive definiteness since the

former allows for Σ(γ) = Σ(γ∗) for γ ̸= γ∗ and γ ∈ Γ. To incorporate this explicitly into our

analysis, we characterize the non-uniqueness by defining a possibly non-singleton set Γ∗ ⊆ Γ as:

Γ∗ :=
{
γ∗ ∈ Γ

∣∣∣ Γpd(γ
∗)
∪

Γeq(γ
∗) = Γ

}
(9)

where Γpd(γ
∗) := {γ ∈ Γ | Σ(γ)− Σ(γ∗) is positive definite} , (10)

Γeq(γ
∗) := {γ ∈ Γ | Σ(γ) = Σ(γ∗)} . (11)

Γ∗ is the set of optimal γ∗’s: elements of this set have equal Σ(γ∗)’s, while Σ(γ)−Σ(γ∗) is positive

definite for elements γ ∈ Γ\Γ∗ outside. Assumption (A8) ensures that Γ∗ is nonempty. If Γeq(γ) = Γ

for any γ ∈ Γ then Γ∗ = Γ, which is unlikely except in pathological cases. If Γ∗ is a singleton {γ∗}

then Γeq(γ
∗) = {γ∗} and Γpd(γ

∗) = Γ \ {γ∗}, which is also unlikely. We allow for all possibilities.

Lemma 2 If assumptions (A6)-(A8) hold then Γ∗ defined in (9) satisfies:

Γ∗ =

{
γ∗ ∈ Γ

∣∣∣∣Trace(Σ(γ∗))−min
γ∈Γ

Trace(Σ(γ)) = 0

}
. (12)

3This can arise trivially, e.g., Lemma 1(i), that can often be ruled out by careful parameterization (up to scale
factor) of ω2(X; γ) by the user. However, especially when ω2(X; γ) is misspecified, non-uniqueness can also arise in
more involved ways that depend on the underlying distribution of (y,X); and this cannot be ruled out without very
strong assumptions that severely restrict the premise of our paper. Naturally, we do not make any such assumption.
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Remark: The equivalence relation in Lemma 2 greatly simplifies the computation of the optimal

γ∗’s irrespective of whether h(β) is a scalar. However, when h(β) is not a scalar, our key assumption

continues to be (A8) that enabled the existence of Γ∗ in (9). Without it, the set characterized by the

right-hand side (RHS) of (12), that is nonempty under continuity of Trace(Σ(γ)) and compactness

of Γ, is simply the set of the so-called A-optimal γ’s in the terminology of the design of experiments

literature; see Elfving (1952) and Chernoff (1953). The notion of A-optimality is not going to

be attractive in empirical work unless backed by assumption (A8) that elevates it to the more

general notion of optimality in (8). Moreover, without assumption (A8), the set on the RHS of

(12) would generally be non-singleton with elements γ’s leading to possibly different Σ(γ)’s. Hence,

the asymptotic properties of a feasible optimal estimator of h(β), which requires estimating the

unknown optimal γ, could be invalid. Of course, these concerns are all moot when h(β) is a scalar,

i.e., in almost all common cases of empirical interest, since assumption (A8) then holds trivially.4

2.3 A feasible optimal estimator of h(β)

2.3.1 Estimation of an optimal γ

Having characterized the set of optimal γ’s as Γ∗, which is unknown, next we turn to the feasible

optimal estimator of h(β) that would involve estimating γ∗ in a sense made precise now. First, let

us describe this estimation of γ∗ which, as we noted before, is not necessarily unique. Define:

m(γ) := Trace(Σ(γ)) if Σ(γ) is positive definite

:= +∞ if Σ(γ) is not positive definite.

(13)

The constraint of positive definiteness is redundant under assumptions (A6)-(A7), but can be useful

for the sample analog m̂n(γ) of m(γ), which, with an estimator Σ̂n(γ) of Σ(γ), is defined as follows:

m̂n(γ) := Trace(Σ̂n(γ)) if Σ̂n(γ) is positive definite

:= +∞ if Σ̂n(γ) is not positive definite.

(14)

Since it is generally convenient when objective functions to be minimized have a zero minimum,

define, respectively, the population and sample objective functions to be minimized with respect

4We use Trace(Σ(γ)) as the criterion to minimize only for computational ease. Our exposition does not specifically
exploit any special properties of trace, and is generally applicable to the other “compromised” notions of optimality
such as the D-optimality of Wald (1943), the E-optimality of Ehrenfeld (1956), the L-optimality (generalization of
A-optimality) due to Karlin and Studden (1966) and Federov (1971), Kiefer (1974)’s general optimality of which the
A/L, D and E optimalities are limiting cases, etc. The empirical attractiveness of the interpretability of these notions
are also dependent on (A8). Also, they may not agree unless h(β) is a scalar or, more generally, without the existence
assumption (A8). Our results below are readily applicable if the user prefers to use these other notions of optimality.
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to γ ∈ Γ as follows:

Q(γ) := m(γ)−min
g∈Γ

m(g) and Q̂n(γ) := m̂n(γ)−min
g∈Γ

m̂n(g). (15)

The population objective functionQ(γ) does not entail any additional loss of generality sincem(γ) is

finite for γ ∈ Γ by assumptions (A6)-(A7). A similar finiteness and positive definiteness assumption

(in (A9) below) on Σ̂n(θ) would ensure the same for the sample objective function Q̂n(γ).

Any γ∗ ∈ Γ∗ is, by definition, a minimizer of Q(γ) with respect to γ ∈ Γ. Now, consider any

sequence γ̂n ∈ Γ of minimizer of Q̂n(γ) (allowing for non-unique minimizers at each n ≥ 1):

γ̂n ∈ Γ is such that Q̂n(γ̂n) = min
γ∈Γ

Q̂n(γ). (16)

Subsequently, define the distance measure of any γ ∈ Γ from Γ∗, which is non-empty by (A8), as:

d(γ,Γ∗) = inf
γ̄∈Γ∗

∥γ − γ̄∥. (17)

Finally, based on (17), define Γ∗
δ := {γ ∈ Γ |d(γ,Γ∗) ≤ δ} as the δ-expansion of Γ∗ for a δ ≥ 0.

Remarks: It is worth noting the following regarding the minimizer γ̂n and the distance d(γ̂n,Γ
∗).

1. At any n ≥ 1, there may exist multiple elements in closure(Γ∗) in Γ that have the smallest

distance from γ̂n. However, if, e.g., there exist γa,n, γb,n ∈ closure(Γ∗) in Γ such that ∥γ̂n − γa,n∥ =

∥γ̂n − γb,n∥ = d(γ̂n,Γ
∗) for all n large enough, then eventually γa,n and γb,n also have to be

arbitrarily close if d(γ̂n,Γ
∗) = op(1). On the other hand, much differently from the standard cases

with a unique “(psuedo) true value”, our asymptotic results below do not require that any such

sequence γa,n or γb,n actually converges to a point (“(psuedo) true value”) in Γ∗ (or Γ) as n → ∞.

2. A different issue arises because, additionally, the sequence γ̂n is also non-unique. For two

sequences γ̂n,c and γ̂n,d satisfying (16), it is possible that the sequences γn,c, γn,d ∈ closure(Γ∗) in Γ

are such that ∥γ̂n,c − γn,c∥ = d(γ̂n,c,Γ
∗) and ∥γ̂n,c − γn,d∥ = d(γ̂n,d,Γ

∗). In this case, γn,c and γn,d

may not be eventually close even if ∥γ̂n,c − γn,c∥ = op(1) and ∥γ̂n,d − γn,d∥ = op(1).

However, these two issues do not cause much problems with our asymptotic results. Lastly, we

note that the discussion below follows trivially in the pathological case Γ = Γ∗. We highlight this

in Lemma 3 (i), but ignore it otherwise and take Γ∗ ⊂ Γ. As such, some of the assumptions below

(e.g., (A11)) only make sense when Γ \ Γ∗ is non-empty, which, we hope, is clear from the context.

Assumption (A9)-(A13):

(A9) lim infn infγ∈Γ λ1

(
Σ̂n(γ)

)
> 0 and lim supn supγ∈Γ λdh

(
Σ̂n(γ)

)
< ∞ with probability one.

(A10) supγ∈Γ |Q̂n(γ)−Q(γ)| = op(1).
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(A11) For all δ > 0, there exists ϵ(δ) > 0 such that infγ∈Γ∗
δ\Γ∗ Q(γ) ≥ ϵ(δ).

(A12) supγ∈Γ∗
δ

√
n|Q̂n(γ)−Q(γ)| = Op(1) for some δ > 0.

(A13) infγ∈Γ∗
δ\Γ∗ [{Q(γ)− 0} −D × d(γ,Γ∗)] ≥ 0 for some δ > 0 and D > 0.

Remarks: (A9) is the sample counterpart of (A6), and ensures that Q̂n(γ) is finite for all n

large enough. (A10) is the standard uniform convergence of the sample objective function to the

population objective function, for which, given assumption (A4) (and (A7)), it is sufficient that

C(γ) be estimated uniformly consistently. (A11) is the well-separability assumption, in our case,

for Γ∗. Lemma 3 below uses ((A9),) (A10) and (A11) to obtain that d(γ̂n,Γ
∗) = op(1). On the other

hand, to obtain the rate of convergence of d(γ̂n,Γ
∗) to zero, the lemma additionally uses (A12)

that is a strengthened local version of (A10), and (A13) that ensures the local identification of Γ∗.

Note that, (A10) and (A12) depend intrinsically on the estimator Σ̂n(γ) that forms the basis for

our proposed MWLS estimator. We provide a self-contained discussion of Σ̂n(γ) in Section 2.3.3.

Lemma 3 Consider any sequence γ̂n satisfying (16).

(i) Let Γ = Γ∗. Then d(γ̂n,Γ
∗) ≡ 0 trivially.

(ii) Let Γ \ Γ∗ be non-empty. If assumptions (A7)-(A13) hold then
√
nd(γ̂n,Γ

∗) = Op(1).

Remark: Note that, we are not after estimating the set Γ∗ as in, e.g., Chernozhukov et al. (2007).

Rather, we are interested in the rate at which the closeness between the point estimator γ̂n and the

set Γ∗, in terms of the distance d(γ̂n,Γ
∗) in (17), converges to zero in probability. A rate that is

too slow will affect the asymptotic behavior of our feasible optimal estimator of h(β). However, the

rate
√
nd(γ̂n,Γ

∗) = Op(1), that follows from (A12), is stronger than needed; n1/4d(γ̂n,Γ
∗) = op(1)

would have sufficed since our framework satisfies the “orthogonality condition” of Andrews (1994).

2.3.2 Feasible optimal estimator of h(β): the MWLS estimator

Finally, by plugging in γ̂n defined in (16) in the expressions for β̂n(γ) and ĥn(γ) defined in (4) and

(5) respectively, we define our proposed MWLS estimator of β and, thereby, of h(β) as:

β̂n := β̂n(γ̂n) and ĥn := ĥn(γ̂n) ≡ h
(
β̂n

)
. (18)

We present the asymptotic properties of ĥn under standard assumptions made on a sequence:

γn ∈ closure(Γ∗) in Γ satisfying ∥γ̂n − γn∥ = d(γ̂n,Γ
∗) for all n ≥ 1. (19)

As noted before, these asymptotic properties are not affected by the issue that the sequence γn is

not necessarily unique, and not much affected by the issue that the sequence γn may not converge.
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A third issue is that γn can be on the boundary of Γ. Our heuristic argument for addressing

this issue appeals to: (i) our assumption that Γ is compact in Rk, and (ii) the observation that,

in practice, the boundary of Γ is primarily dictated by the condition ω2(X; γ) = 0. First, recall

that, our assumption (A3b) states that ω2(X; γ) > 0 with probability one for γ ∈ Γ where Γ is

compact in Rk.5 Hence, there exists a δ > 0 such that still ω2(X; γ) > 0 with probability one for

γ ∈ Γδ := {γ̄ ∈ Rk : d(γ̄,Γ) ≤ δ} provided that the functional form of ω2(X; γ) is compatible with

the extended domain Γδ. (Such compatibility holds for the commonly used functional forms of

ω2(X; γ); see, e.g., Wooldridge (2012), Romano and Wolf (2017), etc.) Since γn ∈ interior(Γδ) for

any δ > 0 and all n ≥ 1 by the definition in (19), we can now assume differentiability of ω2(X; γ)

in γ ∈ interior(Γδ) (avoiding the boundary problem) that enables the use of the delta method.6

This assumption and others are listed in (A14)-(A19). We make these assumptions on the

sequence γn (instead of γ ∈ Γ∗
δ or γ ∈ Γδ for some δ > 0) simply to make their usage more explicit.

Assumption (A14)-(A19): [on the sequence γn defined in (19)]

(A14) There exist a sequence of k× 1 vector ∇γ(X; γn) and a sequence of positive scalar ∆(X; γn)

such that the following inequality holds with probability one for all n large enough and some δ > 0:

sup
γ∈Γ:∥γ−γn∥<δ

{∣∣∣∣ 1

ω2(X; γ)
− 1

ω2(X; γn)
−∇γ(X; γn)

′(γ − γn)

∣∣∣∣− 1

2
∥γ − γn∥2∆(X; γn)

}
≤ 0.

(A15) Wi,n := Xiui∇γ(Xi; γn)
′ satisfies 1

n

∑n
i=1Wi,n = op(1).

(A16) Vi,n := Xiui∆(Xi; γn) satisfies
1
n

∑n
i=1 ∥Vi,n∥ = Op(1).

(A17) supγ∈Γ:∥γ−γn∥<δ ∥B(γ)−B(γn)∥ = o(1) for some δ > 0.

(A18) supγ∈Γ:∥γ−γn∥<δ ∥C(γ)− C(γn)∥ = o(1) for some δ > 0.

(A19) Zi,n := Xiui/ω
2(Xi; γn) satisfies the following central limit theorems (CLTs):

(a) Ξ(γn)
−1/2 1√

n

∑n
i=1B(γn)

−1Zi,n
d−→ N(0, Ip),

(b) Σ(γn)
−1/2 1√

n

∑n
i=1HB(γn)

−1Zi,n
d−→ N(0, Idh)

where Ξ(γ)1/2 and Σ(γ)1/2 are such that Ξ(γ) = Ξ(γ)1/2Ξ(γ)1/2
′
and Σ(γ) = Σ(γ)1/2Σ(γ)1/2

′
.

Remarks: Assumption (A14) is the smoothness assumption on ω2(X; γ) as just discussed above.

Assumptions (A15) and (A16) help to ensure that the difference 1√
n

∑n
i=1

[
Xiui

ω2(Xi;γ̂n)
− Xiui

ω2(Xi;γn)

]
is

op(1). Wi,n in assumption (A15) is a row-wise i.i.d. triangular array with E[Wi,n] = 0 by (2). Hence,

5The positivity assumption for ω2(X; γ) is standard in the literature. For example, condition A6 in Romano and
Wolf (2017) assumes that ω2(X; γ) > 0. The compactness assumption on Γ is difficult to avoid in our paper since
the criterion for minimization, Q(γ), cannot be shown to be convex although it is based on the trace (see Appendix
B.1). Romano and Wolf (2017) do not explicitly assume a compact Γ, but Wooldridge (2010)(chapter 12) does.

6One could also appeal to Theorem 6 in Andrews (1997) for Taylor expansion at boundary points and then deal
with this issue after imposing restrictions on the left/right partial derivatives of 1/ω2(X; γ).
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for the weak law of large number (WLLN) in (A15) it is sufficient that supnE[∥Wi,n∥2]/n → 0.

Similar conditions would give what is essentially a WLLN for the row-wise i.i.d. triangular ar-

ray ∥Vi,n∥ in assumption (A16). (Since
√
n∥γ̂n − γn∥ = Op(1), a weaker version of (A16) with

1
n

∑n
i=1 ∥Vi,n∥ = op(

√
n) suffices for our results.) (A17) and (A18) are continuity assumptions and,

together with the CLT assumptions in (A19), they give the asymptotic distribution of the suitably

scaled 1√
n

∑n
i=1

Xiui
ω2(Xi;γn)

by exploiting that Σ(γ∗) is equal for all γ∗ ∈ Γ∗. Assumptions (A17) and

(A18) follow from (A14) under standard conditions such as lim supnE[∥X∥2∥∇γ(X; γn)∥] < ∞ and

lim supnE[∥X∥2∆(X; γn)] < ∞ on the existence of moments. Assumption (A19) locally strength-

ens (A5). The row-wise i.i.d. triangular array CLTs in (A19) hold if, e.g., supnE∥Zi,n∥2+ε < ∞ for

some ε > 0 as the Lyapounov condition will then be satisfied under assumptions (A6) and (A7).

Theorem 4 Consider from (18) the estimator ĥn := ĥn(γ̂n) ≡ h(β̂n) where β̂n := β̂n(γ̂n). Then

the following results hold under assumptions (A15)-(A19) and the conditions for Lemma 3.

(i)
√
n
(
ĥn − h(β0)

)
=

√
n
(
ĥn(γ

∗)− h(β0)
)
+ op(1)

d−→ N(0,Σ(γ∗)) if there exists a γ∗ ∈ Γ∗

such that n1/4(γ̂n−γ∗) = op(1). (This existence condition is unnecessary for our subsequent results.)

(ii)
√
n
(
ĥn − h(β0)

)
d−→ N(0,Σ(γ∗)) where Σ(γ∗) is the same for all γ∗ ∈ Γ∗.

Remarks: Theorem 4 is our main result. Theorem 4(i) gives an asymptotic equivalence between

the feasible and infeasible (in terms of γ) estimators. This is similar to the well known asymptotic

equivalence between feasible and infeasible WLS estimators; see Carroll and Ruppert (1982) for

the parametric case, and Carroll (1982), Robinson (1987) and Newey (1994) for the semiparametric

case. The asymptotic distribution of the MWLS estimator then follows directly from Lemma 1(iii).

Now, consider the result in Theorem 4(ii) that is obtained under the more general conditions and

do not even require γ̂n to converge in probability to any element of Γ∗.7 Note that, an asymptotic

equivalence result similar to that in Theorem 4(i) does not hold in this general case. This is expected

because, since γ̂n does not necessarily converge in probability to any given point in Γ∗, there is no

point of reference (like ĥn(γ
∗) in Theorem 4(i)) with which the asymptotic equivalence would hold.

Importantly, however, there is no other cost asymptotically to our proposed estimator since

Theorem 4(ii) implies that the MWLS estimator ĥn is still asymptotically optimal. Specifically, ĥn

is asymptotically unbiased and converges in distribution to a normal random variable with variance

Σ(γ∗) that is the optimal variance that was set as the target in (8). It is in this sense that the

MWLS estimator is asymptotically optimal given the parametric model ω2(X; γ), irrespective of

whether this model is correctly or incorrectly specified for the true conditional variance ω2
0(X).

7As noted before and also evident from the proof of this result, the convergence rate in Lemma 3 that is assumed
for this result is stronger than needed; n1/4d(γ̂n,Γ

∗) = op(1) suffices. This is well known and hence not made explicit.
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Algorithm: We summarize below a simple algorithm to obtain the MWLS estimator:

• Step 1: Using the OLS estimator β̃n of β and the residuals (yi−X ′
iβ̃n) for i = 1, . . . , n, obtain

the estimator Σ̂n(γ|β̃n) := H(β̃n)B̂n(γ)
−1Ĉn(γ|β̃n)B̂n(γ)

−1H(β̃n)
′ as a function of γ ∈ Γ. This

is done exactly in the same way one estimates the robust asymptotic variance for OLS; the

only difference is that here we divide the regressors Xi and the residual (yi−X ′
iβ̃n) by ω(Xi; γ)

since we need to estimate the variance of a weighted by ω−1(X; γ) least squares estimator.

(Section 2.3.3 discusses the estimator Σ̂n(γ|β̃n) based on the so-called HC0 form of Ĉn(γ|β̃n).)

• Step 2: Using this Σ̂n(γ|β̃n), obtain the minimizer γ̃n as in (16) by minimizing Q̂n(γ) =

m̂n(γ)−ming∈Γ m̂n(g) or, equivalently and more conveniently, by minimizing m̂n(γ) where, at

each γ, m̂n(γ) = Trace(Σ̂n(γ|β̃n)) if Σ̂n(γ|β̃n) is positive definite, but m̂n(γ) = +∞ otherwise.8

• Step 3: Using this γ̃n, obtain ĥn(γ̃n) as a simple version of the MWLS estimator following

(18):

ĥn(γ̃n) = h
(
β̂n(γ̃n)

)
where β̂n(γ̃n) =

(
1

n

n∑
i=1

1

ω2(Xi; γ̃n)
XiX

′
i

)−1(
1

n

n∑
i=1

1

ω2(Xi; γ̃n)
Xiyi

)
.

One might choose to stop the algorithm here, and our experience so far is that this works well.

• Step 4 (optional): Repeat Steps 1-3 but now using β̂n(γ̃n) obtained in Step 3 instead of β̃n.

One might iterate on Step 4. One might also set up the algorithm to simultaneously obtain estimates

of β and γ solving their respective profiled estimating equations. However, as is well known more

generally: Step 4, or iterations of Step 4, or the simultaneous estimation of β and γ do not provide

improvement in the first-order asymptotics over the simple implementation involving Steps 1-3 only.

Higher order improvements leading to better finite-sample properties might be possible. We have

not explored this analytically here since in (unreported) simulations we find rather mixed evidence

of improvement over the simple implementation (Steps 1-3) in our Monte Carlo experiment.

2.3.3 Consistent estimation of Σ(.)

An estimator of Σ(.) is needed in at least two occasions: (i) in Step 1, where it should be consistent

for Σ(γ) uniformly for γ ∈ Γ, and (ii) for inference based on ĥn obtained in Step 3, where it should

be consistent for Σ(γ∗). It is useful to recall that although no γ∗ ∈ Γ∗ is known nor can they be

consistently estimated in general, Σ(γ∗) is by definition the same, denote it by Σ∗, for all γ∗ ∈ Γ∗.

8The Monte Carlo study in Section 4 uses a stricter requirement that B̂n(γ)
−1Ĉn(γ|β̃n)B̂n(γ)

−1 be positive
definite. In both contexts, positive definiteness is equivalent to non-zero determinant or minimum eigen value that
could be checked in practice by seeing if either of them is bigger than some small and positive cn where limn cn → 0.
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Now we discuss the estimation of Σ(γ) and Σ∗(:= Σ(γ∗)). Our exposition is generic enough to

be readily employed for occasions (i) and (ii) if one also performs Step 4 or iterations of Step 4.

On the other hand, if one simultaneously estimates γ and h(β), then our exposition can be readily

employed for occasion (ii), and can be extended for occasion (i) by using the standard tools.

Accordingly, first consider any estimator β̌n of β. For occasions (i) and (ii) in the case of the

simple implementation (Steps 1-3), β̌n is respectively the OLS estimator of β obtained in Step 1 and

the estimator β̂n(γ̃n) obtained in Step 3. Second, consider any estimator γ̌n, such as γ̃n obtained

in Step 2, to be used for occasion (ii). Finally, define the estimators of Σ(γ) and Σ∗ respectively

for occasions (i) and (ii) as:

Σ̂n(γ) := Σ̂n(γ|β̌n) and Σ̂∗
n := Σ̂n(γ̌n|β̌n) (20)

where, for all g ∈ Γ:

Σ̂n(g|β̌n) := H(β̌n)Ξ̂n(g|β̌n)H(β̌n)
′, (21)

Ξ̂n(g|β̌n) := B̂n(g)
−1Ĉn(g|β̌n)B̂n(g)

−1,

Ĉn(g|β̌n) :=
1

n

n∑
i=1

1

(ω2(Xi; g))
2XiX

′
i

(
yi −X ′

iβ̌n
)2

, (22)

B̂n(g) is as defined earlier, andH(β̌n) is as defined in assumption (A7) but by plugging in β̌n instead

of the unknown β0. The estimator Ĉn(g|β̌n) in (22) is in the so-called HC0 form of White (1980),

but can be readily modified to the various other forms as in MacKinnon (2012), if so desired.

Although similar conditions are well known even at a more primitive level at least since White

(1980), for completeness we provide a set of standard conditions, adapted to our framework, for

consistent estimation of Σ(γ) and Σ∗ by Σ̂n(γ) := Σ̂n(γ|β̌n) and Σ̂∗
n := Σ̂n(γ̌n|β̌n) respectively.

Assumption (A20)-(A23):

(A20) β̌n − β0 = op(1).

(A21) (a) supγ∈ΓE

[(
∥X∥

ω(X;γ)

)4]
< ∞, and (b) supγ∈ΓE

[(
u

ω(X;γ)

)4]
< ∞.

(A22) 1/ω2(X; γ) is continuous with probability one at each γ ∈ Γ.

(A23) γ̄n is a sequence in the closure(Γ∗) in Γ such that:

(a) d(γ̌n,Γ
∗) = ∥γ̌n − γ̄n∥ = op(1), and (b) (A17) and (A18) hold for γ̄n (in place of γn).

Remarks: Assumption (A20) imposes consistency on the generic estimator β̌n to accommodate

for the two occasions (i) and (ii) for estimating Σ(.). Assumption (A21) is well known to lead to the

14



point-wise convergence for the concerned quantities (in the estimator of Σ(γ)) by routinely using

the Cauchy-Schwartz and Holder inequalities as appropriate. (A21) also provides the integrable

dominating functions that, along with the continuity assumption in (A22) and also the other as-

sumptions in (A4), (A7) and (A20), enable a direct application of the uniform WLLN in Theorem

2 of Jenrich (1969) to extend the point-wise convergence of an estimator of Σ(γ) to uniform conver-

gence in γ ∈ Γ.9 The focus of our discussion is primarily on the consistent estimation of C(γ) since

consistent estimation of the other parts — B(γ) and H — already follows from the well-understood

and widely used assumptions (A4), and (A7) and (A20) respectively. Assumption (23) is used to

show that Σ̂∗
n := Σ̂n(γ̌n|β̌n) = Σ∗ + op(1), i.e., for the consistent estimation of Σ∗ for occasion (ii).

Lemma 5 The following results hold under assumptions (A4), (A7) and (A20)-(A22).

(i) supγ∈Γ ∥Σ̂n(γ)−Σ(γ)∥ = op(1) where Σ(γ) and Σ̂n(γ) are defined in (7) and (20) respectively.

(ii) Additionally if (A23) hold then Σ̂∗
n = Σ∗+op(1) where Σ̂

∗
n is defined in (20) and Σ∗ := Σ(γ∗).

Remarks: Lemma 5(i) provides justification for assumption (A10) that is needed for our results

in Lemma 3 and Theorem 4.10,11 Lemma 5(ii), along with Theorem 4(ii), provides justification for

standard Wald-type inference on h(β) that we employ in the Monte Carlo experiment in Section 4.

3 Discussion of the main result: Theorem 4

To avoid notational clutter we take h(β) ≡ β as the identity function, and hence Σ(γ) ≡ Ξ(γ).

9The representation of (A21) may appear unusual because of the uniformity condition. However, since we are after

uniform consistency of Σ̂n(γ), such a representation cannot be avoided without explicitly imposing restrictions on the
tail behavior of ω−1(X; γ) uniformly in γ. This is because our assumption (A3b), with only a positivity instead of
the bounded away from zero condition on ω2(X; γ), was weaker than usual (c.f. condition B.4 in Carroll and Ruppert
(1982)). We did not impose a bounded away from zero restriction on ω2(X; γ) because: (a) this does not hold for
the commonly used functional forms of ω2(X; γ) as in Wooldridge (2012), Romano and Wolf (2017), etc. without a
bounded support for X, and (b) this would cause assumption (A3b) to be incompatible with our assumption (A3a).

10Assumption (A10) states that supγ∈Γ |Q̂n(γ) − Q(γ)| = op(1). First, note from (13) that m(γ) = Trace(Σ(γ))

under assumption (A6). Then, note from (14) that for all n large enough, m̂n(γ) = Trace(Σ̂n(γ)) under assumption
(A9). Combining these two observations with the result in Lemma 5(i) implies that |ming∈Γ m̂n(g)−ming∈Γ m(γ)| =
op(1). Hence, it follows from the definition in (15) that supγ∈Γ |Q̂n(γ)−Q(γ)| = op(1) as in assumption (A10).

11The other key condition on the estimator Σ̂n(γ) is assumption (A12) that leads to the desired rate of convergence
in Lemma 3(ii). Given the conditions maintained in Lemma 5(i), it is clear that the rate-condition in (A12) follows

if Ĉn(γ|β̌n) defined in (22) satisfies
√
n(Ĉn(γ|β̌n)− C(γ)) = Op(1) uniformly in γ ∈ Γ∗

δ for some δ > 0. Note that,

Ĉn(γ|β̌n)− C(γ) =
1

n

n∑
i=1

{
XiX

′
iu

2
i

(ω2(Xi; γ))
2 − E

[
XiX

′
iu

2
i

(ω2(Xi; γ))
2

]}
+

1

n

n∑
i=1

XiX
′
i

(ω2(Xi; γ))
2

{
(yi −X ′

iβ̌n)
2 − u2

i

}
.

While the proof of Lemma 5(i) involves showing that both terms on the RHS are op(1) uniformly in γ ∈ Γ, it is
immediately clear that a suitable functional CLT for the first term on the RHS can match the rate-condition required
in (A12). On the hand, although it is less immediate from the coarse representation of the second term on the RHS
above, the proof of Lemma 5(i) (see the steps in equation (35)) decomposes this second term in a way that makes it
clear that similar functional CLTs can match this second term to the rate-condition required in (A12) provided that√
n(β̌n−β0) = Op(1). This rate-condition on β̌n strengthens our assumption (A20) and, given our other assumptions,

this is obviously satisfied by our choice of the OLS estimator of β as β̌n. In summary, the message of footnotes 10 and
11 is that the estimator Σ̂n(γ) for Σ(γ) can easily meet the requirements for our results in Lemma 3 and Theorem 4.
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3.1 What happens when the parametric specification for ω2
0(X) is correct?

If the parametric model ω2(X; γ) is correctly specified for ω2
0(X), then there exists a γ0 ∈ Γ such

that almost surely in X:

ω2
0(X) = ω2(X; γ0). (23)

Under (23), Lemma 1 implies that
√
n
(
β̂n(γ0)− β0

)
d−→ N (0,Σ(γ0)) where Σ(γ0) ≡ C(γ0)

−1 ≡

B(γ0)
−1 =

(
E
[
XX ′/ω2

0(X)
])−1

which, if it exists, gives the well known efficiency bound for the

regression coefficients in the model (1) under (2) and (3). Now, recall that, we have allowed for

quite general user-specified functional forms ω2(X; γ) for which γ0 may not be necessarily unique.

First, consider the case where γ0 is unique. Note that, for any γ ∈ Γ we have under (23) that:

Σ(γ)−Σ(γ0) is positive semi-definite since Σ(γ0)
−1−Σ(γ)−1 = E [e(γ)e′(γ)] is positive semi-definite

where e(γ) is the residual from the population least square regression of X
ω(X;γ0)

on ω2(X;γ0)
ω2(X;γ)

X
ω(X;γ0)

.

Under our assumptions, e(γ) is zero for a γ ∈ Γ only if ω2(X; γ) ∝ ω2(X; γ0). Regardless of such

proportionality, our optimal γ∗ defined in (8) exists in this case since γ0 is by definition such an

optimal γ∗. Importantly, however, Σ(γ∗) = Σ(γ0) for any such optimal γ∗. Hence, Theorem 4

implies that our proposed MWLS estimator β̂n is asymptotically efficient.

Now, consider the case where γ0 is not unique, and let Γ0 denote the set of all such γ0’s. By the

definition in (23), however, all γ0 ∈ Γ0 lead to the same asymptotic variance
(
E
[
XX ′/ω2

0(X)
])−1

=

Σ(γ0). Exactly by the same reason used above, it follows again that our optimal γ∗ defined in (8)

exists, and Γ0 ⊆ Γ∗.12 Hence, Theorem 4 implies that our proposed MWLS estimator β̂n is efficient.

3.2 Relation with the OLS estimator

If ω2(X; γ̄) is identically a constant for some γ̄ ∈ Γ, then it is easy to see that the OLS estimator

of β0, i.e.,

β̃n,OLS =

(
1

n

n∑
i=1

XiX
′
i

)−1(
1

n

n∑
i=1

Xiyi

)
(24)

falls under the general class of estimators β̂n(γ) in (4) since β̃n,OLS ≡ β̂n(γ̄). As noted before,

a provision for a constant ω2(X; γ), i.e., conditional homoskedasticity, is made in all commonly

used parametric models; e.g., ω2(X; γ) = τ(r(X)′γ) where τ(.) : R 7→ (0,∞), and r(X) is a k × 1

function of X and the first element of r(X) is taken as 1. Hence, in such cases, it follows that:

√
n
(
β̃n,OLS − β0

)
≡

√
n
(
β̂n(γ̄)− β0

)
d−→ N

(
0,Σ(γ̄) :=

(
E
[
XX ′])−1

E
[
ω2
0(X)XX ′] (E [XX ′])−1

)
under standard conditions. Therefore, Theorem 4 implies that the asymptotic variance Σ(γ∗) of our

proposed MWLS estimator β̂n cannot exceed that of β̃n,OLS as long as the user-specified parametric

12Γ0 ⊂ Γ∗ if ω2(X; γ) ∝ ω2(X; γ0) for some γ0 ∈ Γ0 and γ ∈ Γ \ Γ0. For some functional forms of ω2(X; γ), an
equality Γ0 = Γ∗ follows if we broaden the definition in (23) by instead letting γ0 such that ω2

0(X) ∝ ω2(X; γ0).
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model ω2(X; γ) used by the MWLS estimator allows for a constant value of ω2(X; γ) for some γ.

This observation is important in practice. Since the seminal work of White (1980), it has

gradually been widely accepted in the profession and even recommended in standard undergraduate

textbooks (see, e.g., page 695 of Stock and Watson (2011)) that using the OLS estimator with

robust standard errors is preferable to using WLS since a parametric misspecification in the latter

no longer guarantees that the WLS (robust) standard errors are smaller than that of the OLS.

This is perhaps the main reason why the use of WLS is rare in modern econometrics/economics as

highlighted by Angrist and Pischke (2010): “A legacy of White’s (1980) paper . . . is the near-death

of generalized least squares in cross-sectional applied work.” (fully quoted in our footnote 1).

Our results show that there is no reason to be pessimistic about WLS. While it is true that WLS

or even the ALS estimator of Romano and Wolf (2017) (see Sections 3.3 and 3.4 below) may have

larger standard error than OLS when ω2(X; γ) is misspecified, one can use our proposed MWLS

estimator and do at least as well as OLS asymptotically irrespective of correct or misspecification.

3.3 Relation with the conventional parametric WLS (simply “WLS”) estimator

The WLS estimator of β0 plugs in an estimator γ̃n,WLS for γ in β̂n(γ) defined in (4) where this

estimator γ̃n,WLS is obtained by a least squares fit of the user-specified parametric model ω2(X; γ)

to the squared OLS residual (y−X ′β̃n,OLS)
2 that proxies for ω2

0(X). This fit is obtained in general

by nonlinear least squares or, for specific functional forms ω2(X; γ), by OLS in a transformed

model; see, Wooldridge (2012) and Romano and Wolf (2017). Thus, the WLS estimator of β0 is:

β̃n,WLS ≡ β̂n(γ̃n,WLS) =

(
1

n

n∑
i=1

1

ω2(Xi; γ̃n,WLS)
XiX

′
i

)−1(
1

n

n∑
i=1

1

ω2(Xi; γ̃n,WLS)
Xiyi

)
. (25)

Minor extension of well known results such as Carroll and Ruppert (1982) gives that if
√
n(γ̃n,WLS−

γ†) = Op(1) (or, even n1/4(γ̃n,WLS−γ†) = op(1)) for some so-called psuedo-true value γ† ∈ Γ, then:

√
n
(
β̃n,WLS − β0

)
≡

√
n
(
β̂n(γ̃n,WLS)− β0

)
=

√
n
(
β̂n(γ

†)− β0

)
+ op(1)

d−→ N
(
0,Σ(γ†)

)
.

If the parametric model ω2(X; γ) is correct in the sense that (23) holds for a unique γ0 ∈ Γ such

that ω2
0(X) = ω2(X; γ0) almost surely in X, then it can be shown under standard conditions that

γ† = γ0 and hence WLS achieves asymptotic efficiency, i.e., Σ(γ†) = Σ(γ0). Therefore, in this case,

Theorem 4 implies that our proposed MWLS estimator β̂n is asymptotically normal with the same

asymptotic variance as that of the asymptotically efficient WLS estimator β̃n,WLS.

Otherwise, Theorem 4 establishes that, by construction, the asymptotic variance Σ(γ∗) of the

MWLS estimator cannot exceed that of the WLS estimator β̃n,WLS. If γ
† = γ∗ defined in (8), then
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of course Σ(γ†) = Σ(γ∗). However, as will be seen in Section 3.4, unless the parametric specification

is indeed correct, i.e., (23) holds, it is unlikely that γ† = γ∗ except by happenstance.

Romano and Wolf (2017)’s ALS estimator is the OLS estimator β̃n,OLS if a pre-test cannot

reject the conditional homoskedasticity of the regression error, but is the WLS estimator β̃n,WLS

otherwise. Provided that this pre-test for conditional homoskedasticity is consistent (against the

user-specified, not necessarily correct, alternative), the asymptotic variance of ALS is the same as

that of WLS, i.e., Σ(γ†), if the parametric model ω2(X; γ) is such that ω2(X; γ̄) is identically a

constant for some γ̄ ∈ Γ (see Section 3.2). Indeed, this condition is maintained in Romano and

Wolf (2017). Therefore, by the same reasons as above, (i) the asymptotic variance of our MWLS

estimator is equal to that of ALS if the parametric model ω2(X; γ) is correct or if, by chance,

Σ(γ†) = Σ(γ∗), (ii) but it can never exceed the asymptotic variance of ALS irrespective of if the

parametric model ω2(X; γ) is correct or not. Simulation results (under Romano and Wolf (2017)’s

design) in Section 4 show that these asymptotic results are also well-reflected in small samples.

3.4 More primitive characterization of the variance-minimizer γ∗: An example

γ∗ was characterized directly in (8) as the asymptotic variance minimizer of the weighted by

ω−1(X; γ) estimator β̂n(γ) in (4), where the asymptotic variance Σ(γ) was expressed as a function

of γ. It may be useful to dig deeper in an effort to characterize γ∗ at a more primitive level. While

this can be done under full generality, we focus on the simple case with p = 1 and no intercept in (1)

to make this characterization more transparent by avoiding messy notation. Accordingly, taking

logarithm and assuming differentiability, the first-order condition for minimizing Σ(γ) implies that:

0 =
∂

∂γ
log (Σ(γ∗)) ⇒ 0 =

∂

∂γ
log

(
C(γ∗)

B(γ∗)2

)
⇒ ∂

∂γ
log(B(γ∗)) =

1

2

∂

∂γ
log(C(γ∗))

where B(γ) = E
[

1
ω2(X;γ)

X2
]
and C(γ) = E

[
ω2
0(X)

(ω2(X;γ))2
X2
]
in this simple case (p = 1). Then, it

follows (see Appendix B.2) that γ∗ satisfies the orthogonality conditions:13

0 = E

[
X2

ω2(X; γ∗)

∂

∂γ
log
(
ω2(X; γ∗)

){ u2

ω2(X; γ∗)
− C(γ∗)

B(γ∗)

}]
,

⇒ 0 = E

[
1

ω2(X; γ∗)

X2

ω2(X; γ∗)

∂

∂γ
log
(
ω2(X; γ∗)

){
u2 − C(γ∗)

B(γ∗)
ω2(X; γ∗)

}]
,

⇒ 0 = E

[
1

ω2(X; γ∗)

X2

ω2(X; γ∗)

∂

∂γ
log
(
ω2(X; γ∗)

){
ω2
0(X)− C(γ∗)

B(γ∗)
ω2(X; γ∗)

}]
.

(26)

13In this simple case, the Step 2 of the algorithm for the MWLS estimator involves obtaining γ̃n by solving the
sample analog of this (population) first order condition in (26):

0 =
1

n

n∑
i=1

1

ω2(Xi; γ̃n)

X2
i

ω2(X;γ̃n)

∂

∂γ
log

(
ω2(Xi; γ̃n)

){
(yi −Xiβ̃n)

2 − Ĉn(γ̃n|β̃n)

B̂n(γ̃n)
ω2(Xi; γ̃n)

}
.
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The first line expresses the terms X2 and u2 weighted by ω−2(X; γ∗). The second line, in particular

the term inside the braces on the RHS of it, makes the “tilting” of ω2(X; γ∗) by C(γ∗)/B(γ∗)

explicit. The third line is presented to make the connection with the other estimators explicit.

Under the correct specification (23) there exists a γ0 such that ω2(X; γ0) = ω2
0(X) (see Section

3.1), and it is easy to see that the tilting term C(γ0)/B(γ0) = 1 at γ0. Hence, at γ0, we have that:

E

[
1

ω2(X; γ0)

X2

ω2(X; γ0)

∂

∂γ
log
(
ω2(X; γ0)

) {
ω2
0(X)− ω2(X; γ0)

}]
= 0,

which means that γ∗ = γ0 makes (26) hold. Since ω2(X; γ∗) = ω2
0(X) when γ∗ = γ0, it follows that

the condition (26) holds irrespective of the terms outside the braces in the expectation. Hence,

under correct specification, the optimal γ, i.e., the minimizer of the asymptotic variance Σ(γ) =

C(γ)/B(γ)2 of β̂n(γ), leads to this same well known result of targeting ω2
0(X) by ω2(X; γ).

This discussion also applies to the case where the regression error u is actually conditionally

homoskedastic (see Section 3.2).14 Recall that the parametric model ω2(X; γ) makes provision for

conditional homoskedasticity by maintaining that ω2(X; γ) is constant at some γ = γ̄. Now, when

represented in terms of the representation of correct specification in (23) (Section 3.1), this means

that ω2(X; γ̄) = c× ω2(X; γ0) for some constant c > 0. Hence, at γ̄, the tilting term C(γ̄)/B(γ̄) =

(1/c)×C(γ0)/B(γ0) = 1/c, that implies that ω2
0(X)−C(γ̄)/B(γ̄)ω2(X; γ̄) = ω2

0(X)−ω2(X; γ0) = 0.

This means that γ∗ = γ̄ makes (26) hold exactly in the same way described in the last paragraph.

Finally, consider the case of misspecification which is where the novel feature of (26) comes into

play. Note that, the tilting term C(γ∗)/B(γ∗) in (26) means that under misspecification we are not

necessarily looking for a “best fit” (like least squares) of the user-specified model ω2(X; γ) to the

true conditional variance ω2
0(X). This is where MWLS differs from the existing methods below:

(a) The conventional parametric WLS estimator for β characterizes its target γ† (see Section

3.3) by the (un-weighted) least squares “best fit” of ω2(X; γ) to ω2
0(X) as:

γ† = argmin
γ∈Γ

E
[
(u2 − ω2(X; γ))2

]
⇒ 0 = E

[
∂

∂γ
ω2(X; γ†)

(
ω2
0(X)− ω2(X; γ†)

)]
. (27)

This characterization also applies to the case of Romano and Wolf (2017)’s ALS (see Section 3.3).

(b) More recently, Spady and Stouli (2019) consider the joint estimation of the conditional mean

and variance models in a linear regression, and show that (similar to our MWLS estimator) their

estimator performs as well as the OLS estimator under misspecification of the conditional variance.

Imposing E[u|X] = 0 in the first order condition for minimizing the criterion in their equation (2.2)

14This discussion would be redundant if one followed footnote 12 to broaden the definition of correct specification
in (23). We prefer to treat conditional homoskedasticity separately because this case is important in its own right.
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with respect to γ implies that their “best fit” of ω2(X; γ) to ω2
0(X) is characterized by a γ†† ∈ Γ

that satisfies:

0 = E

[
∂

∂γ
ω(X; γ††)

(
ω2
0(X)− ω2(X; γ††)

)
ω2(X; γ††)

]
. (28)

((28) uses our notation and ignores the fact that Spady and Stouli (2019) take ω2(X; γ) = ω2(X ′γ),

i.e., as a linear index, but is otherwise the same as equation (3.9) of their Corollary 2.)

A key observation is that there is no tilting term like C(γ)/B(γ) in (27) and (28). Specifically,

irrespective of correct or misspecification of ω2
0(X) by ω2(X; γ), the γ† in (27) (i.e., for WLS) and

the γ†† in (28) (i.e., for Spady and Stouli (2019)) equate to zero the expectation of the respective

weighted difference {ω2
0(X)−ω2(X; γ)}. By contrast, for MWLS, the γ∗ in (26) does the same but

for the weighted difference {ω2
0(X)−C(γ)/B(γ)ω2(X; γ)} where ω2(X; γ) is tilted by C(γ)/B(γ).

As noted above, this distinction with (26) would be immaterial under correct specification, i.e.,

if ω2
0(X) = ω2(X; γ0) for some γ = γ0. In this case, all the methods are equivalent in the sense

that γ∗ = γ0 (as C(γ∗)/B(γ∗) = 1), γ† = γ0 and γ†† = γ0 respectively solve (26), (27) and (28).

However, this distinction does matter when the model ω2(X; γ) is misspecified for ω2
0(X). The

tilting term in (26) arises directly from the fact that our target γ∗ minimizes the asymptotic variance

Σ(γ) = C(γ)/B(γ)2 of β̂n(γ). Its absence from (27) and (28) means that γ† and γ†† that are used

by these other methods cannot minimize this asymptotic variance except by happenstance.

Thus, the central feature in the characterization (26) of γ∗ is the tilting term C(γ∗)/B(γ∗). It

plays a fundamental role for the optimality of γ∗ and, hence, that of MWLS by switching between

one and not-one automatically depending on the data, the true conditional variance ω2
0(X), and the

user-specified model ω2(X; γ), and with the purpose of minimizing the asymptotic variance Σ(γ).

4 Monte Carlo experiment

We conduct a small scale Monte Carlo experiment to investigate how well the asymptotic results

discussed so far are reflected in finite samples. Based on our discussion above, we focus primarily

on the following three asymptotic propositions of our paper for this finite-sample investigation.

P1. Section 3.2 suggests that if there exists a γ such that ω2(X; γ) is constant for all X, then

our proposed MWLS estimator cannot have larger asymptotic variance than the OLS estimator.

P2. Section 3.3 suggests that our proposed MWLS estimator cannot have larger asymptotic

variance than the conventional parametric WLS (simply “WLS”) estimator.

P3. Section 3.3 also suggests that our proposed MWLS estimator cannot have larger asymptotic
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variance than the ALS estimator proposed by Romano and Wolf (2017).

The question is how well do these propositions hold up in finite samples? To investigate this

(and related issues), and given P3, we consider the simulation design of Romano and Wolf (2017).

4.1 Simulation design

Romano and Wolf (2017)’s design takes p = 2 in (1): more precisely, y = β1X(1) + β2X(2) + u,

with X(1) = 1, X = (X(1), X(2))
′, β = (β1, β2)

′, β0 = (0, 0)′, and the error u = ω0(X)Z where

Z ∼ N(0, 1) is independent of X(2) ∼ U(1, 4), and considers the following 4 + 2+ 2+ 2 = 10 cases:

DGP 1: (a) ω2
0(X) = 1; (b) ω2

0(X) = X(2); (c) ω2
0(X) = X2

(2); (d) ω2
0(X) = X4

(2).

DGP 2: (a) ω2
0(X) =

(
log(X(2))

)2
; (b) ω2

0(X) =
(
log(X(2))

)4
.

DGP 3: (a) ω2
0(X) = exp

(
.1(X(2) +X2

(2))
)
; (b) ω2

0(X) = exp
(
.15(X(2) +X2

(2))
)
.

DGP 4: (a) ω2
0(X) =


1 if X(2) < 2

2 if 2 ≤ X(2) < 3

3 if X(2) ≥ 3

; (b) ω2
0(X) =


1 if X(2) < 2

22 if 2 ≤ X(2) < 3

32 if X(2) ≥ 3

.

Following Romano and Wolf (2017), we consider two parametric models ω2(X; γ) for ω2
0(X):

Model 1: ω2(X; γ) := exp(γ1 + γ2 log(X(2)))

Model 2: ω2(X; γ) := exp(γ1 + γ2X(2)).

We consider two choices for the parameter of interest h(β) — β1 and β2 — separately. We consider

four types of estimators: (i) the OLS estimator in (24), (ii) the WLS estimator in (25), (iii) the

ALS estimator of Romano and Wolf (2017), and (iv) the MWLS estimator in (18).

The WLS, ALS and MWLS estimators are obtained based on the two parametric models Model

1 and Model 2 separately and, to signify this, their respective versions are henceforth referred to

as WLS1 and WLS2, ALS1 and ALS2, and MWLS1 and MWLS2. ALS1 and ALS2 are obtained

following Romano and Wolf (2017). While WLS1 and WLS2 can be obtained in different ways,

we again follow Romano and Wolf (2017) because this makes our simulation results most favorable

to WLS1 and WLS2. MWLS1 and MWLS2 are obtained following Steps 1-3 of the algorithm in

Section 2.3.2. For completeness, we provide the details of these implementations in Appendix B.3.

The asymptotic propositions P1, P2 and P3 involve a comparison of the variability of MWLS1

relative that of OLS, WLS1 and ALS1 respectively when the user specifies Model 1, and, similarly,

a comparison of the variability of MWLS2 relative to that of OLS, WLS2 and ALS2 respectively

when the user specifies Model 2. To investigate if propositions P1-P3 also hold up in finite samples,
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we consider two measures of variability (Var): (i) VarAS: average variance based on the asymptotic

(AS) variance formula, and (ii) VarMC: variance based on Monte Carlo (MC). VarAS for all esti-

mators is obtained using the HC0 form: as in White (1980) for OLS, and as in Section 2.3.3 for the

other estimators. VarMC is infeasible in practice but is more reliable than VarAS as a measure of

the true variability, and hence serves as a benchmark for the reliability of VarAS in our simulations.

4.2 Simulation results

We report results for samples sizes n = 25, 50, 100, 200 and 400, and based on 25,000 Monte Carlo

trials. Table 1 reports the ratios of VarMC for the OLS, WLS and ALS estimators for β1 and β2

with respect to the VarMC of the MWLS estimator; and does this in both cases: Models 1 and 2.

Table 2 reports the same but with VarAS instead of VarMC, and is subsequently used to discuss

the implications of these ratios in practice in terms of inference and confidence intervals.15

Evidence for proposition P1 in terms of VarMC in finite samples: MWLS relative to OLS

First, note that the asymptotic variance of OLS cannot be less than that of MWLS since the

functional forms of ω2(X; γ) in Models 1 and 2 allow for conditional homoskedasticity with γ2 = 0.

Now, consider DGP 1a that represents conditional homoskedasticity. OLS is efficient here.

Under DGP 1a, Table 1 shows that in very small samples n = 25 or 50: the ratio of VarMC for

OLS with respect to MWLS ranges from .89 to .94 in Model 1 and from .91 to .95 in Model 2, i.e.,

MWLS suffers a little loss in efficiency with respect to OLS. However, when the sample size is a

little bigger, i.e., n = 100, 200, or 400, there is practically no loss in efficiency under DGP 1a.

All other DGPs represent conditional heteroskedasticy. Hence, OLS is no longer efficient. Under

these DGPs, the smallest value of the ratio of VarMC for OLS with respect to MWLS in Models

1 and 2 is .99, and this occurs only two times — under DGPs 1b and 4a when estimating β1 with

n = 25 and using Model 1. In both cases the ratio quickly exceeds 1 with an increase in n, as it

should, since OLS is not efficient in either case. Otherwise, the ratio is always bigger than 1, and

often much bigger; see, e.g., the large values of this ratio under DGP 1c (ranging from 1.20 to 1.61),

DGP 1d (ranging from 1.72 to 4.77) , DGP 2a (ranging from 1.37 to 5.43), DGP 2b (ranging from

1.76 to 13.19), DGP 3b (ranging from 1.27 to 1.65) and DGP 4b (ranging from 1.17 to 1.51).

Based on the above observations, we conclude that in the context of our simulation experiment

we find strong evidence suggesting that proposition P1 can very well hold up in small samples.

15The actual VarMC and VarAS (that give these ratios) of all estimators are reported in Tables 5, 6 and 7 in
Appendix B.4. We also note that the empirical bias is very small and similar for all estimators in our simulations,
and we find the empirical mean squared error for the estimators to be essentially the same as their respective VarMC
(divided by n). Hence, empirical bias and mean squared error are not reported to avoid clutter and redundancy.
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Evidence for proposition P2 in terms of VarMC in finite samples: MWLS relative to WLS

Since the functional forms of ω2(X; γ) in Models 1 and 2 allow for conditional homoskedasticity

with γ2 = 0, WLS is asymptotically efficient under DGP 1a. This is reflected in small samples by

the ratio of VarMC in Table 1 for WLS with respect to MWLS (the ratio of the ratios WLS/MWLS

and OLS/MWLS gives WLS/OLS) in both Models 1 and 2. The ratio of VarMC for WLS with

respect to MWLS reveals that while MWLS can suffer a little loss in efficiency relative to WLS in

very small samples under DGP 1a, the loss vanishes quickly as the sample size increases.

When the sample size is very small, MWLS can also suffer a little loss in efficiency under other

DGPs. However, as the sample size increases, this efficiency loss always either vanishes or turns

into efficiency gains. This switch to efficiency gains is very interesting and can be seen, e.g., under

DGP 2a: for β2 in Model 1, and under DGP 2b: for both β1 and β2 and in both Models 1 and 2.

Indeed, under DGPs 2a and 2b, the efficiency gain resulting from MWLS is quite substantial.

For example, the WLS variability can be even about one and half times that of MWLS. For

convenience of the reader, we highlight in Table 1 with blue color the cases of such efficiency gains.

Based on the above observations, we conclude that there is strong evidence in the simulation

results suggesting that proposition P2 can hold up very well even in reasonably small samples.

Evidence for proposition P3 in terms of VarMC finite samples: MWLS relative to ALS

In Table 1, the ratio of VarMC for ALS with respect to MWLS is always either equal to

or slightly bigger than the ratio of VarMC for WLS with respect to MWLS. This holds for the

estimation of both β1 and β2 in both Models 1 and Models 2 (i.e., (WLS1/MWLS1) compared

to (ALS1/MWLS1), and (WLS2/MWLS2) compared to (ALS2/MWLS2)). Hence, our discussion

of efficiency gains of MWLS over WLS in the context of proposition P2 above also applies here.

Therefore, we again conclude that there is strong evidence in the simulation results suggesting that

proposition P3 can hold up very well even in reasonably small samples.

Evidence for propositions P1, P2 and P3 in terms of VarAS finite samples

The ratios of VarAS for OLS, WLS and ALS with respect to MWLS in Table 2 show that there

is never any loss in efficiency of MWLS in terms of VarAS. While looking at Table 2, please note

that the asymptotic variances of WLS and ALS are identical by definition, and so are their VarAS

and, hence, the ratio of their VarAS with respect to MWLS. Therefore, to avoid redundancy, the

corresponding ratios for WLS and ALS are presented together under the heading of Models 1 and

2, i.e., as WLS1 & ALS1 to MWLS1, and WLS2 & ALS2 to MWLS2.

We also note that the efficiency gains due to MWLS relative to OLS, WLS and ALS that were
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observed in Table 1 in terms of VarMC are also all observed at similar levels of magnitude in terms

of VarAS in Table 2. Therefore, we conclude that there is strong evidence in the simulation results

suggesting that propositions P1-P3, in terms of VarAS, hold up very well even in small samples.

Inference in finite samples

Having seen the strong evidence of efficiency gains by MWLS in small samples in the context

of propositions P1-P3, it is then natural to ask what their implications are for inference. For the

sake of practicality, we explore this in terms of VarAS since it is feasible in practice while VarMC is

not. We can still appeal to our discussion so far since, as documented in Tables 1 and 2, the ratios

of VarAS for the different estimators with respect to MWLS follow the same pattern as those of

VarMC. Indeed, these two sets of ratios are essentially the same in relatively less small samples.

The main implication of this efficiency gain is that it reduces the length of confidence intervals or,

equivalently, increases the power of tests. For example, if the ratio of AvarAS for (OLS/MWLS) is

a (∈ (0,∞)) then, roughly speaking, the confidence intervals obtained by inverting the t-test based

on the OLS estimator are on average
√
a times longer than the intervals of the same nominal level

but based on the MWLS estimator. (This only gives a rough back-of-the envelope idea since it does

not distinguish between the ratio of averages and the average of ratios.)

Accordingly, our discussion of proposition P1 suggests that the OLS and MWLS intervals are,

on average, of almost equal length under DGP 1a (conditional homoskedasticity), while the MWLS

intervals are shorter, often much so, under the other DGPs. Similarly, our discussion of propositions

P2 and P3 respectively suggests that the MWLS intervals are, on average, roughly equal to or

shorter (sometimes much so) than the WLS and ALS intervals.

However, shorter confidence intervals based on MWLS will be useless without a good coverage

probability. Tables 3 and 4 present for β1 and β2 respectively the empirical non-coverage probability

(in percentage) of such intervals of nominal level 95%. Specifically, these numbers are the empirical

rejection rate of the true parameter value by a two-sided t-test using the 5%-N(0, 1) critical value.

In all cases, the empirical size for OLS is always the closest to the 5% level. This closeness is

evident even in very small samples except under DGP 1a for which, however, it is well known that

using another HC form (instead of the HC0 form used here) of the asymptotic variance estimator

that is unbiased under conditional homoskedasticity would largely resolve this issue.

The empirical size for all estimators is generally closer to the 5% level for β2 than for β1. There

is almost always a noticeable upward distortion in the empirical size for MWLS when the sample

size is very small. This is also the case for WLS and ALS but to a slightly lesser degree.16 However,

16As can be seen from Tables 8-9 (Appendix B.4) where the same empirical size is presented but using the respective
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these distortions for WLS, ALS and MWLS vanish as the sample size increases and the empirical

size is always reasonably close to the 5% level when sample size increases to n = 100.

In summary, the empirical size of MWLS (and OLS, WLS and ALS) and, hence, the coverage

probability of the MWLS (and OLS, WLS and ALS) intervals are generally good under this sim-

ulation design of Romano and Wolf (2017). Coupled with the efficiency gains due to MWLS, this

suggests that the proposed MWLS estimator can be an attractive choice to users in applied work.

5 Conclusion

Our paper was inspired by Romano and Wolf (2017) who challenged the conventional wisdom of

preferring OLS estimation with robust standard errors over (parametric) WLS estimation. OLS

estimation has always been attractive because, unlike WLS, it does not require the user to postulate

parametric models for the conditional variance of the regression error. Hence, WLS estimation

naturally fell out of favor among practitioners following the seminal work of White (1980).

Practitioners could only be encouraged to use WLS if, along with the well known efficiency

gains that result from WLS in some cases, it can also be guaranteed that WLS will never suffer any

efficiency loss relative to OLS in other cases. However, this is not possible. It is well known that

the asymptotic variance of WLS can be more than that of OLS if the postulated parametric model

for the conditional variance is misspecified. Unfortunately, in spite of its desirable performance

otherwise, the ALS estimator proposed by Romano and Wolf (2017) does not solve this problem.

Our paper solved this problem head-on by taking a new and direct route to optimality. Our

proposed MWLS estimator is guaranteed to have an asymptotic variance that is less than or equal

to that of: (i) the OLS estimator and, more generally, (ii) any weighted by ω−1(X; γ) least squares

estimator including the WLS estimator and, therefore, the ALS estimator. The MWLS estimator

is semiparametrically efficient if the postulated parametric model ω2(X; γ) happens to be correct.

We provided a thorough discussion of the MWLS estimator and its superior asymptotic prop-

erties. A Monte Carlo experiment under the simulation design of Romano and Wolf (2017) demon-

strated the excellent performance of the MWLS estimator even in reasonably small samples.

We conclude by emphasizing again that the key feature that we exploited in proposing the

MWLS estimator is that: a parametric misspecification of the nuisance parameters in this esti-

mation framework does not affect the consistency of the estimator for the parameters of interest.

test statistics that are instead based on the VarMC (infeasible), there is never any such distortion even when the
sample size is very small. Hence, the size distortion in very small samples in Tables 3-4 stems from the poor
approximation of the true variance by the asymptotic variance formula in such small samples (also see Tables 5-7
in Appendix B.4). This is a common issue and to fix it there exists a vast array of methods on robust variance
estimation; see MacKinnon (2012). An analytical study of this and related finite-sample issues is left for future work.
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There are various other frameworks that also enjoy this feature. The same idea should, in principle,

be applicable in all those cases. An exploration of this idea under these other frameworks and the

search for optimality even in the higher-order properties are left for our ongoing research.
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Estimating β1: Intercept Estimating β2: Slope

DGP n Model 1 for ω2(X; γ) Model 2 for ω2(X; γ) Model 1 for ω2(X; γ) Model 2 for ω2(X; γ)

OLS WLS1 ALS1 OLS WLS2 ALS2 OLS WLS1 ALS1 OLS WLS2 ALS2
25 .89 .95 .95 .91 .96 .96 .91 .97 .97 .93 .99 .99
50 .93 .97 .97 .94 .97 .97 .94 .98 .98 .95 .99 .99

1a 100 .96 .98 .98 .97 .98 .98 .97 .99 .99 .97 .99 .99
200 .98 1.00 1.00 .98 1.00 1.00 .98 1.00 1.00 .98 1.00 1.00
400 .99 1.00 1.00 .99 1.00 1.00 .99 1.00 1.00 .99 1.00 1.00
25 .99 .97 .98 1.01 .98 .99 1.01 .98 .99 1.01 .99 1.00
50 1.07 .98 1.00 1.07 .99 1.00 1.06 .99 1.01 1.06 .99 1.00

1b 100 1.06 .98 1.00 1.07 .99 1.00 1.06 .99 1.00 1.06 1.00 1.01
200 1.10 .99 .99 1.10 1.00 1.00 1.09 1.00 1.00 1.09 1.00 1.00
400 1.13 1.00 1.00 1.13 1.00 1.00 1.11 1.00 1.00 1.11 1.00 1.00
25 1.30 .96 .99 1.32 .99 1.01 1.21 .98 1.00 1.20 .99 1.01
50 1.56 .98 1.00 1.55 .99 1.01 1.39 .99 1.00 1.36 .98 1.00

1c 100 1.47 .98 .98 1.47 .99 .99 1.37 .99 .99 1.36 .99 1.00
200 1.60 .99 .99 1.59 1.00 1.00 1.46 1.00 1.00 1.44 1.00 1.00
400 1.61 1.00 1.00 1.59 1.01 1.01 1.45 1.00 1.00 1.43 1.00 1.00
25 2.48 .87 .87 2.57 .94 .94 1.72 .94 .94 1.73 .95 .95
50 4.05 .88 .88 4.16 .94 .94 2.55 .96 .96 2.53 .95 .95

1d 100 3.86 .89 .89 3.93 .96 .96 2.78 .96 .96 2.77 .98 .98
200 4.77 .94 .94 4.68 1.00 1.00 3.10 .97 .97 3.02 .99 .99
400 4.66 .99 .99 4.47 1.01 1.01 3.02 1.00 1.00 2.89 1.00 1.00
25 2.18 1.04 1.04 2.00 1.07 1.07 1.44 .97 .97 1.37 .98 .98
50 2.99 1.15 1.15 2.62 1.18 1.18 1.92 1.01 1.01 1.69 .98 .98

2a 100 5.43 1.30 1.30 4.54 1.36 1.36 2.39 1.06 1.06 2.16 1.05 1.05
200 4.86 1.38 1.38 3.45 1.23 1.23 2.16 1.06 1.06 1.81 1.00 1.00
400 4.58 1.39 1.39 3.15 1.20 1.20 2.17 1.07 1.07 1.83 1.01 1.01
25 3.36 .91 .91 3.31 .98 .99 1.87 .96 .96 1.76 .94 .94
50 5.07 .80 .80 5.39 .98 .98 3.23 .93 .93 3.14 .97 .97

2b 100 9.14 1.12 1.12 8.91 1.23 1.23 4.01 1.14 1.14 3.67 1.09 1.09
200 10.94 1.31 1.31 9.49 1.45 1.45 4.66 1.26 1.26 3.81 1.19 1.19
400 13.19 1.45 1.45 10.82 1.57 1.57 5.11 1.28 1.28 3.97 1.17 1.17
25 1.04 .95 .99 1.07 .96 1.00 1.08 .98 1.02 1.10 .99 1.03
50 1.11 .98 1.02 1.14 .98 1.03 1.14 .99 1.03 1.15 .98 1.03

3a 100 1.14 .99 1.00 1.16 .99 1.01 1.16 1.00 1.01 1.18 1.00 1.02
200 1.19 1.00 1.00 1.21 1.00 1.00 1.20 1.00 1.00 1.22 1.00 1.00
400 1.20 1.00 1.00 1.22 1.00 1.00 1.21 1.00 1.00 1.23 1.00 1.00
25 1.27 .94 .98 1.32 .96 1.00 1.27 .97 1.01 1.30 .98 1.02
50 1.45 .97 1.04 1.52 .97 1.06 1.45 .99 1.06 1.51 .99 1.07

3b 100 1.44 .99 1.00 1.48 .99 1.00 1.43 1.00 1.01 1.47 1.00 1.01
200 1.53 1.00 1.00 1.58 1.00 1.00 1.50 1.00 1.00 1.56 1.00 1.00
400 1.60 1.00 1.00 1.65 1.00 1.00 1.56 1.00 1.00 1.62 1.00 1.00
25 .99 .97 .98 1.01 .98 .99 1.00 .99 1.00 1.01 1.00 1.01
50 1.02 .99 .99 1.03 .99 .99 1.02 .99 1.00 1.01 .98 .99

4a 100 1.07 1.00 1.00 1.08 .99 1.00 1.07 1.00 1.00 1.07 1.00 1.00
200 1.09 1.00 1.00 1.10 1.00 1.00 1.08 1.00 1.00 1.08 1.00 1.00
400 1.09 1.01 1.01 1.09 1.00 1.00 1.08 1.01 1.01 1.08 1.00 1.00
25 1.26 .97 1.03 1.31 .99 1.06 1.17 .98 1.03 1.17 .99 1.03
50 1.39 .98 1.03 1.44 .97 1.02 1.30 .98 1.02 1.31 .97 1.01

4b 100 1.46 1.00 1.00 1.50 1.00 1.00 1.38 1.00 1.00 1.40 1.00 1.00
200 1.46 1.02 1.02 1.49 1.01 1.01 1.35 1.01 1.01 1.36 1.01 1.01
400 1.49 1.03 1.03 1.51 1.01 1.01 1.36 1.02 1.02 1.36 1.01 1.01

Table 1: Ratios of VarMC of OLS, WLS1 and ALS1 with respect to that of MWLS1 are listed
under the heading “Model 1 for ω2(X; γ)”. Ratios of VarMC of OLS, WLS2 and ALS2 with respect
to that of MWLS2 are listed under the heading “Model 2 for ω2(X; γ)”. WLS1, ALS1 and MWLS1
use Model 1, i.e., exp(γ1 + log(X(2))). WLS2, ALS2 and MWLS2 use Model 2, i.e., exp(γ1 +X(2)).
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Estimating β1: Intercept Estimating β2: Slope

DGP n Model 1 for ω2(X; γ) Model 2 for ω2(X; γ) Model 1 for ω2(X; γ) Model 2 for ω2(X; γ)
WLS1 & WLS2 & WLS1 & WLS2 &

OLS ALS1 OLS ALS2 OLS ALS1 OLS ALS2
25 1.23 1.20 1.13 1.12 1.14 1.12 1.09 1.08
50 1.10 1.08 1.07 1.06 1.07 1.06 1.06 1.05

1a 100 1.04 1.04 1.04 1.03 1.04 1.03 1.03 1.03
200 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01
400 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
25 1.41 1.21 1.29 1.13 1.25 1.11 1.20 1.08
50 1.28 1.09 1.24 1.08 1.21 1.06 1.18 1.05

1b 100 1.19 1.05 1.17 1.04 1.16 1.04 1.14 1.03
200 1.17 1.03 1.16 1.02 1.15 1.02 1.13 1.02
400 1.15 1.01 1.14 1.01 1.12 1.01 1.12 1.01
25 1.87 1.16 1.70 1.11 1.49 1.08 1.44 1.07
50 1.90 1.08 1.81 1.08 1.56 1.05 1.52 1.05

1c 100 1.68 1.06 1.62 1.05 1.50 1.04 1.45 1.03
200 1.71 1.03 1.66 1.03 1.52 1.02 1.48 1.02
400 1.64 1.01 1.61 1.01 1.46 1.01 1.43 1.01
25 3.81 1.02 3.52 1.05 2.24 1.04 2.18 1.07
50 5.35 1.00 5.04 1.04 3.00 1.03 2.87 1.03

1d 100 4.72 1.01 4.38 1.04 3.12 1.02 2.93 1.02
200 5.44 1.01 5.03 1.04 3.37 1.01 3.15 1.01
400 4.90 1.01 4.59 1.02 3.08 1.01 2.91 1.01
25 3.01 1.22 2.57 1.17 1.73 1.08 1.63 1.07
50 4.07 1.34 3.27 1.33 2.28 1.11 1.99 1.09

2a 100 6.21 1.31 4.87 1.32 2.50 1.06 2.23 1.04
200 5.01 1.37 3.48 1.22 2.19 1.06 1.85 1.02
400 4.67 1.37 3.24 1.20 2.21 1.07 1.86 1.02
25 4.98 1.07 4.60 1.11 2.43 1.11 2.28 1.11
50 7.96 1.03 7.47 1.22 4.20 1.09 3.87 1.14

2b 100 11.88 1.23 10.32 1.27 4.51 1.18 3.96 1.11
200 12.57 1.43 9.96 1.48 4.95 1.29 3.95 1.21
400 13.97 1.51 10.63 1.54 5.16 1.28 3.95 1.17
25 1.51 1.18 1.39 1.11 1.37 1.11 1.32 1.08
50 1.42 1.11 1.39 1.09 1.38 1.09 1.36 1.08

3a 100 1.27 1.04 1.27 1.04 1.26 1.04 1.26 1.03
200 1.24 1.02 1.25 1.02 1.24 1.02 1.26 1.02
400 1.24 1.01 1.25 1.01 1.25 1.01 1.26 1.01
25 1.87 1.14 1.74 1.09 1.63 1.10 1.60 1.08
50 1.85 1.10 1.84 1.09 1.72 1.07 1.76 1.08

3b 100 1.62 1.04 1.62 1.03 1.57 1.04 1.58 1.03
200 1.62 1.02 1.65 1.02 1.58 1.02 1.62 1.02
400 1.64 1.02 1.68 1.01 1.60 1.01 1.65 1.01
25 1.38 1.18 1.27 1.11 1.23 1.09 1.19 1.07
50 1.27 1.09 1.24 1.08 1.22 1.08 1.20 1.07

4a 100 1.18 1.04 1.17 1.03 1.15 1.03 1.15 1.03
200 1.13 1.02 1.13 1.01 1.11 1.02 1.11 1.02
400 1.12 1.02 1.12 1.01 1.10 1.01 1.10 1.01
25 1.76 1.10 1.65 1.07 1.43 1.06 1.39 1.06
50 1.76 1.08 1.72 1.06 1.56 1.07 1.53 1.06

4b 100 1.64 1.04 1.64 1.03 1.50 1.03 1.49 1.03
200 1.54 1.04 1.55 1.02 1.40 1.03 1.40 1.02
400 1.52 1.04 1.54 1.02 1.39 1.03 1.38 1.02

Table 2: Ratios of VarAS of OLS and WLS1 with that of MWLS1 (resp., of OLS and WLS2
with that of MWLS2) are listed under “Model 1 for ω2(X; γ)” (resp., “Model 2 for ω2(X; γ)”).
Asymptotic variances of WLS1 and ALS1 (resp., WLS2 and ALS2) are identical, and so are their
VarAS’s. So, the ratios of their VarAS to that of MWLS1 (resp., MWLS2) are presented together.
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DGP n OLS WLS1 ALS1 MWLS1 WLS2 ALS2 MWLS2

25 10.3 12.2 12.3 18.3 11.7 11.7 15.2
50 6.9 8.0 8.0 10.0 7.7 7.7 9.2

1a 100 5.8 6.1 6.1 7.2 6.0 6.0 6.8
200 5.3 5.7 5.7 5.9 5.5 5.5 5.7
400 5.3 5.4 5.4 5.4 5.3 5.3 5.4

25 8.2 12.0 12.3 17.7 11.3 11.5 14.4
50 6.5 8.3 8.5 10.4 7.8 8.0 9.5

1b 100 5.5 6.4 6.5 7.5 6.2 6.3 6.9
200 5.2 5.9 5.9 6.3 5.7 5.7 6.0
400 5.0 5.1 5.1 5.3 5.1 5.1 5.2

25 6.5 11.6 12.1 16.0 10.5 10.9 13.0
50 6.2 8.4 8.6 10.0 7.7 7.9 9.0

1c 100 5.8 6.9 6.9 8.1 6.4 6.4 7.2
200 5.3 5.8 5.8 6.4 5.5 5.5 5.9
400 5.5 5.4 5.4 5.6 5.4 5.4 5.5

25 6.1 11.0 11.0 13.6 9.2 9.2 11.2
50 7.0 8.4 8.4 9.9 7.2 7.2 8.5

1d 100 6.1 7.3 7.3 9.0 6.2 6.2 7.5
200 5.3 6.0 6.0 7.0 5.5 5.5 6.0
400 5.1 5.6 5.6 5.8 5.3 5.3 5.4

25 5.6 7.5 7.6 10.2 7.7 7.7 9.5
50 6.7 6.6 6.6 7.9 6.3 6.3 7.2

2a 100 5.6 6.0 6.0 6.4 5.8 5.8 5.9
200 5.4 5.5 5.5 5.3 5.5 5.5 5.1
400 5.3 5.5 5.5 5.5 5.4 5.4 5.4

25 6.0 7.9 7.9 10.5 8.1 8.1 10.4
50 8.0 6.6 6.6 8.8 6.2 6.2 8.1

2b 100 5.8 6.6 6.6 7.5 6.2 6.2 6.8
200 5.3 5.4 5.4 6.1 5.3 5.3 5.6
400 5.3 5.3 5.3 5.4 5.3 5.3 5.1

25 8.1 12.8 13.5 18.4 11.8 12.5 15.0
50 7.0 9.6 10.2 12.2 8.9 9.4 10.8

3a 100 5.8 7.3 7.5 8.0 7.0 7.1 7.6
200 5.6 5.8 5.8 6.2 5.7 5.7 6.1
400 5.4 5.8 5.8 6.0 5.7 5.7 5.9

25 7.3 12.7 13.3 17.4 11.4 12.1 14.1
50 7.5 10.3 11.3 12.9 9.0 10.0 11.1

3b 100 5.9 7.3 7.4 8.2 6.9 7.0 7.6
200 5.2 5.8 5.8 6.2 5.7 5.7 6.0
400 5.2 5.3 5.3 5.6 5.3 5.3 5.4

25 8.5 12.5 12.8 17.9 11.7 11.9 14.4
50 6.7 9.5 9.5 11.5 8.8 8.8 10.2

4a 100 5.8 7.2 7.3 7.8 7.0 7.0 7.5
200 5.6 5.7 5.7 6.1 5.7 5.7 5.9
400 5.4 5.8 5.8 5.9 5.7 5.7 5.7

25 6.8 12.2 13.1 15.5 10.8 11.6 12.5
50 7.1 10.5 11.0 12.0 9.0 9.5 10.2

4b 100 5.9 7.2 7.3 7.9 6.9 7.0 7.3
200 5.1 5.9 5.9 6.0 5.6 5.6 5.8
400 5.3 5.5 5.5 5.5 5.3 5.3 5.4

Table 3: Empirical size of a nominal 5% two-sided test for β1 using the N(0, 1) critical value, and
the t-ratio based on the OLS, WLS1, ALS1, MWLS1, WLS2, ALS2 and MWLS2 estimators for β1.
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DGP n OLS WLS1 ALS1 MWLS1 WLS2 ALS2 MWLS2

25 9.2 10.6 10.6 13.3 10.3 10.3 11.9
50 6.5 7.4 7.4 8.5 7.3 7.3 8.2

1a 100 5.9 6.2 6.2 6.9 6.2 6.2 6.7
200 5.3 5.5 5.5 5.8 5.6 5.6 5.8
400 5.3 5.4 5.4 5.4 5.3 5.3 5.4

25 7.8 9.3 9.5 11.4 9.1 9.3 10.4
50 6.7 7.5 7.6 8.5 7.3 7.4 8.1

1b 100 5.6 6.2 6.3 6.7 6.1 6.2 6.6
200 5.6 5.9 5.9 6.3 5.8 5.8 6.1
400 5.2 5.2 5.2 5.2 5.2 5.2 5.2

25 7.6 9.1 9.3 10.6 8.7 8.9 10.1
50 6.9 6.9 7.1 8.0 6.7 6.9 7.7

1c 100 6.0 6.3 6.3 7.0 6.1 6.1 6.7
200 5.3 5.6 5.6 5.9 5.4 5.4 5.7
400 5.6 5.3 5.3 5.4 5.1 5.1 5.3

25 8.0 9.6 9.6 11.2 8.9 8.9 10.8
50 7.5 7.8 7.8 8.6 7.1 7.1 8.1

1d 100 6.4 6.6 6.6 7.4 6.0 6.0 6.6
200 5.6 5.7 5.7 6.2 5.5 5.5 5.9
400 5.4 5.5 5.5 5.6 5.4 5.4 5.5

25 7.4 7.9 7.9 9.6 8.0 8.0 9.5
50 7.6 7.1 7.1 8.2 7.0 7.0 8.4

2a 100 6.1 6.2 6.2 6.3 6.1 6.1 6.2
200 5.5 5.6 5.6 5.6 5.6 5.6 5.7
400 5.4 5.5 5.5 5.5 5.5 5.5 5.5

25 8.1 8.5 8.5 11.2 8.7 8.7 11.3
50 8.3 7.2 7.2 8.9 7.0 7.0 8.6

2b 100 6.1 6.5 6.5 7.1 6.3 6.3 6.7
200 5.5 5.5 5.5 5.7 5.4 5.4 5.7
400 5.4 5.2 5.2 5.2 5.2 5.2 5.2

25 7.9 9.9 10.4 12.6 9.6 10.1 11.2
50 7.5 8.9 9.4 10.4 8.4 8.9 9.9

3a 100 6.0 6.8 7.0 7.2 6.6 6.8 6.9
200 5.6 5.8 5.8 6.1 5.7 5.7 5.9
400 5.5 5.8 5.8 6.0 5.6 5.6 5.8

25 7.9 9.6 10.2 11.8 9.1 9.8 10.7
50 8.0 9.1 10.0 10.7 8.4 9.4 9.7

3b 100 6.1 6.6 6.6 7.1 6.3 6.4 6.7
200 5.3 5.5 5.5 5.8 5.5 5.5 5.8
400 5.3 5.6 5.6 5.7 5.5 5.5 5.6

25 7.9 9.8 9.9 11.9 9.5 9.6 10.8
50 7.1 8.6 8.6 9.7 8.3 8.3 9.5

4a 100 5.9 6.7 6.7 7.0 6.5 6.5 6.9
200 5.5 5.7 5.7 5.9 5.6 5.6 5.9
400 5.4 5.8 5.8 5.8 5.7 5.7 5.8

25 7.7 9.2 9.9 10.6 8.8 9.5 9.9
50 7.7 8.9 9.3 10.0 8.0 8.4 9.3

4b 100 6.0 6.5 6.5 6.8 6.3 6.3 6.7
200 5.3 5.6 5.6 5.8 5.5 5.5 5.6
400 5.4 5.5 5.5 5.7 5.5 5.5 5.6

Table 4: Empirical size of a nominal 5% two-sided test for β2 using the N(0, 1) critical value, and
the t-ratio based on the OLS, WLS1, ALS1, MWLS1, WLS2, ALS2 and MWLS2 estimators for β2.
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A Appendix A: Proofs for the results in Section 2

Proof of Lemma 1:

(i) Follows by inspection.

(ii) Follows by assumptions (A1)-(A6), continuity of inverse (since it exists), and Slutsky’s

theorem once we note using (1) that for any given γ ∈ Γ:

√
n
(
β̂n(γ)− β0

)
=

(
1

n

n∑
i=1

1

ω2(Xi; γ)
XiX

′
i

)−1(
1√
n

n∑
i=1

1

ω2(Xi; γ)
Xiui

)
.

(iii) Follows from (ii) under assumption (A7) by using the delta method.

Proof of Lemma 2: First, note that assumptions (A6) and (A7) imply that Σ(γ) is a finite,

positive definite matrix for γ ∈ Γ, and assumption (A8) implies that Γ∗ defined in (9) is nonempty.

Now, define the set Γ̄ as the right hand side of (12):

Γ̄ :=

{
γ ∈ Γ

∣∣∣∣Trace(Σ(γ))−min
g∈Γ

Trace(Σ(g)) = 0

}
.

Recall that Γ̄ is nonempty because argming∈ΓTrace(Σ(g)) exists in Γ as trace is a scalar criterion

and as Γ is compact in Rk. Now, we show that Γ̄ = Γ∗ where Γ∗ is as defined in (9).

Step 1 [γ∗ ∈ Γ∗ ⇒ γ∗ ∈ Γ̄]: Take any γ∗ ∈ Γ∗. This is possible by assumption (A8). We show

that γ∗ ∈ Γ̄. Suppose that this is not true. Then there exists γ̄ ∈ Γ̄ such that Trace(Σ(γ∗)−Σ(γ̄)) >

0. That implies that at least one diagonal element of Σ(γ∗) is strictly greater than the corresponding

diagonal element of Σ(γ̄). This implies that neither is Σ(γ̄)−Σ(γ∗) positive definite (i.e., γ̄ /∈ Γpd(γ
∗)

defined in (10)) nor is Σ(γ̄) = Σ(γ∗) (i.e., γ̄ /∈ Γeq(γ
∗) defined in (11)). Since γ̄ ∈ Γ, the above

implies that Γpd(γ
∗)∪Γeq(γ

∗) ̸= Γ and hence γ∗ /∈ Γ∗ by (9), which is contradiction. Hence, γ∗ ∈ Γ̄.

Step 2 [γ̄ ∈ Γ̄ ⇒ γ̄ ∈ Γ∗]: Take any γ̄ ∈ Γ̄, which is equivalent to the condition that:

Trace(Σ(γ) − Σ(γ̄)) ≥ 0 for all γ ∈ Γ. We show that γ̄ ∈ Γ∗ where Γ∗ is defined in (9). Sup-

pose that this is not true. Then, if we consider any γ∗ ∈ Γ∗ (nonempty by (A8)), any one of the

following two mutually exclusive conditions has to hold: (i) γ̄ ∈ Γpd(γ
∗) or (ii) γ̄ ∈ Γeq(γ

∗). If (i)

holds then Trace(Σ(γ̄) − Σ(γ∗)) > 0 which is a contradiction to the condition on the trace stated

at the top of Step 2, and hence is not possible. On the other hand, if (ii) holds then Σ(γ̄) = Σ(γ∗).

Now, recalling that γ∗ ∈ Γ is equivalent to saying Γpd(γ
∗) ∪ Γeq(γ

∗) = Γ, the implication of (ii)

(i.e., Σ(γ̄) = Σ(γ∗)) is that Γpd(γ̄) ∪ Γeq(γ̄) = Γ, which would imply that γ̄ ∈ Γ∗ by (9). This is a

contradiction to our supposition. Hence, γ̄ ∈ Γ∗.
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Proof of Lemma 3:

(i) Follows trivially.

(ii) Take any δ > 0. Assumption (A11) implies that P (d(γ̂n,Γ
∗) > δ) ≤ P (Q(γ̂n) ≥ ϵ(δ)).

However, for any ϵ(δ) > 0, we have P (Q(γ̂n) ≥ ϵ(δ)) → 0 because: (a) |Q(γ̂n)| ≤ |Q(γ̂n) −

Q̂n(γ̂n)| + |Q̂n(γ̂n)| by the triangle inequality, and (b) since γ̂n ∈ Γ, the first term on the RHS

in (a) is op(1) by assumption (A10) while the second term on the RHS in (a) is identically 0

by its definition in (15). Hence, d(γ̂n,Γ
∗) = op(1). This implies that γ̂n ∈ Γ∗

δ with probability

approaching one. Hence, we can use assumption (A12), and the steps (a) and (b) in the consistency

proof above to obtain that |Q(γ̂n)| = Op(1/
√
n). Then, using assumption (A13), it follows that

d(γ̂n,Γ
∗) ≤ Q(γ̂n)/D = Op(1/

√
n).

Proof of Theorem 4: The proof proceeds by obtaining the following four intermediate results.

First, note that, adding and subtracting terms to match assumption (A14) gives:

1√
n

n∑
i=1

Xiui
ω2(Xi; γ̂n)

=
1√
n

n∑
i=1

Xiui
ω2(Xi; γn)

+R1,n +R2,n

where

R1,n :=

(
1

n

n∑
i=1

Xiui∇γ(Xi; γn)
′

)
√
n(γ̂n − γn) =

(
1

n

n∑
i=1

Wi,n

)
√
n(γ̂n − γn) = op(1)

by assumption (A15) and Lemma 3 respectively; and

R2,n :=
1√
n

n∑
i=1

Xiui

[
1

ω2(Xi; γ̂n)
− 1

ω2(Xi; γn)
−∇γ(Xi; γn)

′(γ̂n − γn)

]

⇒ |R2,n| ≤ 1√
n

n∑
i=1

∥Xiui∥ ×
∣∣∣∣ 1

ω2(Xi; γ̂n)
− 1

ω2(Xi; γn)
−∇γ(Xi; γn)

′(γ̂n − γn)

∣∣∣∣
≤ 1

2
√
n

n∑
i=1

∥Xiui∥ × |∆(X; γn)| × ∥γ̂n − γn∥2

≤

(
1

2n

n∑
i=1

∥Xiui∆(X; γn)∥

)(
n1/4∥γ̂n − γn∥

)2
= op(1)

where the first inequality follows by the Cauchy-Schwartz inequality, the second inequality by

assumption (A14), the third inequality by noting that ∆(X; γn) is a positive scalar random variable,

and the last equality by assumption (A16) and Lemma 3 respectively. Therefore, we obtain that:

1√
n

n∑
i=1

Xiui
ω2(Xi; γ̂n)

=
1√
n

n∑
i=1

Xiui
ω2(Xi; γn)

+ op(1). (29)
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Second, note that, by using assumptions (A4) and (A17) respectively in the inequality on the

second line below, it follows that:

∥∥∥B̂n(γ̂n)−B(γn)
∥∥∥ ≤

∥∥∥B̂n(γ̂n)−B(γ̂n)
∥∥∥+ ∥B(γ̂n)−B(γn)∥

≤ sup
γ∈Γ

∥∥∥B̂n(γ)−B(γ)
∥∥∥+ ∥B(γ̂n)−B(γn)∥ = op(1). (30)

Third, note that:

√
n
(
β̂n − β0

)
= B̂n(γ̂n)

−1 1√
n

n∑
i=1

Xiui
ω2(Xi; γ̂n)

=
[
B(γn)

−1 + op(1)
] [ 1√

n

n∑
i=1

Xiui
ω2(Xi; γn)

+ op(1)

]

= B(γn)
−1 1√

n

n∑
i=1

Xiui
ω2(Xi; γn)

+ op(1). (31)

In the second equality on the first line, the first bracket follows by (30) and assumption (A6) while

the second bracket follows by (29). The second line follows by assumptions (A6) and (A19)(a).

Fourth, note that, by using (31) and assumption (A7), it follows that:

H(β̂n)−H(β0) ≡ H(β̂n)−H = op(1). (32)

Therefore, from (18), (29), (30), (31), (32) and assumptions (A6) and (A7), we obtain by a

mean-value expansion around a (element-by-element) mean-value β̄n that:

√
n(ĥn − h(β0)) ≡

√
n(h(β̂n)− h(β0))

= H(β̄n)
√
n
(
β̂n − β0

)
= [H + op(1)]

[
B(γn)

−1 1√
n

n∑
i=1

Xiui
ω2(Xi; γn)

+ op(1)

]

= HB(γn)
−1 1√

n

n∑
i=1

Xiui
ω2(Xi; γn)

+ op(1) (33)

= Σ(γ∗)1/2Σ(γn)
−1/2HB(γn)

−1 1√
n

n∑
i=1

Xiui
ω2(Xi; γn)

+ op(1)

d−→ N(0,Σ(γ∗))

for any γ∗ ∈ Γ∗. The first equality follows by a mean-value expansion around β0 and with the

element-by-element mean-value β̄n. The second equality follows by (31) and (32). The third

equality follows by assumptions (A7) and (A19)(a). The fourth equality follows by assumptions

(A17) and (A18) by virtue of assumptions (A6) and (A19b). The last line in the display follows by
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assumption (A19)(b) and the definition of Γ∗ in (9). This concludes the proof of Theorem 4(ii).

The special case in part (i) of Theorem 4 follows from (33) and Lemma 1(iii).

Proof of Lemma 5:

(i) Note that:

∥Ĉn(γ|β̌n)− C(γ)∥ = ∥T1n(γ) + T2n(γ)∥ ≤ ∥T1n(γ)∥+ ∥T2n(γ)∥

where:

T1n(γ) =
1

n

n∑
i=1

{
XiX

′
iu

2
i

(ω2(Xi; γ))
2 − E

[
XiX

′
iu

2
i

(ω2(Xi; γ))
2

]}
,

T2n(γ) =
1

n

n∑
i=1

XiX
′
i

(ω2(Xi; γ))
2

{
(yi −X ′

iβ̌n)
2 − u2i

}
.

Now, note that, uniformly in γ ∈ Γ,

∥T1n(γ)∥ =

∥∥∥∥∥ 1n
n∑

i=1

{
XiX

′
iu

2
i

(ω2(Xi; γ))
2 − E

[
XiX

′
iu

2
i

(ω2(Xi; γ))
2

]}∥∥∥∥∥ = op(1) (34)

since the compactness of Γ, and assumptions (A21) and (A22) imply that Jenrich (1969)’s uniform

weak law of large numbers (UWLLN) applies. On the other hand, letting Xi ≡ (X1,i, . . . , Xp,i)
′,

β0 ≡ (β0,1, . . . , β0,p)
′ and β̌n ≡ (β̌n,1, . . . , β̌n,p)

′, it follows that:

∥T2n(γ)∥ =

∥∥∥∥∥ 1n
n∑

i=1

XiX
′
i

(ω2(Xi; γ))
2

{
(yi −X ′

iβ̌n)
2 − u2i

}∥∥∥∥∥
=

∥∥∥∥∥ 1n
n∑

i=1

XiX
′
i

(ω2(Xi; γ))
2

{
(β̌n − β0)

′XiX
′
i(β̌n − β0)− 2(β̌n − β0)

′Xiui
}∥∥∥∥∥

=

∥∥∥∥∥∥
p∑

j=1

p∑
l=1

(β̌n,j − β0,j)(β̌n,l − β0,l)
1

n

n∑
i=1

XiX
′
iXj,iXl,i

(ω2(Xi; γ))
2 − 2

p∑
j=1

(β̌n,j − β0,j)
1

n

n∑
i=1

XiX
′
iXj,iui

(ω2(Xi; γ))
2

∥∥∥∥∥∥
≤

p∑
j=1

p∑
l=1

|β̌n,j − β0,j ||β̌n,l − β0,l|

∥∥∥∥∥ 1n
n∑

i=1

{
XiX

′
iXj,iXl,i

(ω2(Xi; γ))
2 − E

[
XiX

′
iXj,iXl,i

(ω2(Xi; γ))
2

]}∥∥∥∥∥
+

p∑
j=1

p∑
l=1

|β̌n,j − β0,j ||β̌n,l − β0,l|
∥∥∥∥E [XiX

′
iXj,iXl,i

(ω2(Xi; γ))
2

]∥∥∥∥
+ 2

p∑
j=1

|β̌n,j − β0,j |

∥∥∥∥∥ 1n
n∑

i=1

{
XiX

′
iXj,iui

(ω2(Xi; γ))
2 − E

[
XiX

′
iXj,iui

(ω2(Xi; γ))
2

]}∥∥∥∥∥
+ 2

p∑
j=1

|β̌n,j − β0,j |
∥∥∥∥E [ XiX

′
iXj,iui

(ω2(Xi; γ))
2

]∥∥∥∥
= op(1) + op(1) + op(1) + op(1) uniformly in γ ∈ Γ, (35)
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where, on the RHS of the last inequality, (i) the first term is op(1) by assumption (A20) and then

applying the UWLLN that follows from the compactness of Γ, assumptions (A21)(a) and (A22);

(ii) the second term is op(1) by assumptions (A20) and (A21)(a); (iii) the third term is op(1) by

assumption (A20) and then applying the UWLLN that follows from the compactness of Γ, and

assumptions and (A21) and (A22); and (iv) the fourth term is op(1) by assumptions (A20) and

(A21). (The integrable dominating function in the cases of all these four terms was obtained by the

Holder’s inequality with the help of assumption (A21).) Therefore, (34) and (35) jointly imply that:

(a) supγ∈Γ ∥Ĉn(γ|β̌n)−C(γ)∥ = op(1). Then, applying assumptions (A7) and (A20), it follows that:

(b) H(β̌n)−H = op(1) irrespective of γ, and hence uniformly in γ ∈ Γ. Therefore, combining (a),

(b) and assumption (A4), it follows that supγ∈Γ ∥Σ̂n(γ|β̌n)− Σ(γ)∥ = op(1).

(ii) Note that:

∥Σ̂n(γ̌n|β̌n)− Σ(γ∗)∥ ≤ ∥Σ̂n(γ̌n|β̌n)− Σ(γ̌n)∥+ ∥Σ(γ̌n)− Σ(γn)∥+ ∥Σ(γn)− Σ(γ∗)∥

≤ sup
γ∈Γ

∥Σ̂n(γ|β̌n)− Σ(γ)∥+ ∥Σ(γ̌n)− Σ(γn)∥+ ∥Σ(γn)− Σ(γ∗)∥

= op(1) + op(1) + op(1)

where the first op(1) follows by Lemma 5(i), the second op(1) term by assumptions (A7), (A17),

(A18) and (A23), while the third op(1) term by (A7), (A17) and (A18).

36



B Appendix B: Supplementary materials

B.1 The problem with convexity of m(γ) in γ mentioned in footnote 5

Without further assumption on the parameterization ω2(X; γ), it is not possible to gainfully exploit

the simplicity of the trace function to establish properties such as convexity for m(γ). In fact,

convexity may not hold in general. To simplify the exposition, instead of the minimization m(γ) :=

Trace
(
(B(γ)−1C(γ)B(γ)−1

)
≡ Trace (C(γ)) / [Trace (B(γ))]2 with respect to γ, use assumption

(A6) and consider the minimization of log(m(γ)) ≡ log (Trace (C(γ)))−2 log (Trace (B(γ))). Then,

note that, strict convexity of log(m(γ)) in Γ follows if
∑p

j=1[aj(γ) − bj(γ)] >
∑p

j=1[cj(γ) − dj(γ)]

for γ ∈ Γ where aj(γ) = (∇γγfj(γ))/Trace(C(γ)), bj(γ) = (∇γfj(γ))(∇γfj(γ))
′/Trace2(C(γ)),

cj(γ) = (∇γγgj(γ))/Trace(B(γ)), dj(γ) = (∇γgj(γ))(∇γgj(γ))
′/Trace2(B(γ)) and, for j = 1, . . . , p,

∇γfj(γ) and ∇γγfj(γ) (respectively, ∇γgj(γ) and ∇γγgj(γ)) are the first and the second derivative

of the j-th diagonal element of C(γ) (respectively B(γ)). Such convexity may not hold even with

a scalar β and γ, i.e., p = k = 1, without a very restrictive parameterization ω2(X; γ).

B.2 Steps leading to equations (26) in Section 3.4

Denoting ∂
∂γω

2(X; γ∗) by ∇γ(X; γ∗), (26) follows from the first order condition because:

∂

∂γ
log(B(γ∗)) =

1

2

∂

∂γ
log(C(γ∗))

⇒ E

[
X2

ω2(X; γ∗)

∇γ(X; γ∗)

ω2(X; γ∗)

]/
B(γ) = E

[
u2

ω2(X; γ∗)

X2

ω2(X; γ∗)

∇γ(X; γ∗)

ω2(X; γ∗)

]/
C(γ)

⇒ 0 =
1

C(γ)
E

[
X2

ω2(X; γ∗)

∇γ(X; γ∗)

ω2(X; γ∗)

{
u2

ω2(X; γ∗)
− C(γ)

B(γ)

}]
⇒ 0 = E

[
X2

ω2(X; γ∗)

∇γ(X; γ∗)

ω2(X; γ∗)

{
u2

ω2(X; γ∗)
− C(γ)

B(γ)

}]
⇒ 0 = E

[
1

ω2(X; γ∗)

X2

ω2(X; γ∗)

∇γ(X; γ∗)

ω2(X; γ∗)

{
u2 − C(γ)

B(γ)
ω2(X; γ∗)

}]
⇒ 0 = E

[
1

ω2(X; γ∗)

X2

ω2(X; γ∗)

∇γ(X; γ∗)

ω2(X; γ∗)

{
ω2
0(X)− C(γ)

B(γ)
ω2(X; γ∗)

}]

where the third line follows by rearranging terms, the fourth line by using that C(γ) ̸= 0, the

fifth line by factoring out 1
ω2(X;γ∗) from the terms inside the braces to make the tilting of the term

ω2(X; γ∗) inside the braces explicit, and the sixth line by the law of iterated expectations.

B.3 Implementation of WLS, ALS and MWLS estimators

The WLS and ALS estimators of β are obtained as in Romano and Wolf (2017) (RW). In particular,

first the estimators γ̂RW1 and γ̂RW2 of γ = (γ1, γ2)
′ in Models 1 and 2 respectively are obtained as:
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• γ̂RW1 is the coefficient from a regression (Regression 1) of log
(
max(δ2, û2)

)
on (1, log(X(2)));

• γ̂RW2 is the coefficients from a regression (Regression 2) of log
(
max(δ2, û2)

)
on (1, X(2));

where δ = .1 and û’s are the OLS residuals from (1).

TheWLS1 andWLS2 estimators are then obtained respectively as the weighted by ω−1(X; γ̂RW1)

and ω−1(X; γ̂RW2) least squares estimators of β (see (4)).

The ALS1 and ALS2 estimators are obtained as follows. For ALS1, first a test for conditional

homoskedasticity of u is performed by using the n× R2 from Regression 1 as the test statistic. If

the null hypothesis of conditional homoskedasticity is rejected at the 10% level then ALS1 is the

WLS1 estimator and otherwise ALS1 is the OLS estimator of β. Exactly in the same way for ALS2,

first a test for conditional homoskedasticity of u is performed by using the n×R2 from Regression

2 as the test statistic. If the null hypothesis of conditional homoskedasticity is rejected at the 10%

level then ALS2 is the WLS2 estimator and otherwise ALS2 is the OLS estimator of β.

Finally, consider obtaining the MWLS estimator of β1 following the Algorithm in Section 2.3.2.

(Estimation of and inference on β2 follow similarly and are omitted.) In Step 1, we use the OLS

estimator β̃n,OLS, the expression for B̂n(γ), and the formulae in (20) and (21) to obtain for each

γ ∈ Γ the scalar function of γ:

Σ̂n(γ) ≡ Σ̂n(γ|β̃n,OLS) = the (1, 1)-th element of the 2× 2 matrix Ξ̂n(γ|β̃n,OLS) where

Ξ̂n(γ|β̃n,OLS) =

(
1

n

n∑
i=1

XiX
′
i

ω2(Xi; γ)

)−1(
1

n

n∑
i=1

(yi −X ′
iβ̃n,OLS)

2
iXiX

′
i

(ω2(Xi; γ))
2

)(
1

n

n∑
i=1

XiX
′
i

ω2(Xi; γ)

)−1

for the given model, Model 1 or Model 2, for ω2(X; γ). If the determinant of Ξ̂n(γ|β̃n,OLS) is zero

for any γ then we redefine Σ̂n(γ) = +∞ for that γ to ensure non-degeneracy. In Step 2, we obtain

γ̂n as a minimizer of Σ̂n(γ) with respect to γ ∈ Γ. In Step 3 we obtain the MWLS estimator for β1

as the first element of the weighted by ω−1(X; γ̂n) least squares estimator, say, β̂n, [for β1] of β.

For inference on β1 based on this MWLS estimator, we obtain the estimator Σ̂n(.) of its asymp-

totic variance similarly as above but now by using Ξ̂n(γ̂n|β̂n,[for β1]) instead of Ξ̂n(γ|β̃n,OLS).

B.4 Supplemental Monte Carlo results referred to in Section 4.2

Tables 5-6 report the VarMC of the estimators for β1 and β2 respectively. Table 7 reports the VarAS

of the estimators for β1 and β2. Tables 8-9 report the empirical size of 5% two-sided tests for β1

and β2 respectively with t-ratios using the VarMC instead of the estimated asymptotic variance.
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DGP n OLS WLS1 ALS1 MWLS1 WLS2 ALS2 MWLS2

25 10.27 11.00 10.99 11.56 10.82 10.82 11.32
50 8.74 9.11 9.11 9.42 9.06 9.06 9.34

1a 100 10.28 10.52 10.52 10.74 10.47 10.47 10.63
200 10.18 10.36 10.36 10.39 10.33 10.33 10.35
400 8.83 8.89 8.89 8.90 8.88 8.88 8.88

25 18.12 17.64 17.86 18.23 17.60 17.81 18.01
50 15.91 14.56 14.87 14.80 14.60 14.88 14.82

1b 100 21.31 19.72 19.96 20.05 19.76 19.98 19.91
200 20.40 18.38 18.40 18.55 18.41 18.43 18.47
400 16.79 14.87 14.87 14.86 14.96 14.96 14.91

25 39.71 29.36 30.30 30.54 29.74 30.59 30.14
50 37.38 23.37 23.87 23.90 23.89 24.34 24.05

1c 100 55.29 36.80 36.84 37.69 37.44 37.48 37.71
200 50.69 31.27 31.27 31.62 31.97 31.97 31.95
400 41.52 25.63 25.63 25.71 26.19 26.19 26.03

25 351.23 123.78 123.78 141.76 127.94 127.94 136.49
50 371.55 80.96 80.96 91.70 83.70 83.70 89.30

1d 100 574.57 132.35 132.35 148.85 140.61 140.61 146.12
200 485.74 95.83 95.83 101.84 103.53 103.53 103.73
400 464.87 98.53 98.53 99.76 105.36 105.36 104.08

25 4.04 1.93 1.93 1.85 2.16 2.16 2.02
50 6.47 2.48 2.48 2.16 2.93 2.93 2.48

2a 100 5.17 1.24 1.24 .95 1.55 1.55 1.14
200 4.63 1.31 1.31 .95 1.66 1.66 1.34
400 5.35 1.63 1.63 1.17 2.04 2.04 1.70

25 5.15 1.39 1.40 1.53 1.53 1.54 1.55
50 8.88 1.40 1.40 1.75 1.61 1.61 1.65

2b 100 6.49 .80 .80 .71 .90 .90 .73
200 6.32 .76 .76 .58 .97 .97 .67
400 7.49 .82 .82 .57 1.09 1.09 .69

25 21.88 20.01 20.81 20.98 19.78 20.62 20.54
50 28.56 25.06 26.20 25.64 24.52 25.77 25.08

3a 100 24.58 21.26 21.59 21.50 20.97 21.31 21.13
200 22.06 18.44 18.45 18.51 18.17 18.18 18.21
400 24.92 20.83 20.83 20.82 20.49 20.49 20.49

25 37.89 28.07 29.18 29.91 27.58 28.71 28.78
50 54.54 36.37 39.28 37.64 34.89 38.03 35.80

3b 100 42.28 29.00 29.31 29.43 28.36 28.69 28.56
200 40.08 26.13 26.13 26.20 25.32 25.32 25.34
400 47.06 29.44 29.44 29.45 28.48 28.48 28.51

25 13.87 13.61 13.75 14.06 13.47 13.62 13.71
50 17.47 16.95 17.05 17.16 16.65 16.76 16.90

4a 100 16.56 15.45 15.46 15.52 15.24 15.26 15.33
200 13.82 12.72 12.72 12.69 12.57 12.57 12.57
400 15.19 14.10 14.10 13.98 13.91 13.91 13.88

25 23.57 18.04 19.26 18.66 17.83 18.98 17.98
50 36.12 25.59 26.85 26.05 24.46 25.71 25.12

4b 100 31.85 21.76 21.86 21.78 21.17 21.26 21.22
200 26.76 18.79 18.79 18.35 18.09 18.09 17.94
400 30.17 20.85 20.85 20.27 20.07 20.07 19.95

Table 5: VarMC of OLS, WLS1, ALS1, MWLS1, WLS2, ALS2 and MWLS2 estimators for β1.
WLS1, ALS1, MWLS1 (resp. WLS2, ALS2, MWLS2) use Model 1 (resp. Model 2) for ω2(X; γ).
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DGP n OLS WLS1 ALS1 MWLS1 WLS2 ALS2 MWLS2

25 1.09 1.16 1.16 1.20 1.15 1.15 1.17
50 1.16 1.21 1.21 1.23 1.21 1.21 1.23

1a 100 1.41 1.44 1.44 1.46 1.44 1.44 1.45
200 1.45 1.48 1.48 1.48 1.47 1.47 1.47
400 1.26 1.27 1.27 1.27 1.26 1.26 1.26

25 2.47 2.42 2.45 2.46 2.43 2.45 2.44
50 2.78 2.58 2.63 2.62 2.60 2.64 2.63

1b 100 3.62 3.38 3.41 3.40 3.39 3.42 3.40
200 3.65 3.34 3.35 3.35 3.35 3.35 3.35
400 3.08 2.78 2.78 2.78 2.79 2.79 2.79

25 7.08 5.77 5.89 5.87 5.84 5.95 5.92
50 8.32 5.91 6.00 6.00 6.00 6.08 6.11

1c 100 11.29 8.16 8.17 8.22 8.26 8.27 8.31
200 10.87 7.44 7.44 7.46 7.55 7.55 7.56
400 9.53 6.57 6.57 6.58 6.66 6.66 6.67

25 86.61 47.30 47.30 50.28 47.32 47.32 50.06
50 102.82 38.91 38.91 40.38 38.59 38.59 40.66

1d 100 140.23 48.16 48.16 50.43 49.54 49.54 50.57
200 125.68 39.54 39.54 40.55 41.42 41.42 41.67
400 112.44 37.17 37.17 37.19 38.87 38.87 38.88

25 .81 .55 .55 .56 .58 .58 .59
50 1.50 .79 .79 .78 .87 .87 .89

2a 100 1.23 .55 .55 .52 .60 .60 .57
200 1.17 .58 .58 .54 .65 .65 .65
400 1.26 .62 .62 .58 .70 .70 .69

25 1.30 .67 .67 .70 .70 .70 .74
50 2.29 .66 .66 .71 .71 .71 .73

2b 100 1.76 .50 .50 .44 .52 .52 .48
200 1.82 .49 .49 .39 .57 .57 .48
400 2.01 .51 .51 .39 .59 .59 .51

25 3.47 3.16 3.29 3.23 3.14 3.28 3.17
50 5.71 4.98 5.20 5.03 4.88 5.13 4.97

3a 100 4.77 4.11 4.18 4.12 4.06 4.13 4.06
200 4.55 3.78 3.79 3.79 3.73 3.73 3.73
400 4.94 4.09 4.09 4.09 4.02 4.02 4.02

25 7.38 5.67 5.86 5.83 5.57 5.77 5.66
50 12.06 8.24 8.82 8.32 7.89 8.53 7.98

3b 100 9.18 6.39 6.45 6.41 6.24 6.31 6.23
200 9.48 6.32 6.32 6.30 6.10 6.10 6.07
400 10.64 6.82 6.82 6.82 6.57 6.57 6.56

25 1.93 1.91 1.93 1.93 1.91 1.93 1.91
50 3.35 3.26 3.28 3.30 3.24 3.26 3.31

4a 100 3.09 2.89 2.89 2.89 2.88 2.88 2.88
200 2.67 2.48 2.48 2.47 2.46 2.46 2.46
400 2.80 2.62 2.62 2.60 2.61 2.61 2.59

25 4.40 3.69 3.86 3.75 3.71 3.87 3.75
50 8.29 6.26 6.50 6.37 6.12 6.36 6.33

4b 100 7.26 5.24 5.26 5.26 5.20 5.22 5.21
200 6.48 4.87 4.87 4.81 4.82 4.82 4.78
400 6.92 5.17 5.17 5.09 5.12 5.12 5.08

Table 6: VarMC of OLS, WLS1, ALS1, MWLS1, WLS2, ALS2 and MWLS2 estimators for β2.
WLS1, ALS1, MWLS1 (resp. WLS2, ALS2, MWLS2) use Model 1 (resp. Model 2) for ω2(X; γ).
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β1: Intercept β2: Slope

DGP n OLS WLS1 MWLS1 WLS2 MWLS2 OLS WLS1 MWLS1 WLS2 MWLS2
25 8.90 8.74 7.26 8.81 7.84 .95 .94 .84 .94 .87
50 8.32 8.21 7.59 8.24 7.76 1.11 1.10 1.04 1.10 1.05

1a 100 10.05 9.98 9.61 9.99 9.70 1.38 1.37 1.33 1.37 1.33
200 10.08 10.05 9.87 10.06 9.91 1.44 1.44 1.41 1.44 1.42
400 8.76 8.75 8.68 8.76 8.70 1.24 1.24 1.23 1.24 1.23
25 16.53 14.23 11.72 14.57 12.84 2.27 2.01 1.82 2.04 1.89
50 15.20 12.93 11.85 13.17 12.23 2.65 2.33 2.19 2.36 2.24

1b 100 21.09 18.58 17.67 18.79 18.05 3.57 3.20 3.09 3.23 3.13
200 20.16 17.63 17.19 17.79 17.43 3.58 3.19 3.13 3.21 3.16
400 16.75 14.77 14.62 14.87 14.72 3.08 2.76 2.74 2.78 2.76
25 37.59 23.35 20.14 24.59 22.14 6.66 4.82 4.47 4.97 4.63
50 35.89 20.44 18.92 21.39 19.83 7.92 5.33 5.07 5.48 5.23

1c 100 54.00 33.89 32.05 35.07 33.42 10.99 7.61 7.33 7.79 7.56
200 49.92 30.08 29.15 30.95 30.12 10.71 7.20 7.05 7.34 7.23
400 40.46 24.92 24.64 25.50 25.13 9.30 6.45 6.39 6.54 6.50
25 336.43 90.13 88.41 100.12 95.71 80.38 37.44 35.84 39.31 36.82
50 350.25 65.49 65.44 72.19 69.43 95.83 32.97 31.98 34.51 33.43

1d 100 546.24 117.09 115.77 130.04 124.66 133.29 43.48 42.76 46.45 45.43
200 487.25 90.80 89.57 100.26 96.85 125.35 37.73 37.24 40.29 39.74
400 464.85 95.79 94.81 103.48 101.38 111.55 36.56 36.26 38.57 38.35
25 3.85 1.56 1.28 1.76 1.50 .76 .47 .44 .50 .46
50 6.11 2.02 1.50 2.48 1.87 1.40 .68 .61 .77 .70

2a 100 5.02 1.06 .81 1.36 1.03 1.19 .50 .48 .56 .53
200 4.55 1.25 .91 1.59 1.31 1.15 .56 .52 .63 .62
400 5.28 1.55 1.13 1.95 1.63 1.24 .60 .56 .68 .66
25 4.97 1.07 1.00 1.20 1.08 1.22 .56 .50 .59 .54
50 8.20 1.06 1.03 1.34 1.10 2.11 .55 .50 .62 .55

2b 100 6.39 .66 .54 .79 .62 1.73 .45 .38 .48 .44
200 6.33 .72 .50 .94 .64 1.81 .47 .37 .56 .46
400 7.38 .80 .53 1.07 .69 1.98 .49 .38 .59 .50
25 19.68 15.40 13.05 15.75 14.18 3.15 2.54 2.30 2.57 2.38
50 26.64 20.85 18.79 20.95 19.24 5.28 4.19 3.83 4.18 3.87

3a 100 23.69 19.44 18.66 19.39 18.72 4.58 3.76 3.63 3.74 3.63
200 21.68 17.81 17.44 17.64 17.36 4.45 3.65 3.58 3.60 3.55
400 24.30 19.79 19.55 19.54 19.36 4.81 3.90 3.86 3.84 3.81
25 35.20 21.48 18.85 22.07 20.25 6.82 4.58 4.18 4.59 4.25
50 50.25 29.79 27.13 29.71 27.33 11.05 6.86 6.42 6.76 6.27

3b 100 40.99 26.41 25.37 26.13 25.28 8.95 5.93 5.71 5.83 5.66
200 40.29 25.41 24.82 24.79 24.35 9.48 6.15 6.01 5.96 5.85
400 46.62 28.85 28.43 27.98 27.71 10.49 6.66 6.57 6.43 6.36
25 12.42 10.63 9.01 10.86 9.76 1.75 1.55 1.42 1.57 1.47
50 16.48 14.21 12.99 14.33 13.32 3.14 2.78 2.58 2.81 2.62

4a 100 15.98 14.14 13.60 14.11 13.66 2.97 2.65 2.57 2.66 2.58
200 13.61 12.32 12.05 12.22 12.04 2.61 2.39 2.35 2.39 2.35
400 14.80 13.41 13.20 13.28 13.17 2.73 2.50 2.47 2.49 2.47
25 22.21 13.88 12.61 14.42 13.44 4.11 3.04 2.87 3.14 2.95
50 33.85 20.81 19.23 20.95 19.69 7.73 5.27 4.94 5.36 5.05

4b 100 31.09 19.78 18.98 19.50 18.95 7.12 4.88 4.74 4.88 4.76
200 26.93 18.21 17.50 17.68 17.32 6.49 4.75 4.62 4.72 4.62
400 29.82 20.38 19.58 19.67 19.38 6.81 5.04 4.91 5.01 4.92

Table 7: VarAS of OLS, WLS1, ALS1, MWLS1, WLS2, ALS2 and MWLS2 estimators for β1 and
β2. WLS1, ALS1, MWLS1 (resp. WLS2, ALS2, MWLS2) are based on Model 1 (resp. Model 2) for
ω2(X; γ). Asymptotic variance of WLS1 and ALS1 (resp. WLS2 and ALS2) are identical, and so
are their VarAS. So, the VarAS for ALS1 and ALS2 are omitted from the table to avoid repetition.
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DGP n OLS WLS1 ALS1 MWLS1 WLS2 ALS2 MWLS2

25 5.1 5.2 5.2 5.1 5.2 5.2 5.1
50 4.9 5.1 5.1 4.9 5.0 5.0 4.8

1a 100 5.0 4.9 4.9 5.0 4.9 4.9 5.0
200 4.8 4.9 4.9 4.9 4.9 4.9 4.9
400 5.1 5.1 5.1 5.1 5.1 5.1 5.0

25 5.0 5.1 5.1 5.0 5.2 5.2 5.0
50 5.0 5.1 5.1 5.2 5.1 5.1 5.1

1b 100 4.9 5.0 5.0 5.1 5.1 5.0 5.2
200 4.9 5.0 5.0 5.0 5.1 5.1 5.0
400 4.9 5.0 5.0 4.9 4.9 4.9 4.9

25 5.1 5.2 5.1 5.0 5.1 5.0 5.0
50 4.9 4.9 5.0 5.1 5.0 5.1 5.1

1c 100 5.0 5.2 5.1 5.1 5.1 5.1 5.1
200 4.8 4.8 4.8 4.9 4.8 4.8 4.8
400 5.0 5.0 5.0 5.0 4.9 4.9 5.0

25 5.0 4.9 4.9 5.2 5.0 5.0 5.1
50 5.0 5.0 5.0 5.1 5.0 5.0 5.0

1d 100 4.8 5.0 5.0 5.0 5.0 5.0 5.1
200 5.2 5.0 5.0 4.9 4.9 4.9 4.9
400 5.0 5.0 5.0 5.0 5.0 5.0 5.0

25 4.9 5.1 5.0 5.4 5.1 5.1 5.2
50 5.0 5.2 5.2 5.5 5.1 5.1 5.3

2a 100 4.8 5.1 5.1 5.1 5.1 5.1 5.0
200 4.9 5.1 5.1 5.2 5.0 5.0 5.0
400 5.1 5.0 5.0 5.3 4.9 4.9 5.1

25 5.0 5.2 5.1 5.7 5.1 5.0 5.2
50 5.1 5.4 5.4 6.2 5.2 5.2 5.9

2b 100 5.0 5.0 5.0 5.2 4.9 4.9 5.0
200 4.9 5.0 5.0 5.1 5.0 5.0 5.1
400 4.9 5.0 5.0 5.3 5.0 5.0 5.3

25 5.0 5.1 5.0 4.9 5.0 5.0 4.9
50 4.9 4.9 4.9 5.0 4.9 4.9 4.9

3a 100 4.9 4.8 4.9 4.9 4.9 4.9 4.9
200 5.0 5.1 5.0 5.1 5.0 5.0 5.1
400 5.0 5.0 5.0 5.1 5.1 5.1 5.0

25 5.0 5.1 5.1 5.0 5.0 5.1 5.1
50 5.0 4.9 4.9 5.1 5.0 4.9 5.0

3b 100 5.1 5.1 5.1 5.1 5.1 5.1 5.2
200 4.9 5.0 5.0 5.1 5.0 5.0 5.1
400 5.0 4.9 4.9 4.9 4.8 4.8 4.9

25 5.0 5.0 4.9 5.0 5.0 5.0 5.0
50 4.9 5.0 5.0 5.0 5.0 5.0 4.9

4a 100 4.8 4.8 4.8 4.8 4.8 4.8 4.8
200 5.0 5.0 5.0 5.0 5.0 5.0 5.0
400 5.0 5.1 5.1 5.1 5.1 5.1 5.1

25 4.9 5.1 5.0 5.0 5.1 5.0 5.0
50 5.1 5.0 5.0 5.0 5.0 4.9 5.1

4b 100 5.0 5.1 5.0 5.1 5.1 5.1 5.0
200 4.9 5.0 5.0 5.0 5.0 5.0 5.1
400 5.1 4.9 4.9 5.0 4.9 4.9 4.9

Table 8: Empirical size of a nominal 5% two-sided test for β2 using the N(0, 1) critical value, and
the t-ratio using the VarMC instead of the estimated asymptotic variance of the estimators for β1.
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DGP n OLS WLS1 ALS1 MWLS1 WLS2 ALS2 MWLS2

25 5.1 5.1 5.1 5.1 5.1 5.1 5.1
50 4.9 5.0 5.0 4.8 4.9 4.9 4.8

1a 100 5.0 4.9 4.9 5.0 4.9 4.9 4.9
200 5.0 5.0 5.0 5.0 5.0 5.0 5.0
400 5.0 5.0 5.0 5.0 5.0 5.0 5.0

25 5.2 5.1 5.1 5.2 5.1 5.1 5.2
50 5.0 5.0 5.0 4.9 5.0 5.0 4.9

1b 100 4.9 5.0 5.0 5.0 5.0 5.0 5.0
200 5.0 5.1 5.1 5.0 5.1 5.1 5.0
400 5.0 5.0 5.0 5.0 5.0 5.0 5.0

25 5.1 5.0 5.0 5.1 5.0 5.0 5.1
50 4.9 4.9 5.0 4.9 4.9 4.9 4.8

1c 100 5.1 4.9 4.9 5.0 4.9 4.9 5.1
200 4.8 4.9 4.9 4.9 4.9 4.9 5.0
400 5.1 5.0 5.0 5.0 4.9 4.9 4.9

25 5.0 5.0 5.0 5.0 5.0 5.0 5.0
50 4.9 5.1 5.1 5.0 5.1 5.1 5.1

1d 100 4.9 5.0 5.0 5.0 5.0 5.0 5.1
200 5.1 5.0 5.0 5.0 5.0 5.0 5.1
400 5.1 5.1 5.1 5.2 5.2 5.2 5.3

25 5.0 4.9 4.9 5.0 5.0 5.0 5.0
50 4.9 5.1 5.1 5.1 5.1 5.1 5.1

2a 100 5.0 5.1 5.1 5.2 5.2 5.2 5.2
200 4.9 5.1 5.1 5.0 5.1 5.1 5.0
400 5.1 5.0 5.0 5.1 5.0 5.0 5.0

25 5.1 5.1 5.1 5.2 5.0 5.0 5.1
50 4.9 5.3 5.3 5.5 5.2 5.2 5.4

2b 100 5.1 5.0 5.0 5.1 5.0 5.0 5.1
200 4.9 5.0 5.0 5.0 5.0 5.0 5.0
400 4.9 4.9 4.9 5.1 4.9 4.9 5.0

25 4.9 5.1 5.0 5.1 5.1 5.0 5.1
50 4.9 5.0 4.9 4.8 5.0 5.0 4.9

3a 100 4.9 5.0 5.0 4.8 4.9 5.0 4.8
200 4.9 5.1 5.1 5.0 5.1 5.1 5.0
400 5.0 5.1 5.1 5.1 5.0 5.0 5.0

25 5.0 5.1 5.2 5.0 5.2 5.3 5.2
50 5.0 4.9 4.9 5.0 5.0 4.9 5.0

3b 100 5.2 5.1 5.1 5.0 5.1 5.0 5.1
200 4.9 4.9 4.9 5.0 5.0 5.0 5.1
400 5.0 5.1 5.1 5.0 5.1 5.1 5.1

25 4.9 5.1 5.0 5.0 5.1 4.9 5.1
50 4.9 5.0 5.0 4.9 4.9 4.9 4.9

4a 100 4.9 4.9 4.9 4.8 5.0 5.0 4.8
200 5.0 5.1 5.1 5.0 5.1 5.1 5.0
400 5.0 5.0 5.0 4.9 5.0 5.0 4.9

25 5.1 5.1 5.0 5.1 5.1 5.1 5.1
50 4.9 5.0 4.9 4.8 4.9 4.9 4.9

4b 100 5.2 4.9 5.0 5.0 5.1 5.1 5.0
200 4.9 5.1 5.1 5.1 5.0 5.0 5.1
400 4.9 5.0 5.0 5.0 5.1 5.1 5.1

Table 9: Empirical size of a nominal 5% two-sided test for β2 using the N(0, 1) critical value, and
the t-ratio using the VarMC instead of the estimated asymptotic variance of the estimators for β2.
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